pulseaudio/src/modules/module-equalizer-sink.c

962 lines
32 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
This module is based off Lennart Poettering's LADSPA sink and swaps out
LADSPA functionality for a STFT OLA based digital equalizer. All new work
is published under Pulseaudio's original license.
Copyright 2009 Jason Newton <nevion@gmail.com>
Original Author:
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <fftw3.h>
#include <string.h>
#include <malloc.h>
#include <pulse/xmalloc.h>
#include <pulse/i18n.h>
#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include <stdint.h>
#include <time.h>
//#undef __SSE2__
#ifdef __SSE2__
#include <xmmintrin.h>
#include <emmintrin.h>
#endif
#include "module-equalizer-sink-symdef.h"
PA_MODULE_AUTHOR("Jason Newton");
PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(_("sink=<sink to connect to> "));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink, *master;
pa_sink_input *sink_input;
size_t channels;
size_t fft_size;//length (res) of fft
size_t window_size;/*
*sliding window size
*effectively chooses R
*/
size_t R;/* the hop size between overlapping windows
* the latency of the filter, calculated from window_size
* based on constraints of COLA and window function
*/
size_t latency;//Really just R but made into it's own variable
//for twiddling with pulseaudio
size_t overlap_size;//window_size-R
size_t samples_gathered;
size_t max_output;//max amount of samples outputable in a single
//message
size_t target_samples;
float *H;//frequency response filter (magnitude based)
float *W;//windowing function (time domain)
float *work_buffer,**input,**overlap_accum,**output_buffer;
fftwf_complex *output_window;
fftwf_plan forward_plan,inverse_plan;
//size_t samplings;
pa_memchunk conv_buffer;
pa_memblockq *rendered_q;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"format",
"rate",
"channels",
"channel_map",
NULL
};
static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
static void hanning_window(float *W,size_t window_size);
static void array_out(const char *name,float *a,size_t length);
static void process_samples(struct userdata *u);
static void input_buffer(struct userdata *u,pa_memchunk *in);
void dsp_logic(
float * __restrict__ dst,
float * __restrict__ src,
float * __restrict__ overlap,
const float * __restrict__ H,
const float * __restrict__ W,
fftwf_complex * __restrict__ output_window,
struct userdata *u);
#define v_size 4
#define gettime(x) clock_gettime(CLOCK_MONOTONIC,&x)
#define tdiff(x,y) time_diff(&x,&y)
#define mround(x,y) (x%y==0?x:(x/y+1)*y)
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
{
return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) -
((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec);
}
void hanning_window(float *W,size_t window_size){
//h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
for(size_t i=0;i<window_size;++i){
W[i]=(float).5*(1-cos(2*M_PI*i/(window_size+1)));
}
}
void array_out(const char *name,float *a,size_t length){
FILE *p=fopen(name,"w");
if(!p){
pa_log("opening %s failed!",name);
return;
}
for(size_t i=0;i<length;++i){
fprintf(p,"%e,",a[i]);
//if(i%1000==0){
// fprintf(p,"\n");
//}
}
fprintf(p,"\n");
fclose(p);
}
/* Called from I/O thread context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
pa_usec_t usec = 0;
pa_sample_spec *ss=&u->sink->sample_spec;
size_t fs=pa_frame_size(&(u->sink->sample_spec));
/* Get the latency of the master sink */
if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
usec = 0;
//usec+=pa_bytes_to_usec(u->latency*fs,ss);
//usec+=pa_bytes_to_usec(u->samples_gathered*fs,ss);
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
/* Add the latency internal to our sink input on top */
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
*((pa_usec_t*) data) = usec;
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (PA_SINK_IS_LINKED(state) &&
u->sink_input &&
PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->rendered_q), TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
static void process_samples(struct userdata *u){
pa_memchunk tchunk;
size_t fs=pa_frame_size(&(u->sink->sample_spec));
while(u->samples_gathered>=u->R){
float *dst;
//pa_log("iter gathered: %ld",u->samples_gathered);
//pa_memblockq_drop(u->rendered_q, tchunk.length);
tchunk.index=0;
tchunk.length=u->R*fs;
tchunk.memblock=pa_memblock_new(u->core->mempool,tchunk.length);
dst=((float*)pa_memblock_acquire(tchunk.memblock));
for (size_t c=0;c<u->channels;c++) {
dsp_logic(
u->work_buffer,
u->input[c],
u->overlap_accum[c],
u->H,
u->W,
u->output_window,
u
);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R);
}
pa_memblock_release(tchunk.memblock);
pa_memblockq_push(u->rendered_q, &tchunk);
pa_memblock_unref(tchunk.memblock);
u->samples_gathered-=u->R;
}
}
typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float))));
typedef union float_vector {
float f[v_size];
v4sf v;
#ifdef __SSE2__
__m128 m;
#endif
} float_vector_t;
////reference implementation
//void dsp_logic(
// float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
// float * __restrict__ src,/*input data w/ overlap at start,
// *automatically cycled in routine
// */
// float * __restrict__ overlap,//The size of the overlap
// const float * __restrict__ H,//The freq. magnitude scalers filter
// const float * __restrict__ W,//The windowing function
// fftwf_complex * __restrict__ output_window,//The transformed window'd src
// struct userdata *u){
// //use a linear-phase sliding STFT and overlap-add method (for each channel)
// //zero padd the data
// memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
// //window the data
// for(size_t j=0;j<u->window_size;++j){
// dst[j]=W[j]*src[j];
// }
// //Processing is done here!
