mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-10-29 05:40:23 -04:00
module-equalizer-sink:
added dbus support
removed cruft from inherited from ladspa module and improved clarity
switched dsp processing to reference implementation until project is more mature
tsched=0 seems to help with the micro-dropouts/crackling! oh my!
reformatting/spaces
This commit is contained in:
parent
c7fcc9cc01
commit
8934c314f6
3 changed files with 460 additions and 286 deletions
|
|
@ -1199,6 +1199,7 @@ if test "x${dbus}" != xno || test "x${bluez}" != xno || test "x${hal}" != xno ;
|
|||
HAVE_DBUS=1
|
||||
saved_LIBS="$LIBS"
|
||||
LIBS="$LIBS $DBUS_LIBS"
|
||||
CFLAGS="$CFLAGS $DBUS_CFLAGS"
|
||||
AC_CHECK_FUNCS(dbus_watch_get_unix_fd)
|
||||
LIBS="$saved_LIBS"
|
||||
AC_DEFINE([HAVE_DBUS], 1, [Have D-Bus.])
|
||||
|
|
|
|||
|
|
@ -1385,7 +1385,7 @@ module_ladspa_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) libpulsecore-@PA_MAJORMIN
|
|||
module_equalizer_sink_la_SOURCES = modules/module-equalizer-sink.c
|
||||
module_equalizer_sink_la_CFLAGS = $(AM_CFLAGS)
|
||||
module_equalizer_sink_la_LDFLAGS = $(MODULE_LDFLAGS)
|
||||
module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
|
||||
module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(DBUS_LIBS) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
|
||||
|
||||
module_match_la_SOURCES = modules/module-match.c
|
||||
module_match_la_LDFLAGS = $(MODULE_LDFLAGS)
|
||||
|
|
|
|||
|
|
@ -35,7 +35,6 @@ USA.
|
|||
#include <math.h>
|
||||
#include <fftw3.h>
|
||||
#include <string.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <pulse/xmalloc.h>
|
||||
#include <pulse/i18n.h>
|
||||
|
|
@ -52,6 +51,8 @@ USA.
|
|||
#include <pulsecore/rtpoll.h>
|
||||
#include <pulsecore/sample-util.h>
|
||||
#include <pulsecore/ltdl-helper.h>
|
||||
#include <pulsecore/protocol-dbus.h>
|
||||
#include <pulsecore/dbus-util.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <time.h>
|
||||
|
|
@ -101,13 +102,18 @@ struct userdata {
|
|||
size_t target_samples;
|
||||
float *H;//frequency response filter (magnitude based)
|
||||
float *W;//windowing function (time domain)
|
||||
float *work_buffer,**input,**overlap_accum,**output_buffer;
|
||||
float *work_buffer, **input, **overlap_accum;
|
||||
fftwf_complex *output_window;
|
||||
fftwf_plan forward_plan,inverse_plan;
|
||||
fftwf_plan forward_plan, inverse_plan;
|
||||
//size_t samplings;
|
||||
|
||||
float *Hs[2];//thread updatable copies
|
||||
pa_aupdate *a_H;
|
||||
pa_memchunk conv_buffer;
|
||||
pa_memblockq *rendered_q;
|
||||
|
||||
pa_dbus_protocol *dbus_protocol;
|
||||
char *dbus_path;
|
||||
};
|
||||
|
||||
static const char* const valid_modargs[] = {
|
||||
|
|
@ -122,10 +128,10 @@ static const char* const valid_modargs[] = {
|
|||
};
|
||||
|
||||
static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
|
||||
static void hanning_window(float *W,size_t window_size);
|
||||
static void array_out(const char *name,float *a,size_t length);
|
||||
static void hanning_window(float *W, size_t window_size);
|
||||
static void array_out(const char *name, float *a, size_t length);
|
||||
static void process_samples(struct userdata *u);
|
||||
static void input_buffer(struct userdata *u,pa_memchunk *in);
|
||||
static void input_buffer(struct userdata *u, pa_memchunk *in);
