pulseaudio/src/modules/module-equalizer-sink.c

851 lines
28 KiB
C
Raw Normal View History

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <math.h>
#include <fftw3.h>
#include <float.h>
#include <pulse/xmalloc.h>
#include <pulse/i18n.h>
#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include <liboil/liboilfuncs.h>
#include <liboil/liboil.h>
#include <stdint.h>
#include <time.h>
#include "module-equalizer-sink-symdef.h"
PA_MODULE_AUTHOR("Jason Newton");
PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(_("sink=<sink to connect to> "));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink, *master;
pa_sink_input *sink_input;
size_t channels;
size_t fft_size; //length (res) of fft
size_t window_size;//even!
size_t overlap_size;
size_t samples_gathered;
size_t n_buffered_output;
size_t max_output;
float *H;//frequency response filter (magnitude based)
float *W;//windowing function (time domain)
float *work_buffer,**input,**overlap_accum,**output_buffer;
fftwf_complex *output_window;
fftwf_plan forward_plan,inverse_plan;
pa_memblockq *memblockq;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"format",
"rate",
"channels",
"channel_map",
NULL
};
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
{
return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) -
((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
}
void hanning_normalized_window(float *W,size_t window_size){
//h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 )
float c;
for(size_t i=0;i<window_size;++i){
c=cos(M_PI*i/(window_size-1));
W[i]=sqrt(2.0)/2.0*(1.0+c) / sqrt(1.0+c*c);
}
}
void hanning_window(float *W,size_t window_size){
//h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
for(size_t i=0;i<window_size;++i){
W[i]=.5*(1-cos(2*M_PI*i/(window_size+1)));
}
}
void hamming_window(float *W,size_t window_size){
//h=.54-.46*cos(2*pi*j/(window_size-1))
//COLA for R=(M-1)/2,(M-1)/4 etc when endpoints are divided by 2
//or one endpoint is zeroed
float m;
for(size_t i=0;i<window_size;++i){
m=i;
m/=(window_size-1);
W[i]=.54-.46*cos(2*M_PI*m);
}
W[0]/=2;
W[window_size-1]/=2;
}
void blackman_window(float *W,size_t window_size){
//h=.42-.5*cos(2*pi*m)+.08*cos(4*pi*m), m=(0:W-1)/(W-1)
//COLA for R=(M-1)/3 when M is odd and R is an integer
//R=M/3 when M is even and R is an integer
float m;
for(size_t i=0;i<window_size;++i){
m=i;
m/=(window_size-1);
W[i]=.42-.5*cos(2*M_PI*m)+.08*cos(4*M_PI*m);
}
}
void sin_window(float *W,size_t window_size){
//h = (cos(t*pi)+1)/2 .* float(abs(t)<1);
for(size_t i=0;i<window_size;++i){
W[i]=sin(M_PI*i/(window_size-1));
}
}
void array_out(const char *name,float *a,size_t length){
FILE *p=fopen(name,"w");
for(size_t i=0;i<length;++i){
fprintf(p,"%e,",a[i]);
//if(i%1000==0){
// fprintf(p,"\n");
//}
}
fprintf(p,"\n");
fclose(p);
}
/* Called from I/O thread context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
pa_usec_t usec = 0;
pa_sample_spec *ss=&u->sink->sample_spec;
/* Get the latency of the master sink */
if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
usec = 0;
usec+=pa_bytes_to_usec(u->n_buffered_output*pa_frame_size(ss),ss);
/* Add the latency internal to our sink input on top */
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
*((pa_usec_t*) data) = usec;
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (PA_SINK_IS_LINKED(state) &&
u->sink_input &&
PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
float *src, *dst;
size_t c;
pa_memchunk tchunk;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
size_t fs = pa_frame_size(&u->sink->sample_spec);
size_t ss=pa_sample_size(&u->sink->sample_spec);
size_t fe = fs/ss;
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return -1;
//output any buffered outputs first
if(u->n_buffered_output>0){
//pa_log("outputing %ld buffered samples",u->n_buffered_output);
chunk->index = 0;
size_t n_outputable=PA_MIN(u->n_buffered_output,nbytes/fs);
chunk->length = n_outputable*fs;
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
pa_memblockq_drop(u->memblockq, chunk->length);
dst = (float*) pa_memblock_acquire(chunk->memblock);
for(size_t j=0;j<u->channels;++j){
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+j, fs, u->output_buffer[j], sizeof(float),n_outputable);