// //do fft
// fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
// //perform filtering
// for(size_t j=0;j<u->fft_size/2+1;++j){
// u->output_window[j][0]*=u->H[j];
// u->output_window[j][1]*=u->H[j];
// }
// //inverse fft
// fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
// ////debug: tests overlaping add
// ////and negates ALL PREVIOUS processing
// ////yields a perfect reconstruction if COLA is held
// //for(size_t j=0;j<u->window_size;++j){
// // u->work_buffer[j]=u->W[j]*u->input[c][j];
// //}
//
// //overlap add and preserve overlap component from this window (linear phase)
// for(size_t j=0;j<u->overlap_size;++j){
// u->work_buffer[j]+=overlap[j];
// overlap[j]=dst[u->R+j];
// }
// ////debug: tests if basic buffering works
// ////shouldn't modify the signal AT ALL (beyond roundoff)
// //for(size_t j=0;j<u->window_size;++j){
// // u->work_buffer[j]=u->input[c][j];
// //}
//
// //preseve the needed input for the next window's overlap
// memmove(src,src+u->R,
// (u->samples_gathered+u->overlap_size-u->R)*sizeof(float)
// );
//}
//regardless of sse enabled, the loops in here assume
//16 byte aligned addresses and memory allocations divisible by v_size
void dsp_logic(
float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
float * __restrict__ src,/*input data w/ overlap at start,
*automatically cycled in routine
*/
float * __restrict__ overlap,//The size of the overlap
const float * __restrict__ H,//The freq. magnitude scalers filter
const float * __restrict__ W,//The windowing function
fftwf_complex * __restrict__ output_window,//The transformed window'd src
struct userdata *u){//Collection of constants
const size_t window_size=mround(u->window_size,v_size);
const size_t fft_h=mround(u->fft_size/2+1,v_size/2);
const size_t R=mround(u->R,v_size);
const size_t overlap_size=mround(u->overlap_size,v_size);
//assert(u->samples_gathered>=u->R);
//zero out the bit beyond the real overlap so we don't add garbage
for(size_t j=overlap_size;j>u->overlap_size;--j){
overlap[j-1]=0;
}
//use a linear-phase sliding STFT and overlap-add method
//zero padd the data
memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
//window the data
for(size_t j=0;j<window_size;j+=v_size){
//dst[j]=W[j]*src[j];
float_vector_t *d=(float_vector_t*)(dst+j);
float_vector_t *w=(float_vector_t*)(W+j);
float_vector_t *s=(float_vector_t*)(src+j);
#if __SSE2__
d->m=_mm_mul_ps(w->m,s->m);
#else
d->v=w->v*s->v;
#endif
}
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
//perform filtering - purely magnitude based
for(size_t j=0;j<fft_h;j+=v_size/2){
//output_window[j][0]*=H[j];
//output_window[j][1]*=H[j];
float_vector_t *d=(float_vector_t*)(output_window+j);
float_vector_t h;
h.f[0]=h.f[1]=H[j];
h.f[2]=h.f[3]=H[j+1];
#if __SSE2__
d->m=_mm_mul_ps(d->m,h.m);
#else
d->v=d->v*h->v;
#endif
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
////debug: tests overlaping add
////and negates ALL PREVIOUS processing
////yields a perfect reconstruction if COLA is held
//for(size_t j=0;j<u->window_size;++j){
// dst[j]=W[j]*src[j];
//}
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j=0;j<overlap_size;j+=v_size){
//dst[j]+=overlap[j];
//overlap[j]+=dst[j+R];
float_vector_t *d=(float_vector_t*)(dst+j);
float_vector_t *o=(float_vector_t*)(overlap+j);
#if __SSE2__
d->m=_mm_add_ps(d->m,o->m);
o->m=((float_vector_t*)(dst+u->R+j))->m;
#else
d->v=d->v+o->v;
o->v=((float_vector_t*)(dst+u->R+j))->v;
#endif
}
//memcpy(overlap,dst+u->R,u->overlap_size*sizeof(float));
//////debug: tests if basic buffering works
//////shouldn't modify the signal AT ALL (beyond roundoff)
//for(size_t j=0;j<u->window_size;++j){
// dst[j]=src[j];
//}
//preseve the needed input for the next window's overlap
memmove(src,src+u->R,
(u->overlap_size+u->samples_gathered-u->R)*sizeof(float)
);
}
void input_buffer(struct userdata *u,pa_memchunk *in){
size_t fs=pa_frame_size(&(u->sink->sample_spec));
size_t samples=in->length/fs;
pa_assert_se(samples<=u->target_samples-u->samples_gathered);
float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index);
for (size_t c=0;c<u->channels;c++) {
//buffer with an offset after the overlap from previous
//iterations
pa_assert_se(
u->input[c]+u->overlap_size+u->samples_gathered+samples<=u->input[c]+u->target_samples+u->overlap_size
);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float),src+c,fs,samples);
}
u->samples_gathered+=samples;