|
||||
|
||||
void dsp_logic(
|
||||
float * __restrict__ dst,
|
||||
|
|
@ -136,10 +142,17 @@ void dsp_logic(
|
|||
fftwf_complex * __restrict__ output_window,
|
||||
struct userdata *u);
|
||||
|
||||
static void dbus_init(struct userdata *u);
|
||||
static void dbus_done(struct userdata *u);
|
||||
static void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u);
|
||||
static void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u);
|
||||
static void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
|
||||
static void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
|
||||
|
||||
#define v_size 4
|
||||
#define gettime(x) clock_gettime(CLOCK_MONOTONIC,&x)
|
||||
#define tdiff(x,y) time_diff(&x,&y)
|
||||
#define mround(x,y) (x%y==0?x:(x/y+1)*y)
|
||||
#define gettime(x) clock_gettime(CLOCK_MONOTONIC, &x)
|
||||
#define tdiff(x, y) time_diff(&x, &y)
|
||||
#define mround(x, y) (x % y == 0 ? x : ( x / y + 1) * y)
|
||||
|
||||
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
|
||||
{
|
||||
|
|
@ -147,26 +160,33 @@ uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
|
|||
((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec);
|
||||
}
|
||||
|
||||
void hanning_window(float *W,size_t window_size){
|
||||
static void hanning_window(float *W, size_t window_size){
|
||||
//h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
W[i]=(float).5*(1-cos(2*M_PI*i/(window_size+1)));
|
||||
for(size_t i=0; i < window_size;++i){
|
||||
W[i] = (float).5*(1-cos(2*M_PI*i/(window_size+1)));
|
||||
}
|
||||
}
|
||||
|
||||
void array_out(const char *name,float *a,size_t length){
|
||||
FILE *p=fopen(name,"w");
|
||||
static void fix_filter(float *H, size_t fft_size){
|
||||
//divide out the fft gain
|
||||
for(size_t i = 0; i < (fft_size / 2 + 1); ++i){
|
||||
H[i] /= fft_size;
|
||||
}
|
||||
}
|
||||
|
||||
void array_out(const char *name, float *a, size_t length){
|
||||
FILE *p=fopen(name, "w");
|
||||
if(!p){
|
||||
pa_log("opening %s failed!",name);
|
||||
pa_log("opening %s failed!", name);
|
||||
return;
|
||||
}
|
||||
for(size_t i=0;i<length;++i){
|
||||
fprintf(p,"%e,",a[i]);
|
||||
for(size_t i = 0; i < length; ++i){
|
||||
fprintf(p, "%e,", a[i]);
|
||||
//if(i%1000==0){
|
||||
// fprintf(p,"\n");
|
||||
// fprintf(p, "\n");
|
||||
//}
|
||||
}
|
||||
fprintf(p,"\n");
|
||||
fprintf(p, "\n");
|
||||
fclose(p);
|
||||
}
|
||||
|
||||
|
|
@ -180,14 +200,14 @@ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offse
|
|||
case PA_SINK_MESSAGE_GET_LATENCY: {
|
||||
pa_usec_t usec = 0;
|
||||
pa_sample_spec *ss=&u->sink->sample_spec;
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
//size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
|
||||
/* Get the latency of the master sink */
|
||||
if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
|
||||
usec = 0;
|
||||
|
||||
//usec+=pa_bytes_to_usec(u->latency*fs,ss);
|
||||
//usec+=pa_bytes_to_usec(u->samples_gathered*fs,ss);
|
||||
//usec+=pa_bytes_to_usec(u->latency * fs, ss);
|
||||
//usec+=pa_bytes_to_usec(u->samples_gathered * fs, ss);
|
||||
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
|
||||
/* Add the latency internal to our sink input on top */
|
||||
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
|
||||
|
|