memmove(u->output_buffer[j],u->output_buffer[j]+n_outputable,(u->n_buffered_output-n_outputable)*sizeof(float));
}
u->n_buffered_output-=n_outputable;
pa_memblock_release(chunk->memblock);
return 0;
}
pa_assert_se(u->n_buffered_output==0);
//collect the minimum number of samples
while(u->samples_gathered < (u->window_size-u->overlap_size)){
//render some new fragments to our memblockq
//size_t desired_samples=PA_MIN(u->min_input-samples_gathered,u->max_output);
size_t desired_samples=PA_MIN((u->window_size-u->overlap_size)-u->samples_gathered,u->max_output);
while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
pa_memchunk nchunk;
pa_sink_render(u->sink, desired_samples*fs, &nchunk);
pa_memblockq_push(u->memblockq, &nchunk);
pa_memblock_unref(nchunk.memblock);
}
if(tchunk.length/fs!=desired_samples){
pa_log("got %ld samples, asked for %ld",tchunk.length/fs,desired_samples);
}
size_t n_samples=PA_MIN(tchunk.length/fs,u->window_size-u->overlap_size-u->samples_gathered);
//TODO: figure out what to do with rest of the samples when there's too many (rare?)
src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
for (size_t c=0;c<u->channels;c++) {
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float), src+c, fs, n_samples);
}
u->samples_gathered+=n_samples;
pa_memblock_release(tchunk.memblock);
pa_memblock_unref(tchunk.memblock);
}
//IT should be this guy if we're buffering like how its supposed to
//size_t n_outputable=PA_MIN(u->window_size-u->overlap_size,nbytes/fs);
//This one takes into account the actual data gathered but then the dsp
//stuff is wrong when the buffer "underruns"
size_t n_outputable=PA_MIN(u->samples_gathered,nbytes/fs);
/*
//debugging: tests if immediate release of freshly buffered data
//plays ok and prevents any other processing
chunk->index=0;
chunk->length=n_outputable*fs;
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
pa_memblockq_drop(u->memblockq, chunk->length);
dst = (float*) pa_memblock_acquire(chunk->memblock);;
for (size_t c=0;c<u->channels;c++) {
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->input[c]+u->overlap_size, sizeof(float),n_outputable);
}
u->samples_gathered=0;
pa_memblock_release(chunk->memblock);
return 0;
*/
//pa_log("%ld dequed samples",u->samples_gathered);
chunk->index=0;
chunk->length=n_outputable*fs;
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
pa_memblockq_drop(u->memblockq, chunk->length);
dst = (float*) pa_memblock_acquire(chunk->memblock);
//pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input, sizeof(float), src+c, fs, samples);
//pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c,fs, u->input, sizeof(float), samples);
/*
struct timespec start, end;
uint64_t elapsed;
clock_gettime(CLOCK_MONOTONIC, &start);
*/
//use a zero-phase sliding dft and overlap-add method
pa_assert_se(u->fft_size>=u->window_size);
//pa_assert_se(u->window_size%2==0);
pa_assert_se(u->overlap_size<u->window_size);
pa_assert_se(u->samples_gathered>=u->window_size-u->overlap_size);
size_t sample_rem=u->window_size-u->overlap_size-n_outputable;
//size_t w_mid=u->window_size/2;
//pa_log("hello world a");
for (c=0;c<u->channels;c++) {
//center the data for zero phase
//zero-pad TODO: optimization if sure these zeros aren't overwritten
//memset(u->work_buffer+w_mid,0,(u->fft_size-u->window_size)*sizeof(float));
//memset(u->work_buffer,0,u->fft_size*sizeof(float));
/*
for(size_t j=0;j<u->window_size;++j){
u->work_buffer[j]=u->W[j]*u->input[c][j];
u->work_buffer[j]=u->input[c][j];
}
*/
//zero padd the data, don't worry about zerophase, shouldn't really matter
memset(u->work_buffer+u->overlap_size,0,(u->fft_size-u->overlap_size)*sizeof(float));
//window the data
for(size_t j=0;j<u->window_size;++j){
u->work_buffer[j]=u->W[j]*u->input[c][j];
}
/*
//recenter for zero phase
for(size_t j=0;j<w_mid;++j){
float tmp=u->work_buffer[j];
u->work_buffer[j]=u->input[c][j+w_mid];
u->work_buffer[j+u->fft_size-w_mid]=tmp;
}
*/
//pa_log("hello world b");
/*
//window and zero phase shift
for(size_t j=0;j<w_mid;++j){
//u->work_buffer[j]=u->input[c][j+w_mid];
//u->work_buffer[j+u->fft_size-w_mid]=u->input[c][j];
u->work_buffer[j]=u->W[j+w_mid]*u->input[c][j+w_mid];
u->work_buffer[j+u->fft_size-w_mid]=u->W[j]*u->input[c][j];
}*/