pa_memblock_release(in->memblock);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
pa_assert_se(u->sink);
size_t fs=pa_frame_size(&(u->sink->sample_spec));
size_t samples_requested=nbytes/fs;
size_t buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs;
pa_memchunk tchunk;
chunk->memblock=NULL;
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return -1;
//pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
struct timespec start,end;
if(pa_memblockq_peek(u->rendered_q,&tchunk)==0){
*chunk=tchunk;
pa_memblockq_drop(u->rendered_q, chunk->length);
return 0;
}
do{
pa_memchunk *buffer;
size_t input_remaining=u->target_samples-u->samples_gathered;
pa_assert(input_remaining>0);
//collect samples
buffer=&u->conv_buffer;
buffer->length=input_remaining*fs;
buffer->index=0;
pa_memblock_ref(buffer->memblock);
pa_sink_render_into(u->sink,buffer);
//if(u->sink->thread_info.rewind_requested)
// sink_request_rewind(u->sink);
//pa_memchunk p;
//buffer=&p;
//pa_sink_render(u->sink,u->R*fs,buffer);
//buffer->length=PA_MIN(input_remaining*fs,buffer->length);
//debug block
//pa_memblockq_push(u->rendered_q,buffer);
//pa_memblock_unref(buffer->memblock);
//goto END;
//pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
//copy new input
gettime(start);
input_buffer(u,buffer);
gettime(end);
//pa_log("Took %0.5f seconds to setup",tdiff(end,start)*1e-9);
pa_memblock_unref(buffer->memblock);
pa_assert_se(u->fft_size>=u->window_size);
pa_assert_se(u->R<u->window_size);
//process every complete block on hand
gettime(start);
process_samples(u);
gettime(end);
//pa_log("Took %0.5f seconds to process",tdiff(end,start)*1e-9);
buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs;
}while(buffered_samples<u->R);
//deque from rendered_q and output
pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0);
*chunk=tchunk;
pa_memblockq_drop(u->rendered_q, chunk->length);
pa_assert_se(chunk->memblock);
//pa_log("gave %ld",chunk->length/fs);
//pa_log("end pop");
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_log_debug("Rewind callback!");
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return;
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes + pa_memblockq_get_length(u->rendered_q);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
//pa_sample_spec *ss=&u->sink->sample_spec;
pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log_debug("Resetting equalizer");
u->samples_gathered=0;
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->rendered_q, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_memblockq_set_maxrewind(u->rendered_q, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
size_t fs=pa_frame_size(&(u->sink->sample_spec));
pa_sink_set_max_request_within_thread(u->sink, nbytes);
//pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
size_t fs=pa_frame_size(&(u->sink->sample_spec));
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs );
//pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_detach_within_thread(u->sink);
pa_sink_set_asyncmsgq(u->sink, NULL);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
pa_sink_attach_within_thread(u->sink);
size_t fs=pa_frame_size(&(u->sink->sample_spec));
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs, u->master->thread_info.max_latency);
//TODO: setting this guy minimizes drop outs but doesn't get rid
//of them completely, figure out why
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
//TODO: this guy causes dropouts constantly+rewinds, it's unusable
//pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_unlink(u->sink);
pa_sink_input_unlink(u->sink_input);
pa_sink_unref(u->sink);
u->sink = NULL;
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
//ensure's memory allocated is a multiple of v_size
//and aligned
static void * alloc(size_t x,size_t s){
size_t f=mround(x*s,sizeof(float)*v_size);
//printf("requested %ld floats=%ld bytes, rem=%ld\n",x,x*sizeof(float),x*sizeof(float)%16);
//printf("giving %ld floats=%ld bytes, rem=%ld\n",f,f*sizeof(float),f*sizeof(float)%16);
return fftwf_malloc(f*s);
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma;
const char *z;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
pa_bool_t *use_default = NULL;
size_t fs;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
ss.format = PA_SAMPLE_FLOAT32;
map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
fs=pa_frame_size(&ss);
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