@ -243,15 +263,15 @@ static void sink_update_requested_latency(pa_sink *s) {
|
|||
static void process_samples(struct userdata *u){
|
||||
pa_memchunk tchunk;
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
while(u->samples_gathered>=u->R){
|
||||
while(u->samples_gathered >= u->R){
|
||||
float *dst;
|
||||
//pa_log("iter gathered: %ld",u->samples_gathered);
|
||||
//pa_log("iter gathered: %ld", u->samples_gathered);
|
||||
//pa_memblockq_drop(u->rendered_q, tchunk.length);
|
||||
tchunk.index=0;
|
||||
tchunk.length=u->R*fs;
|
||||
tchunk.memblock=pa_memblock_new(u->core->mempool,tchunk.length);
|
||||
tchunk.memblock=pa_memblock_new(u->core->mempool, tchunk.length);
|
||||
dst=((float*)pa_memblock_acquire(tchunk.memblock));
|
||||
for (size_t c=0;c<u->channels;c++) {
|
||||
for(size_t c=0;c < u->channels; c++) {
|
||||
dsp_logic(
|
||||
u->work_buffer,
|
||||
u->input[c],
|
||||
|
|
@ -261,7 +281,7 @@ static void process_samples(struct userdata *u){
|
|||
u->output_window,
|
||||
u
|
||||
);
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R);
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst + c, fs, u->work_buffer, sizeof(float), u->R);
|
||||
}
|
||||
pa_memblock_release(tchunk.memblock);
|
||||
pa_memblockq_push(u->rendered_q, &tchunk);
|
||||
|
|
@ -279,60 +299,7 @@ typedef union float_vector {
|
|||
#endif
|
||||
} float_vector_t;
|
||||
|
||||
////reference implementation
|
||||
//void dsp_logic(
|
||||
// float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
|
||||
// float * __restrict__ src,/*input data w/ overlap at start,
|
||||
// *automatically cycled in routine
|
||||
// */
|
||||
// float * __restrict__ overlap,//The size of the overlap
|
||||
// const float * __restrict__ H,//The freq. magnitude scalers filter
|
||||
// const float * __restrict__ W,//The windowing function
|
||||
// fftwf_complex * __restrict__ output_window,//The transformed window'd src
|
||||
// struct userdata *u){
|
||||
// //use a linear-phase sliding STFT and overlap-add method (for each channel)
|
||||
// //zero padd the data
|
||||
// memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
|
||||
// //window the data
|
||||
// for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=W[j]*src[j];
|
||||
// }
|
||||
// //Processing is done here!
|
||||
// //do fft
|
||||
// fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
|
||||
// //perform filtering
|
||||
// for(size_t j=0;j<u->fft_size/2+1;++j){
|
||||
// u->output_window[j][0]*=u->H[j];
|
||||
// u->output_window[j][1]*=u->H[j];
|
||||
// }
|
||||
// //inverse fft
|
||||
// fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
|
||||
// ////debug: tests overlaping add
|
||||
// ////and negates ALL PREVIOUS processing
|
||||
// ////yields a perfect reconstruction if COLA is held
|
||||
// //for(size_t j=0;j<u->window_size;++j){
|
||||
// // u->work_buffer[j]=u->W[j]*u->input[c][j];
|
||||
// //}
|
||||
//
|
||||
// //overlap add and preserve overlap component from this window (linear phase)
|
||||
// for(size_t j=0;j<u->overlap_size;++j){
|
||||
// u->work_buffer[j]+=overlap[j];
|
||||
// overlap[j]=dst[u->R+j];
|
||||
// }
|
||||
// ////debug: tests if basic buffering works
|
||||
// ////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
// //for(size_t j=0;j<u->window_size;++j){
