pulseaudio/src/modules/module-equalizer-sink.c

1210 lines
41 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
This module is based off Lennart Poettering's LADSPA sink and swaps out
LADSPA functionality for a STFT OLA based digital equalizer. All new work
is published under Pulseaudio's original license.
Copyright 2009 Jason Newton <nevion@gmail.com>
Original Author:
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <fftw3.h>
#include <string.h>
#include <pulse/xmalloc.h>
#include <pulse/i18n.h>
#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/database.h>
#include <pulsecore/protocol-dbus.h>
#include <pulsecore/dbus-util.h>
#include <stdint.h>
#include <time.h>
//#undef __SSE2__
#ifdef __SSE2__
#include <xmmintrin.h>
#include <emmintrin.h>
#endif
#include "module-equalizer-sink-symdef.h"
PA_MODULE_AUTHOR("Jason Newton");
PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(_("sink=<sink to connect to> "));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink, *master;
pa_sink_input *sink_input;
size_t channels;
size_t fft_size;//length (res) of fft
size_t window_size;/*
*sliding window size
*effectively chooses R
*/
size_t R;/* the hop size between overlapping windows
* the latency of the filter, calculated from window_size
* based on constraints of COLA and window function
*/
size_t latency;//Really just R but made into it's own variable
//for twiddling with pulseaudio
size_t overlap_size;//window_size-R
size_t samples_gathered;
size_t max_output;//max amount of samples outputable in a single
//message
size_t target_samples;
float *H;//frequency response filter (magnitude based)
float *W;//windowing function (time domain)
float *work_buffer, **input, **overlap_accum;
fftwf_complex *output_window;
fftwf_plan forward_plan, inverse_plan;
//size_t samplings;
float *Hs[2];//thread updatable copies
pa_aupdate *a_H;
pa_memchunk conv_buffer;
pa_memblockq *rendered_q;
pa_dbus_protocol *dbus_protocol;
char *dbus_path;
pa_database *database;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"format",
"rate",
"channels",
"channel_map",
NULL
};
static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
static void hanning_window(float *W, size_t window_size);
static void array_out(const char *name, float *a, size_t length);
static void process_samples(struct userdata *u);
static void input_buffer(struct userdata *u, pa_memchunk *in);
void dsp_logic(
float * __restrict__ dst,
float * __restrict__ src,
float * __restrict__ overlap,
const float * __restrict__ H,
const float * __restrict__ W,
fftwf_complex * __restrict__ output_window,
struct userdata *u);
static void dbus_init(struct userdata *u);
static void dbus_done(struct userdata *u);
static void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u);
void get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u);
void get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u);
static void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u);
static void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void save_state(struct userdata *u);
#define v_size 4
#define gettime(x) clock_gettime(CLOCK_MONOTONIC, &x)
#define tdiff(x, y) time_diff(&x, &y)
#define mround(x, y) (x % y == 0 ? x : ( x / y + 1) * y)
#define COEFKEY "coefficients"
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
{
return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) -
((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec);
}
static void hanning_window(float *W, size_t window_size){
//h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
for(size_t i=0; i < window_size;++i){
W[i] = (float).5*(1-cos(2*M_PI*i/(window_size+1)));
}
}
static void fix_filter(float *H, size_t fft_size){
//divide out the fft gain
for(size_t i = 0; i < (fft_size / 2 + 1); ++i){
H[i] /= fft_size;
}
}
void array_out(const char *name, float *a, size_t length){
FILE *p=fopen(name, "w");
if(!p){
pa_log("opening %s failed!", name);
return;
}
for(size_t i = 0; i < length; ++i){
fprintf(p, "%e,", a[i]);
//if(i%1000==0){
// fprintf(p, "\n");
//}
}
fprintf(p, "\n");
fclose(p);
}
/* Called from I/O thread context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
pa_usec_t usec = 0;
pa_sample_spec *ss=&u->sink->sample_spec;
//size_t fs=pa_frame_size(&(u->sink->sample_spec));
/* Get the latency of the master sink */
if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
usec = 0;
//usec+=pa_bytes_to_usec(u->latency * fs, ss);
//usec+=pa_bytes_to_usec(u->samples_gathered * fs, ss);
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