m->userdata = u;
u->master = master;
u->sink = NULL;
u->sink_input = NULL;
u->channels=ss.channels;
u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
pa_log("fft size: %ld",u->fft_size);
u->window_size=15999;
u->R=(u->window_size+1)/2;
u->overlap_size=u->window_size-u->R;
u->target_samples=1*u->R;
u->samples_gathered=0;
u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH,u->target_samples*fs, fs, fs, 0, 0, NULL);
u->conv_buffer.memblock=pa_memblock_new(u->core->mempool,u->target_samples*fs);
u->latency=u->R;
u->H=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
u->W=alloc(u->window_size,sizeof(float));
u->work_buffer=alloc(u->fft_size,sizeof(float));
memset(u->work_buffer,0,u->fft_size*sizeof(float));
u->input=(float **)malloc(sizeof(float *)*u->channels);
u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
for(size_t c=0;c<u->channels;++c){
u->input[c]=alloc(u->target_samples+u->overlap_size,sizeof(float));
pa_assert_se(u->input[c]);
memset(u->input[c],0,(u->target_samples+u->overlap_size)*sizeof(float));
pa_assert_se(u->input[c]);
u->overlap_accum[c]=alloc(u->overlap_size,sizeof(float));
pa_assert_se(u->overlap_accum[c]);
memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
u->output_buffer[c]=alloc(u->window_size,sizeof(float));
pa_assert_se(u->output_buffer[c]);
}
u->output_window=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);
hanning_window(u->W,u->window_size);
const int freqs[]={0,25,50,100,200,300,400,800,1500,
2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
const float coefficients[]={1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
const size_t ncoefficients=sizeof(coefficients)/sizeof(float);
pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients));
freq_translated[0]=1;
//Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
for(size_t i=1;i<ncoefficients-1;++i){
freq_translated[i]=((float)freqs[i]*u->fft_size)/ss.rate;
//pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]);
pa_assert_se(freq_translated[i]>=freq_translated[i-1]);
}
freq_translated[ncoefficients-1]=FLT_MAX;
//Interpolate the specified frequency band values
u->H[0]=1;
for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){
pa_assert_se(j<ncoefficients);
//max frequency range passed, consider the rest as one band
if(freq_translated[j+1]>=FLT_MAX){
for(;i<(u->fft_size/2+1);++i){
u->H[i]=coefficients[j];
}
break;
}
//pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]);
//pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]);
pa_assert_se(freq_translated[j]<freq_translated[j+1]);
pa_assert_se(i>=freq_translated[j]);
pa_assert_se(i<=freq_translated[j+1]);
//bilinear-inerpolation of coefficients specified
float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
pa_assert_se(c0>=0&&c0<=1.0);
u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
pa_assert_se(u->H[i]>0);
while(i>=floor(freq_translated[j+1])){
j++;
}
}
//divide out the fft gain
for(size_t i=0;i<(u->fft_size/2+1);++i){
u->H[i]/=u->fft_size;
}
free(freq_translated);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
sink_data.namereg_fail = FALSE;
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state = sink_set_state;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->request_rewind = sink_request_rewind;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
pa_sink_set_rtpoll(u->sink, master->rtpoll);
pa_sink_set_max_request(u->sink,u->R*fs);
//pa_sink_set_fixed_latency(u->sink,pa_bytes_to_usec(u->R*fs,&ss));
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
sink_input_data.sink = u->master;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->userdata = u;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
pa_xfree(use_default);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa_xfree(use_default);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink) {
pa_sink_unlink(u->sink);
pa_sink_unref(u->sink);
}
if (u->sink_input) {
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
}
if(u->conv_buffer.memblock)
pa_memblock_unref(u->conv_buffer.memblock);
if (u->rendered_q)
pa_memblockq_free(u->rendered_q);
fftwf_destroy_plan(u->inverse_plan);
fftwf_destroy_plan(u->forward_plan);
free(u->output_window);
for(size_t c=0;c<u->channels;++c){
free(u->output_buffer[c]);
free(u->overlap_accum[c]);
free(u->input[c]);
}
free(u->output_buffer);
free(u->overlap_accum);
free(u->input);
free(u->work_buffer);
free(u->W);
free(u->H);
pa_xfree(u);
}