|
||||
// // u->work_buffer[j]=u->input[c][j];
|
||||
// //}
|
||||
//
|
||||
// //preseve the needed input for the next window's overlap
|
||||
// memmove(src,src+u->R,
|
||||
// (u->samples_gathered+u->overlap_size-u->R)*sizeof(float)
|
||||
// );
|
||||
//}
|
||||
|
||||
//regardless of sse enabled, the loops in here assume
|
||||
//16 byte aligned addresses and memory allocations divisible by v_size
|
||||
//reference implementation
|
||||
void dsp_logic(
|
||||
float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
|
||||
float * __restrict__ src,/*input data w/ overlap at start,
|
||||
|
|
@ -342,106 +309,159 @@ void dsp_logic(
|
|||
const float * __restrict__ H,//The freq. magnitude scalers filter
|
||||
const float * __restrict__ W,//The windowing function
|
||||
fftwf_complex * __restrict__ output_window,//The transformed window'd src
|
||||
struct userdata *u){//Collection of constants
|
||||
|
||||
const size_t window_size=mround(u->window_size,v_size);
|
||||
const size_t fft_h=mround(u->fft_size/2+1,v_size/2);
|
||||
const size_t R=mround(u->R,v_size);
|
||||
const size_t overlap_size=mround(u->overlap_size,v_size);
|
||||
|
||||
//assert(u->samples_gathered>=u->R);
|
||||
//zero out the bit beyond the real overlap so we don't add garbage
|
||||
for(size_t j=overlap_size;j>u->overlap_size;--j){
|
||||
overlap[j-1]=0;
|
||||
}
|
||||
//use a linear-phase sliding STFT and overlap-add method
|
||||
struct userdata *u){
|
||||
//use a linear-phase sliding STFT and overlap-add method (for each channel)
|
||||
//zero padd the data
|
||||
memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
|
||||
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
|
||||
//window the data
|
||||
for(size_t j=0;j<window_size;j+=v_size){
|
||||
//dst[j]=W[j]*src[j];
|
||||
float_vector_t *d=(float_vector_t*)(dst+j);
|
||||
float_vector_t *w=(float_vector_t*)(W+j);
|
||||
float_vector_t *s=(float_vector_t*)(src+j);
|
||||
#if __SSE2__
|
||||
d->m=_mm_mul_ps(w->m,s->m);
|
||||
#else
|
||||
d->v=w->v*s->v;
|
||||
#endif
|
||||
for(size_t j = 0;j < u->window_size; ++j){
|
||||
dst[j] = W[j] * src[j];
|
||||
}
|
||||
//Processing is done here!
|
||||
//do fft
|
||||
fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
|
||||
|
||||
|
||||
//perform filtering - purely magnitude based
|
||||
for(size_t j=0;j<fft_h;j+=v_size/2){
|
||||
//output_window[j][0]*=H[j];
|
||||
//output_window[j][1]*=H[j];
|
||||
float_vector_t *d=(float_vector_t*)(output_window+j);
|
||||
float_vector_t h;
|
||||
h.f[0]=h.f[1]=H[j];
|
||||
h.f[2]=h.f[3]=H[j+1];
|
||||
#if __SSE2__
|
||||
d->m=_mm_mul_ps(d->m,h.m);
|
||||
#else
|
||||
d->v=d->v*h->v;
|
||||
#endif
|
||||
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
|
||||
//perform filtering
|
||||
for(size_t j = 0;j < u->fft_size / 2 + 1; ++j){
|
||||
u->output_window[j][0] *= u->H[j];
|
||||
u->output_window[j][1] *= u->H[j];
|
||||
}
|
||||
|
||||
|
||||
//inverse fft
|
||||
fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
|
||||
|
||||
fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
|
||||
////debug: tests overlaping add
|
||||
////and negates ALL PREVIOUS processing
|
||||
////yields a perfect reconstruction if COLA is held
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=W[j]*src[j];
|
||||