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window);
//perform filtering
for(size_t j=0;j<u->fft_size/2+1;++j){
////identity transform (fft size)
//u->output_window[j][0]/=u->fft_size;
//u->output_window[j][1]/=u->fft_size;
////identity transform (window size)
//u->output_window[j][0]/=u->window_size;
//u->output_window[j][1]/=u->window_size;
//filtered
u->output_window[j][0]*=u->H[j];
u->output_window[j][1]*=u->H[j];
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer);
/*
//uncenter the data
for(size_t j=0;j<w_mid;++j){
const float tmp=u->work_buffer[j];
u->work_buffer[j]=u->work_buffer[j+u->fft_size-w_mid];
u->work_buffer[j+w_mid]=tmp;
}
*/
/*
//divide out fft gain (more stable here?)
for(size_t j=0;j<u->window_size;++j){
u->work_buffer[j]/=u->fft_size;
}
*/
/*
//debug: tests overlaping add
//and negates ALL PREVIOUS processing
//yields a perfect reconstruction if COLA is held
for(size_t j=0;j<u->window_size;++j){
u->work_buffer[j]=u->W[j]*u->input[c][j];
}
*/
/*
//debug: tests if basic buffering works
//shouldn't modify the signal AT ALL
for(size_t j=0;j<u->window_size;++j){
u->work_buffer[j]=u->input[c][j];
}
*/
/*
//overlap add and preserve overlap component from this window (zero phase)
for(size_t j=0;j<u->overlap_size;++j){
u->work_buffer[j]+=u->overlap_accum[c][j];
u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
}
*/
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j=0;j<u->overlap_size;++j){
u->work_buffer[j]+=u->overlap_accum[c][j];
u->overlap_accum[c][j]=u->work_buffer[u->window_size-u->overlap_size+j];
}
//preseve the needed input for the next windows overlap
memmove(u->input[c],u->input[c]+u->overlap_size,(u->window_size-u->overlap_size)*sizeof(float));
//output the samples that are outputable now
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, fs, u->work_buffer, sizeof(float),n_outputable);
//buffer the rest of them
memcpy(u->output_buffer[c]+u->n_buffered_output,u->work_buffer+n_outputable,sample_rem*sizeof(float));
}
/*
clock_gettime(CLOCK_MONOTONIC, &end);
elapsed=time_diff(&end, &start);
pa_log("processed: %ld, time: %ld",u->samples_gathered,elapsed);
*/
u->n_buffered_output+=sample_rem;
u->samples_gathered=0;
//pa_log("%ld samples queued",u->n_buffered_output);
pa_memblock_release(chunk->memblock);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
return;
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log_debug("Resetting equalizer");
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_memblockq_set_maxrewind(u->memblockq, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_set_max_request_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_detach_within_thread(u->sink);
pa_sink_set_asyncmsgq(u->sink, NULL);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
pa_sink_set_asyncmsgq(u->sink, i->sink->asyncmsgq);
pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
pa_sink_attach_within_thread(u->sink);
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_unlink(u->sink);
pa_sink_input_unlink(u->sink_input);
pa_sink_unref(u->sink);
u->sink = NULL;
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma;
const char *z;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
pa_bool_t *use_default = NULL;
size_t fs;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
ss.format = PA_SAMPLE_FLOAT32;
map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
fs=pa_frame_size(&ss);
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
m->userdata = u;
u->master = master;
u->sink = NULL;
u->sink_input = NULL;
u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, fs, 1, 1, 0, NULL);
//u->fft_size=44100;
//u->fft_size=48000;
//u->fft_size=1024;
u->channels=ss.channels;
u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
//u->fft_size=ss.rate;
//u->fft_size=65536;
pa_log("fft size: %ld",u->fft_size);
u->window_size=8001;
u->overlap_size=(u->window_size+1)/2;
//u->overlap_size=u->window_size/2;
//u->overlap_size=0;
u->samples_gathered=0;
u->n_buffered_output=0;
u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float));
u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float));
u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float));
u->input=(float **)malloc(sizeof(float *)*u->channels);
u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