/* Add the latency internal to our sink input on top */
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
*((pa_usec_t*) data) = usec;
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (PA_SINK_IS_LINKED(state) &&
u->sink_input &&
PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->rendered_q), TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
static void process_samples(struct userdata *u){
pa_memchunk tchunk;
size_t fs=pa_frame_size(&(u->sink->sample_spec));
while(u->samples_gathered >= u->R){
float *dst;
//pa_log("iter gathered: %ld", u->samples_gathered);
//pa_memblockq_drop(u->rendered_q, tchunk.length);
tchunk.index=0;
tchunk.length=u->R*fs;
tchunk.memblock=pa_memblock_new(u->core->mempool, tchunk.length);
dst=((float*)pa_memblock_acquire(tchunk.memblock));
for(size_t c=0;c < u->channels; c++) {
dsp_logic(
u->work_buffer,
u->input[c],
u->overlap_accum[c],
u->H,
u->W,
u->output_window,
u
);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + c, fs, u->work_buffer, sizeof(float), u->R);
}
pa_memblock_release(tchunk.memblock);
pa_memblockq_push(u->rendered_q, &tchunk);
pa_memblock_unref(tchunk.memblock);
u->samples_gathered-=u->R;
}
}
typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float))));
typedef union float_vector {
float f[v_size];
v4sf v;
#ifdef __SSE2__
__m128 m;
#endif
} float_vector_t;
//reference implementation
void dsp_logic(
float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
float * __restrict__ src,/*input data w/ overlap at start,
*automatically cycled in routine
*/
float * __restrict__ overlap,//The size of the overlap
const float * __restrict__ H,//The freq. magnitude scalers filter
const float * __restrict__ W,//The windowing function
fftwf_complex * __restrict__ output_window,//The transformed window'd src
struct userdata *u){
//use a linear-phase sliding STFT and overlap-add method (for each channel)
//zero padd the data
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//window the data
for(size_t j = 0;j < u->window_size; ++j){
dst[j] = W[j] * src[j];
}
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//perform filtering
for(size_t j = 0; j < u->fft_size / 2 + 1; ++j){
u->output_window[j][0] *= u->H[j];
u->output_window[j][1] *= u->H[j];
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
////debug: tests overlaping add
////and negates ALL PREVIOUS processing
////yields a perfect reconstruction if COLA is held
//for(size_t j = 0; j < u->window_size; ++j){
// u->work_buffer[j] = u->W[j] * u->input[c][j];
//}
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j = 0;j < u->overlap_size; ++j){
u->work_buffer[j] += overlap[j];
overlap[j] = dst[u->R+j];
}
////debug: tests if basic buffering works
////shouldn't modify the signal AT ALL (beyond roundoff)
//for(size_t j = 0; j < u->window_size;++j){
// u->work_buffer[j] = u->input[c][j];
//}
//preseve the needed input for the next window's overlap
memmove(src, src+u->R,
((u->overlap_size + u->samples_gathered) - u->R)*sizeof(float)
);
}
////regardless of sse enabled, the loops in here assume
////16 byte aligned addresses and memory allocations divisible by v_size
//void dsp_logic(
// float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
// float * __restrict__ src,/*input data w/ overlap at start,
// *automatically cycled in routine
// */
// float * __restrict__ overlap,//The size of the overlap
// const float * __restrict__ H,//The freq. magnitude scalers filter
// const float * __restrict__ W,//The windowing function
// fftwf_complex * __restrict__ output_window,//The transformed window'd src
// struct userdata *u){//Collection of constants
//
// const size_t window_size = mround(u->window_size,v_size);
// const size_t fft_h = mround(u->fft_size / 2 + 1, v_size / 2);
// //const size_t R = mround(u->R, v_size);
// const size_t overlap_size = mround(u->overlap_size, v_size);
//
// //assert(u->samples_gathered >= u->R);
// //zero out the bit beyond the real overlap so we don't add garbage
// for(size_t j = overlap_size; j > u->overlap_size; --j){
// overlap[j-1] = 0;
// }
// //use a linear-phase sliding STFT and overlap-add method
// //zero padd the data
// memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
// //window the data
// for(size_t j = 0; j < window_size; j += v_size){
// //dst[j] = W[j]*src[j];
// float_vector_t *d = (float_vector_t*) (dst+j);
// float_vector_t *w = (float_vector_t*) (W+j);
// float_vector_t *s = (float_vector_t*) (src+j);
//#if __SSE2__
// d->m = _mm_mul_ps(w->m, s->m);
//#else
// d->v = w->v * s->v;
//#endif
// }
// //Processing is done here!