//for(size_t j = 0; j < u->window_size; ++j){
|
||||
// u->work_buffer[j] = u->W[j] * u->input[c][j];
|
||||
//}
|
||||
|
||||
//overlap add and preserve overlap component from this window (linear phase)
|
||||
for(size_t j=0;j<overlap_size;j+=v_size){
|
||||
//dst[j]+=overlap[j];
|
||||
//overlap[j]+=dst[j+R];
|
||||
float_vector_t *d=(float_vector_t*)(dst+j);
|
||||
float_vector_t *o=(float_vector_t*)(overlap+j);
|
||||
#if __SSE2__
|
||||
d->m=_mm_add_ps(d->m,o->m);
|
||||
o->m=((float_vector_t*)(dst+u->R+j))->m;
|
||||
#else
|
||||
d->v=d->v+o->v;
|
||||
o->v=((float_vector_t*)(dst+u->R+j))->v;
|
||||
#endif
|
||||
for(size_t j = 0;j < u->overlap_size; ++j){
|
||||
u->work_buffer[j] += overlap[j];
|
||||
overlap[j] = dst[u->R+j];
|
||||
}
|
||||
//memcpy(overlap,dst+u->R,u->overlap_size*sizeof(float));
|
||||
|
||||
//////debug: tests if basic buffering works
|
||||
//////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=src[j];
|
||||
////debug: tests if basic buffering works
|
||||
////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
//for(size_t j = 0; j < u->window_size;++j){
|
||||
// u->work_buffer[j] = u->input[c][j];
|
||||
//}
|
||||
|
||||
//preseve the needed input for the next window's overlap
|
||||
memmove(src,src+u->R,
|
||||
(u->overlap_size+u->samples_gathered-u->R)*sizeof(float)
|
||||
memmove(src, src+u->R,
|
||||
((u->overlap_size + u->samples_gathered) - u->R)*sizeof(float)
|
||||
);
|
||||
}
|
||||
|
||||
////regardless of sse enabled, the loops in here assume
|
||||
////16 byte aligned addresses and memory allocations divisible by v_size
|
||||
//void dsp_logic(
|
||||
// float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
|
||||
// float * __restrict__ src,/*input data w/ overlap at start,
|
||||
// *automatically cycled in routine
|
||||
// */
|
||||
// float * __restrict__ overlap,//The size of the overlap
|
||||
// const float * __restrict__ H,//The freq. magnitude scalers filter
|
||||
// const float * __restrict__ W,//The windowing function
|
||||
// fftwf_complex * __restrict__ output_window,//The transformed window'd src
|
||||
// struct userdata *u){//Collection of constants
|
||||
//
|
||||
// const size_t window_size = mround(u->window_size,v_size);
|
||||
// const size_t fft_h = mround(u->fft_size / 2 + 1, v_size / 2);
|
||||
// //const size_t R = mround(u->R, v_size);
|
||||
// const size_t overlap_size = mround(u->overlap_size, v_size);
|
||||
//
|
||||
// //assert(u->samples_gathered >= u->R);
|
||||
// //zero out the bit beyond the real overlap so we don't add garbage
|
||||
// for(size_t j = overlap_size; j > u->overlap_size; --j){
|
||||
// overlap[j-1] = 0;
|
||||
// }
|
||||
// //use a linear-phase sliding STFT and overlap-add method
|
||||
// //zero padd the data
|
||||
// memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
|
||||
// //window the data
|
||||
// for(size_t j = 0; j < window_size; j += v_size){
|
||||
// //dst[j] = W[j]*src[j];
|
||||
// float_vector_t *d = (float_vector_t*) (dst+j);
|
||||
// float_vector_t *w = (float_vector_t*) (W+j);
|
||||
// float_vector_t *s = (float_vector_t*) (src+j);
|
||||
//#if __SSE2__
|
||||
// d->m = _mm_mul_ps(w->m, s->m);
|
||||
//#else
|
||||
// d->v = w->v * s->v;
|
||||
//#endif
|
||||
// }
|
||||
// //Processing is done here!