for(size_t c=0;c<u->channels;++c){
u->input[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
memset(u->input[c],0,u->window_size*sizeof(float));
u->overlap_accum[c]=(float*) fftwf_malloc(u->overlap_size*sizeof(float));
memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
}
u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1));
u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);
u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
/*
//rectangular window
for(size_t j=0;j<u->window_size;++j){
u->W[j]=1.0;
}
*/
//hanning_normalized_window(u->W,u->window_size);
hanning_window(u->W,u->window_size);
//sin_window(u->W,u->window_size);
array_out("/home/jason/window.txt",u->W,u->window_size);
//u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output_window, FFTW_ESTIMATE);
//u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
//u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->input, u->output, FFTW_MEASURE);
//u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output, u->input, FFTW_MEASURE);
const int freqs[]={0,25,50,100,200,300,400,800,1500,
2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
const float coefficients[]={1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
const size_t ncoefficients=sizeof(coefficients)/sizeof(float);
pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients));
freq_translated[0]=1;
//Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
for(size_t i=1;i<ncoefficients-1;++i){
freq_translated[i]=((float)freqs[i]*u->fft_size)/ss.rate;
//pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]);
pa_assert_se(freq_translated[i]>=freq_translated[i-1]);
}
freq_translated[ncoefficients-1]=DBL_MAX;
//Interpolate the specified frequency band values
u->H[0]=1;
for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){
pa_assert_se(j<ncoefficients);
//max frequency range passed, consider the rest as one band
if(freq_translated[j+1]>=DBL_MAX){
for(;i<(u->fft_size/2+1);++i){
u->H[i]=coefficients[j];
}
break;
}
//pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]);
//pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]);
pa_assert_se(freq_translated[j]<freq_translated[j+1]);
pa_assert_se(i>=freq_translated[j]);
pa_assert_se(i<=freq_translated[j+1]);
//bilinear-inerpolation of coefficients specified
float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
pa_assert_se(c0>=0&&c0<=1.0);
u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
pa_assert_se(u->H[i]>0);
while(i>=floor(freq_translated[j+1])){
j++;
}
}
array_out("/home/jason/coffs.txt",u->H,u->fft_size/2+1);
//divide out the fft gain
for(int i=0;i<(u->fft_size/2+1);++i){
u->H[i]/=u->fft_size;
}
free(freq_translated);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
sink_data.namereg_fail = FALSE;
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "FFT based equalizer");
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_data, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY);
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state = sink_set_state;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->request_rewind = sink_request_rewind;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
pa_sink_set_rtpoll(u->sink, master->rtpoll);
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
sink_input_data.sink = u->master;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data, PA_SINK_INPUT_DONT_MOVE);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->userdata = u;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
pa_xfree(use_default);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa_xfree(use_default);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink) {
pa_sink_unlink(u->sink);
pa_sink_unref(u->sink);
}
if (u->sink_input) {
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
}
if (u->memblockq)
pa_memblockq_free(u->memblockq);
fftwf_destroy_plan(u->inverse_plan);
fftwf_destroy_plan(u->forward_plan);
fftwf_free(u->output_window);
for(size_t c=0;c<u->channels;++c){
fftwf_free(u->output_buffer[c]);
fftwf_free(u->overlap_accum[c]);
fftwf_free(u->input[c]);
}
free(u->output_buffer);
free(u->overlap_accum);
free(u->input);
fftwf_free(u->work_buffer);
fftwf_free(u->W);
fftwf_free(u->H);
pa_xfree(u);
}