// //do fft
// fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//
//
// //perform filtering - purely magnitude based
// for(size_t j = 0;j < fft_h; j+=v_size/2){
// //output_window[j][0]*=H[j];
// //output_window[j][1]*=H[j];
// float_vector_t *d = (float_vector_t*)(output_window+j);
// float_vector_t h;
// h.f[0] = h.f[1] = H[j];
// h.f[2] = h.f[3] = H[j+1];
//#if __SSE2__
// d->m = _mm_mul_ps(d->m, h.m);
//#else
// d->v = d->v*h->v;
//#endif
// }
//
//
// //inverse fft
// fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
//
// ////debug: tests overlaping add
// ////and negates ALL PREVIOUS processing
// ////yields a perfect reconstruction if COLA is held
// //for(size_t j = 0; j < u->window_size; ++j){
// // dst[j] = W[j]*src[j];
// //}
//
// //overlap add and preserve overlap component from this window (linear phase)
// for(size_t j = 0; j < overlap_size; j+=v_size){
// //dst[j]+=overlap[j];
// //overlap[j]+=dst[j+R];
// float_vector_t *d = (float_vector_t*)(dst+j);
// float_vector_t *o = (float_vector_t*)(overlap+j);
//#if __SSE2__
// d->m = _mm_add_ps(d->m, o->m);
// o->m = ((float_vector_t*)(dst+u->R+j))->m;
//#else
// d->v = d->v+o->v;
// o->v = ((float_vector_t*)(dst+u->R+j))->v;
//#endif
// }
// //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
//
// //////debug: tests if basic buffering works
// //////shouldn't modify the signal AT ALL (beyond roundoff)
// //for(size_t j = 0; j < u->window_size; ++j){
// // dst[j] = src[j];
// //}
//
// //preseve the needed input for the next window's overlap
// memmove(src, src+u->R,
// ((u->overlap_size+u->samples_gathered)+-u->R)*sizeof(float)
// );
//}
void input_buffer(struct userdata *u, pa_memchunk *in){
size_t fs = pa_frame_size(&(u->sink->sample_spec));
size_t samples = in->length/fs;
pa_assert_se(samples <= u->target_samples-u->samples_gathered);
float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index);
for(size_t c = 0; c < u->channels; c++) {
//buffer with an offset after the overlap from previous
//iterations
pa_assert_se(
u->input[c]+u->overlap_size+u->samples_gathered+samples <= u->input[c]+u->overlap_size+u->target_samples
);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c]+u->overlap_size+u->samples_gathered, sizeof(float), src + c, fs, samples);
}
u->samples_gathered+=samples;
pa_memblock_release(in->memblock);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
pa_assert_se(u->sink);
size_t fs = pa_frame_size(&(u->sink->sample_spec));
//size_t samples_requested = nbytes/fs;
size_t buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
pa_memchunk tchunk;
chunk->memblock = NULL;
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return -1;
//pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
struct timespec start, end;
if(pa_memblockq_peek(u->rendered_q, &tchunk)==0){
*chunk = tchunk;
pa_memblockq_drop(u->rendered_q, chunk->length);
return 0;
}
/*
Set the H filter
*/
unsigned H_i = pa_aupdate_read_begin(u->a_H);
u->H = u->Hs[H_i];
do{
pa_memchunk *buffer;
size_t input_remaining = u->target_samples-u->samples_gathered;
pa_assert(input_remaining>0);
//collect samples
buffer = &u->conv_buffer;
buffer->length = input_remaining*fs;
buffer->index = 0;
pa_memblock_ref(buffer->memblock);
pa_sink_render_into(u->sink, buffer);
//if(u->sink->thread_info.rewind_requested)
// sink_request_rewind(u->sink);
//pa_memchunk p;
//buffer = &p;
//pa_sink_render(u->sink, u->R*fs, buffer);
//buffer->length = PA_MIN(input_remaining*fs, buffer->length);
//debug block
//pa_memblockq_push(u->rendered_q, buffer);
//pa_memblock_unref(buffer->memblock);