|
||||
// //do fft
|
||||
// fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
|
||||
//
|
||||
//
|
||||
// //perform filtering - purely magnitude based
|
||||
// for(size_t j = 0;j < fft_h; j+=v_size/2){
|
||||
// //output_window[j][0]*=H[j];
|
||||
// //output_window[j][1]*=H[j];
|
||||
// float_vector_t *d = (float_vector_t*)(output_window+j);
|
||||
// float_vector_t h;
|
||||
// h.f[0] = h.f[1] = H[j];
|
||||
// h.f[2] = h.f[3] = H[j+1];
|
||||
//#if __SSE2__
|
||||
// d->m = _mm_mul_ps(d->m, h.m);
|
||||
//#else
|
||||
// d->v = d->v*h->v;
|
||||
//#endif
|
||||
// }
|
||||
//
|
||||
//
|
||||
// //inverse fft
|
||||
// fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
|
||||
//
|
||||
// ////debug: tests overlaping add
|
||||
// ////and negates ALL PREVIOUS processing
|
||||
// ////yields a perfect reconstruction if COLA is held
|
||||
// //for(size_t j = 0; j < u->window_size; ++j){
|
||||
// // dst[j] = W[j]*src[j];
|
||||
// //}
|
||||
//
|
||||
// //overlap add and preserve overlap component from this window (linear phase)
|
||||
// for(size_t j = 0; j < overlap_size; j+=v_size){
|
||||
// //dst[j]+=overlap[j];
|
||||
// //overlap[j]+=dst[j+R];
|
||||
// float_vector_t *d = (float_vector_t*)(dst+j);
|
||||
// float_vector_t *o = (float_vector_t*)(overlap+j);
|
||||
//#if __SSE2__
|
||||
// d->m = _mm_add_ps(d->m, o->m);
|
||||
// o->m = ((float_vector_t*)(dst+u->R+j))->m;
|
||||
//#else
|
||||
// d->v = d->v+o->v;
|
||||
// o->v = ((float_vector_t*)(dst+u->R+j))->v;
|
||||
//#endif
|
||||
// }
|
||||
// //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
|
||||
//
|
||||
// //////debug: tests if basic buffering works
|
||||
// //////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
// //for(size_t j = 0; j < u->window_size; ++j){
|
||||
// // dst[j] = src[j];
|
||||
// //}
|
||||
//
|
||||
// //preseve the needed input for the next window's overlap
|
||||
// memmove(src, src+u->R,
|
||||
// ((u->overlap_size+u->samples_gathered)+-u->R)*sizeof(float)
|
||||
// );
|
||||
//}
|
||||
|
||||
|
||||
void input_buffer(struct userdata *u,pa_memchunk *in){
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
size_t samples=in->length/fs;
|
||||
pa_assert_se(samples<=u->target_samples-u->samples_gathered);
|
||||
|
||||
void input_buffer(struct userdata *u, pa_memchunk *in){
|
||||
size_t fs = pa_frame_size(&(u->sink->sample_spec));
|
||||
size_t samples = in->length/fs;
|
||||
pa_assert_se(samples <= u->target_samples-u->samples_gathered);
|
||||
float *src = (float*) ((uint8_t*) pa_memblock_acquire(in->memblock) + in->index);
|
||||
for (size_t c=0;c<u->channels;c++) {
|
||||
for(size_t c = 0; c < u->channels; c++) {
|
||||
//buffer with an offset after the overlap from previous
|
||||
//iterations
|
||||
pa_assert_se(
|
||||
u->input[c]+u->overlap_size+u->samples_gathered+samples<=u->input[c]+u->target_samples+u->overlap_size
|
||||
u->input[c]+u->overlap_size+u->samples_gathered+samples <= u->input[c]+u->overlap_size+u->target_samples
|
||||
);
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,u->input[c]+u->overlap_size+u->samples_gathered,sizeof(float),src+c,fs,samples);
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c]+u->overlap_size+u->samples_gathered, sizeof(float), src + c, fs, samples);
|
||||
}
|
||||
u->samples_gathered+=samples;
|
||||
pa_memblock_release(in->memblock);
|
||||
|
|
@ -454,74 +474,81 @@ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk
|
|||
pa_assert(chunk);
|
||||
pa_assert_se(u = i->userdata);
|
||||
pa_assert_se(u->sink);
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