//goto END;
//pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
//copy new input
gettime(start);
input_buffer(u, buffer);
gettime(end);
//pa_log("Took %0.5f seconds to setup", tdiff(end, start)*1e-9);
pa_memblock_unref(buffer->memblock);
pa_assert_se(u->fft_size >= u->window_size);
pa_assert_se(u->R < u->window_size);
//process every complete block on hand
gettime(start);
process_samples(u);
gettime(end);
//pa_log("Took %0.5f seconds to process", tdiff(end, start)*1e-9);
buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
}while(buffered_samples < u->R);
//deque from rendered_q and output
pa_assert_se(pa_memblockq_peek(u->rendered_q, &tchunk)==0);
*chunk = tchunk;
pa_memblockq_drop(u->rendered_q, chunk->length);
pa_assert_se(chunk->memblock);
//pa_log("gave %ld", chunk->length/fs);
//pa_log("end pop");
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_log_debug("Rewind callback!");
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return;
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes + pa_memblockq_get_length(u->rendered_q);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
//pa_sample_spec *ss = &u->sink->sample_spec;
pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log_debug("Resetting equalizer");
u->samples_gathered = 0;
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->rendered_q, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_memblockq_set_maxrewind(u->rendered_q, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
size_t fs = pa_frame_size(&(u->sink->sample_spec));
//pa_sink_set_max_request_within_thread(u->sink, nbytes);
pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
size_t fs = pa_frame_size(&(u->sink->sample_spec));
//pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs );
//pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_detach_within_thread(u->sink);
pa_sink_set_asyncmsgq(u->sink, NULL);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
pa_sink_attach_within_thread(u->sink);
size_t fs = pa_frame_size(&(u->sink->sample_spec));
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->master->thread_info.max_latency);
//TODO: setting this guy minimizes drop outs but doesn't get rid
//of them completely, figure out why
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
//TODO: this guy causes dropouts constantly+rewinds, it's unusable
//pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_unlink(u->sink);
pa_sink_input_unlink(u->sink_input);
pa_sink_unref(u->sink);
u->sink = NULL;
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
void save_state(struct userdata *u){
const float *H = u->Hs[pa_aupdate_read_begin(u->a_H)];
float *H_n = pa_xmalloc((u->fft_size / 2 + 1) * sizeof(float));
for(size_t i = 0 ; i <= u->fft_size / 2 + 1; ++i){
H_n[i] = H[i] * u->fft_size;
}
pa_aupdate_read_end(u->a_H);
pa_datum key, data;
key.data = (char *) COEFKEY;
key.size = strlen(key.data);
data.data = H_n;
data.size = (u->fft_size / 2 + 1) * sizeof(float);
pa_database_set(u->database, &key, &data, TRUE);
pa_database_sync(u->database);
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
//ensure's memory allocated is a multiple of v_size
//and aligned
static void * alloc(size_t x,size_t s){
size_t f = mround(x*s, sizeof(float)*v_size);
pa_assert_se(f >= x*s);
//printf("requested %ld floats=%ld bytes, rem=%ld\n", x, x*sizeof(float), x*sizeof(float)%16);
//printf("giving %ld floats=%ld bytes, rem=%ld\n", f, f*sizeof(float), f*sizeof(float)%16);
float *t = fftwf_malloc(f);
memset(t, 0, f);
return t;
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma;