size_t samples_requested=nbytes/fs;
|
||||
size_t buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs;
|
||||
size_t fs = pa_frame_size(&(u->sink->sample_spec));
|
||||
//size_t samples_requested = nbytes/fs;
|
||||
size_t buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
|
||||
pa_memchunk tchunk;
|
||||
chunk->memblock=NULL;
|
||||
chunk->memblock = NULL;
|
||||
if (!u->sink || !PA_SINK_IS_OPENED(u->sink->thread_info.state))
|
||||
return -1;
|
||||
|
||||
//pa_log("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
|
||||
struct timespec start,end;
|
||||
struct timespec start, end;
|
||||
|
||||
if(pa_memblockq_peek(u->rendered_q,&tchunk)==0){
|
||||
*chunk=tchunk;
|
||||
if(pa_memblockq_peek(u->rendered_q, &tchunk)==0){
|
||||
*chunk = tchunk;
|
||||
pa_memblockq_drop(u->rendered_q, chunk->length);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
Set the H filter
|
||||
*/
|
||||
unsigned H_i = pa_aupdate_read_begin(u->a_H);
|
||||
u->H = u->Hs[H_i];
|
||||
|
||||
do{
|
||||
pa_memchunk *buffer;
|
||||
size_t input_remaining=u->target_samples-u->samples_gathered;
|
||||
size_t input_remaining = u->target_samples-u->samples_gathered;
|
||||
pa_assert(input_remaining>0);
|
||||
//collect samples
|
||||
|
||||
buffer=&u->conv_buffer;
|
||||
buffer->length=input_remaining*fs;
|
||||
buffer->index=0;
|
||||
buffer = &u->conv_buffer;
|
||||
buffer->length = input_remaining*fs;
|
||||
buffer->index = 0;
|
||||
pa_memblock_ref(buffer->memblock);
|
||||
pa_sink_render_into(u->sink,buffer);
|
||||
pa_sink_render_into(u->sink, buffer);
|
||||
|
||||
//if(u->sink->thread_info.rewind_requested)
|
||||
// sink_request_rewind(u->sink);
|
||||
|
||||
//pa_memchunk p;
|
||||
//buffer=&p;
|
||||
//pa_sink_render(u->sink,u->R*fs,buffer);
|
||||
//buffer->length=PA_MIN(input_remaining*fs,buffer->length);
|
||||
//buffer = &p;
|
||||
//pa_sink_render(u->sink, u->R*fs, buffer);
|
||||
//buffer->length = PA_MIN(input_remaining*fs, buffer->length);
|
||||
|
||||
//debug block
|
||||
//pa_memblockq_push(u->rendered_q,buffer);
|
||||
//pa_memblockq_push(u->rendered_q, buffer);
|
||||
//pa_memblock_unref(buffer->memblock);
|
||||
//goto END;
|
||||
|
||||
//pa_log("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
|
||||
//copy new input
|
||||
gettime(start);
|
||||
input_buffer(u,buffer);
|
||||
input_buffer(u, buffer);
|
||||
gettime(end);
|
||||
//pa_log("Took %0.5f seconds to setup",tdiff(end,start)*1e-9);
|
||||
//pa_log("Took %0.5f seconds to setup", tdiff(end, start)*1e-9);
|
||||
|
||||
pa_memblock_unref(buffer->memblock);
|
||||
|
||||
pa_assert_se(u->fft_size>=u->window_size);
|
||||
pa_assert_se(u->R<u->window_size);
|
||||
pa_assert_se(u->fft_size >= u->window_size);
|
||||
pa_assert_se(u->R < u->window_size);
|
||||
//process every complete block on hand
|
||||
|
||||
gettime(start);
|
||||
process_samples(u);
|
||||
gettime(end);
|
||||
//pa_log("Took %0.5f seconds to process",tdiff(end,start)*1e-9);
|
||||
//pa_log("Took %0.5f seconds to process", tdiff(end, start)*1e-9);
|
||||
|
||||
buffered_samples=pa_memblockq_get_length(u->rendered_q)/fs;
|
||||
}while(buffered_samples<u->R);
|
||||
buffered_samples = pa_memblockq_get_length(u->rendered_q)/fs;
|
||||
}while(buffered_samples < u->R);
|
||||
|
||||
//deque from rendered_q and output
|
||||
pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0);
|
||||
*chunk=tchunk;
|
||||
pa_assert_se(pa_memblockq_peek(u->rendered_q, &tchunk)==0);
|
||||
*chunk = tchunk;
|
||||
pa_memblockq_drop(u->rendered_q, chunk->length);
|
||||