const char *z;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
pa_bool_t *use_default = NULL;
size_t fs;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
ss.format = PA_SAMPLE_FLOAT32;
map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
fs = pa_frame_size(&ss);
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
m->userdata = u;
u->master = master;
u->sink = NULL;
u->sink_input = NULL;
u->channels = ss.channels;
u->fft_size = pow(2, ceil(log(ss.rate)/log(2)));
pa_log("fft size: %ld", u->fft_size);
u->window_size = 7999;
u->R = (u->window_size+1)/2;
u->overlap_size = u->window_size-u->R;
u->target_samples = 1*u->R;
u->samples_gathered = 0;
u->max_output = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, u->target_samples*fs, fs, fs, 0, 0, NULL);
u->a_H = pa_aupdate_new();
u->conv_buffer.memblock = pa_memblock_new(u->core->mempool, u->target_samples*fs);
u->latency = u->R;
for(size_t i = 0; i < 2; ++i){
u->Hs[i] = alloc((u->fft_size / 2 + 1), sizeof(float));
}
u->W = alloc(u->window_size, sizeof(float));
u->work_buffer = alloc(u->fft_size, sizeof(float));
memset(u->work_buffer, 0, u->fft_size*sizeof(float));
u->input = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
u->overlap_accum = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
for(size_t c = 0; c < u->channels; ++c){
u->input[c] = alloc(u->overlap_size+u->target_samples, sizeof(float));
pa_assert_se(u->input[c]);
memset(u->input[c], 0, (u->overlap_size+u->target_samples)*sizeof(float));
pa_assert_se(u->input[c]);
u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
pa_assert_se(u->overlap_accum[c]);
memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
}
u->output_window = alloc((u->fft_size / 2 + 1), sizeof(fftwf_complex));
u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);
hanning_window(u->W, u->window_size);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
sink_data.namereg_fail = FALSE;
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state = sink_set_state;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->request_rewind = sink_request_rewind;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
pa_sink_set_rtpoll(u->sink, master->rtpoll);
pa_sink_set_max_request(u->sink, u->R*fs);
//pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss));
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
sink_input_data.sink = u->master;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->userdata = u;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
pa_xfree(use_default);
char *dbname;
char *pref = pa_sprintf_malloc("equalizer-%s-state", u->sink->name);
pa_assert_se(dbname = pa_state_path(pref, TRUE));
pa_xfree(pref);
pa_assert_se(u->database = pa_database_open(dbname, TRUE));
pa_xfree(dbname);
unsigned H_i = pa_aupdate_write_begin(u->a_H);
u->H = u->Hs[H_i];
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
u->H[i] = 1.0;
}
//TODO cut this out and leave it for the client side
//const int freqs[] = {0,25,50,100,200,300,400,800,1500,
// 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
// 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
//const float coefficients[] = {1,1,1,1,1,1,1,1,1,1,
// 1,1,1,1,1,1,1,1,
// 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
//const size_t ncoefficients = sizeof(coefficients)/sizeof(float);
//pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
//float *freq_translated = (float *) pa_xmalloc0(sizeof(float)*(ncoefficients));
//freq_translated[0] = 1;
////Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
//for(size_t i = 1; i < ncoefficients-1; ++i){
// freq_translated[i] = ((float)freqs[i]*u->fft_size)/ss.rate;
// //pa_log("i: %ld: %d , %g",i, freqs[i], freq_translated[i]);
// pa_assert_se(freq_translated[i] >= freq_translated[i-1]);
//}
//freq_translated[ncoefficients-1] = FLT_MAX;
//
////Interpolate the specified frequency band values
//u->H[0] = 1;
//for(size_t i = 1, j = 0; i < (u->fft_size / 2 + 1); ++i){
// pa_assert_se(j < ncoefficients);
// //max frequency range passed, consider the rest as one band
// if(freq_translated[j+1] >= FLT_MAX){
// for(; i < (u->fft_size / 2 + 1); ++i){
// u->H[i] = coefficients[j];
// }
// break;
// }
// //pa_log("i: %d, j: %d, freq: %f", i, j, freq_translated[j]);
// //pa_log("interp: %0.4f %0.4f", freq_translated[j], freq_translated[j+1]);
// pa_assert_se(freq_translated[j] < freq_translated[j+1]);
// pa_assert_se(i >= freq_translated[j]);
// pa_assert_se(i <= freq_translated[j+1]);
// //bilinear-inerpolation of coefficients specified
// float c0 = (i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
// pa_assert_se(c0 >= 0&&c0 <= 1.0);
// u->H[i] = ((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
// pa_assert_se(u->H[i]>0);
// while(i >= floor(freq_translated[j+1])){
// j++;
// }
//}
//pa_xfree(freq_translated);
//load old parameters
pa_datum key,value;
key.data = (char *) COEFKEY;
key.size = strlen(key.data);
if (pa_database_get(u->database, &key, &value) != NULL){
if(value.size == (u->fft_size / 2 + 1) * sizeof(float)){
memcpy(u->H, value.data, (u->fft_size / 2 + 1) * sizeof(float));
}
pa_datum_free(&value);
}
fix_filter(u->H, u->fft_size);
pa_aupdate_write_swap(u->a_H);
pa_aupdate_write_end(u->a_H);
dbus_init(u);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa_xfree(use_default);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
save_state(u);
pa_database_close(u->database);
dbus_done(u);
if (u->sink) {
pa_sink_unlink(u->sink);
pa_sink_unref(u->sink);
}
if (u->sink_input) {
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
}
if(u->conv_buffer.memblock)
pa_memblock_unref(u->conv_buffer.memblock);
if (u->rendered_q)
pa_memblockq_free(u->rendered_q);
fftwf_destroy_plan(u->inverse_plan);
fftwf_destroy_plan(u->forward_plan);
pa_xfree(u->output_window);
for(size_t c=0; c < u->channels; ++c){
pa_xfree(u->overlap_accum[c]);
pa_xfree(u->input[c]);
}
pa_xfree(u->overlap_accum);
pa_xfree(u->input);
pa_xfree(u->work_buffer);
pa_xfree(u->W);
for(size_t i = 0; i < 2; ++i){
pa_xfree(u->Hs[i]);
}
pa_xfree(u);
}
enum property_handler_index {
PROPERTY_HANDLER_SAMPLERATE,
PROPERTY_HANDLER_FILTERSAMPLERATE,
PROPERTY_HANDLER_N_COEFS,
PROPERTY_HANDLER_COEFS,
PROPERTY_HANDLER_MAX
};
static pa_dbus_property_handler property_handlers[PROPERTY_HANDLER_MAX]={
[PROPERTY_HANDLER_SAMPLERATE]{.property_name="SampleRate",.type="u",.get_cb=get_sample_rate,.set_cb=NULL},
[PROPERTY_HANDLER_FILTERSAMPLERATE]{.property_name="FilterSampleRate",.type="u",.get_cb=get_filter_rate,.set_cb=NULL},
[PROPERTY_HANDLER_N_COEFS]{.property_name="NFilterCoefficients",.type="u",.get_cb=get_n_coefs,.set_cb=NULL},
[PROPERTY_HANDLER_COEFS]{.property_name="FilterCoefficients",.type="ai",.get_cb=get_filter,.set_cb=set_filter}
};
//static pa_dbus_arg_info new_equalizer_args[] = { { "path","o",NULL} };
//static pa_dbus_signal_info signals[SIGNAL_MAX] = {
// [SIGNAL_NEW_EQUALIZER]={.name="NewEqualizer",.arguments=new_equalizer_args,.n_arguments=1}
//};
#define EXTNAME "org.PulseAudio.Ext.Equalizing1"
static pa_dbus_interface_info interface_info={
.name=EXTNAME ".Equalizer",
.method_handlers=NULL,
.n_method_handlers=0,
.property_handlers=property_handlers,
.n_property_handlers=PROPERTY_HANDLER_MAX,
.get_all_properties_cb=handle_get_all,
.signals=NULL,
.n_signals=0
};
void dbus_init(struct userdata *u){
u->dbus_protocol=pa_dbus_protocol_get(u->core);
u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index);
pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &interface_info, u);
pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME);
}
void dbus_done(struct userdata *u){
pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME);
pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, interface_info.name);
pa_xfree(u->dbus_path);
pa_dbus_protocol_unref(u->dbus_protocol);
}
void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u=(struct userdata *)_u;
uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1);
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs);
}
void get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u=(struct userdata *) _u;
uint32_t rate=(uint32_t) u->sink->sample_spec.rate;
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &rate);
}
void get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u=(struct userdata *) _u;
uint32_t fft_size=(uint32_t) u->fft_size;
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &fft_size);
}
void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u = (struct userdata *)_u;
unsigned n_coefs = (unsigned) (u->fft_size / 2 + 1);
double *H_ = (double *) pa_xmalloc0(n_coefs * sizeof(double));
float *H=u->Hs[pa_aupdate_read_begin(u->a_H)];
for(size_t i = 0;i < u->fft_size / 2 + 1; ++i){
H_[i] = H[i] * u->fft_size;
}
pa_aupdate_read_end(u->a_H);
pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_DOUBLE, H_, n_coefs);
pa_xfree(H_);
}
void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u=(struct userdata *)_u;
double *H_;
unsigned _n_coefs;
pa_dbus_get_fixed_array_set_property_arg(conn, msg, DBUS_TYPE_DOUBLE, &H_, &_n_coefs);
if(_n_coefs!=u->fft_size / 2 + 1){
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", u->fft_size / 2 + 1, _n_coefs);
return;
}
float *H = u->Hs[pa_aupdate_write_begin(u->a_H)];
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
H[i] = (float) H_[i];
}
fix_filter(H, u->fft_size);
pa_aupdate_write_swap(u->a_H);
pa_aupdate_write_end(u->a_H);
//Stupid for IO reasons? Add a save signal to dbus instead
save_state(u);
pa_dbus_send_empty_reply(conn, msg);
}
void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
struct userdata *u = (struct userdata *)_u;
DBusMessage *reply = NULL;
DBusMessageIter msg_iter, dict_iter;
uint32_t rate=(uint32_t) u->sink->sample_spec.rate;
uint32_t fft_size=(uint32_t) u->fft_size;
uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1);
double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double));
unsigned H_i=pa_aupdate_read_begin(u->a_H);
float *H=u->Hs[H_i];
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
H_[i] = H[i];
}
pa_aupdate_read_end(u->a_H);
pa_assert_se((reply = dbus_message_new_method_return(msg)));
dbus_message_iter_init_append(reply, &msg_iter);
pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter));
pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_SAMPLERATE].property_name, DBUS_TYPE_UINT32, &rate);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_FILTERSAMPLERATE].property_name, DBUS_TYPE_UINT32, &fft_size);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs);
pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_COEFS].property_name, DBUS_TYPE_DOUBLE, H_, n_coefs);
pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter));
pa_assert_se(dbus_connection_send(conn, reply, NULL));
dbus_message_unref(reply);
pa_xfree(H_);
}