pa_assert_se(chunk->memblock);
|
||||
//pa_log("gave %ld",chunk->length/fs);
|
||||
//pa_log("gave %ld", chunk->length/fs);
|
||||
//pa_log("end pop");
|
||||
return 0;
|
||||
}
|
||||
|
|
@ -546,10 +573,10 @@ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
|||
u->sink->thread_info.rewind_nbytes = 0;
|
||||
|
||||
if (amount > 0) {
|
||||
//pa_sample_spec *ss=&u->sink->sample_spec;
|
||||
//pa_sample_spec *ss = &u->sink->sample_spec;
|
||||
pa_memblockq_seek(u->rendered_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
|
||||
pa_log_debug("Resetting equalizer");
|
||||
u->samples_gathered=0;
|
||||
u->samples_gathered = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -581,9 +608,9 @@ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
|
|||
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
|
||||
return;
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
pa_sink_set_max_request_within_thread(u->sink, nbytes);
|
||||
//pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
|
||||
size_t fs = pa_frame_size(&(u->sink->sample_spec));
|
||||
//pa_sink_set_max_request_within_thread(u->sink, nbytes);
|
||||
pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
|
||||
}
|
||||
|
||||
/* Called from I/O thread context */
|
||||
|
|
@ -596,9 +623,9 @@ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
|
|||
if (!u->sink || !PA_SINK_IS_LINKED(u->sink->thread_info.state))
|
||||
return;
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs );
|
||||
size_t fs = pa_frame_size(&(u->sink->sample_spec));
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs );
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
|
||||
}
|
||||
|
||||
|
|
@ -631,9 +658,9 @@ static void sink_input_attach_cb(pa_sink_input *i) {
|
|||
pa_sink_set_rtpoll(u->sink, i->sink->rtpoll);
|
||||
pa_sink_attach_within_thread(u->sink);
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
size_t fs = pa_frame_size(&(u->sink->sample_spec));
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs, u->master->thread_info.max_latency);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->master->thread_info.max_latency);
|
||||
//TODO: setting this guy minimizes drop outs but doesn't get rid
|
||||
//of them completely, figure out why
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
|
||||
|
|
@ -689,10 +716,13 @@ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
|
|||
//ensure's memory allocated is a multiple of v_size
|
||||
//and aligned
|
||||
static void * alloc(size_t x,size_t s){
|
||||
size_t f=mround(x*s,sizeof(float)*v_size);
|
||||
//printf("requested %ld floats=%ld bytes, rem=%ld\n",x,x*sizeof(float),x*sizeof(float)%16);
|
||||
//printf("giving %ld floats=%ld bytes, rem=%ld\n",f,f*sizeof(float),f*sizeof(float)%16);
|
||||
return fftwf_malloc(f*s);
|
||||
size_t f = mround(x*s, sizeof(float)*v_size);
|
||||
pa_assert_se(f >= x*s);
|
||||
//printf("requested %ld floats=%ld bytes, rem=%ld\n", x, x*sizeof(float), x*sizeof(float)%16);
|
||||
//printf("giving %ld floats=%ld bytes, rem=%ld\n", f, f*sizeof(float), f*sizeof(float)%16);
|
||||
float *t = fftwf_malloc(f);
|
||||
memset(t, 0, f);
|
||||
return t;
|
||||
}
|
||||
|
||||
int pa__init(pa_module*m) {
|
||||
|
|
@ -726,7 +756,7 @@ int pa__init(pa_module*m) {
|
|||
pa_log("Invalid sample format specification or channel map");
|
||||
goto fail;
|
||||
}
|
||||
fs=pa_frame_size(&ss);
|
||||
fs = pa_frame_size(&ss);
|
||||
|
||||
u = pa_xnew0(struct userdata, 1);
|
||||
u->core = m->core;
|
||||
|
|
@ -736,90 +766,96 @@ int pa__init(pa_module*m) {
|
|||
u->sink = NULL;
|
||||
u->sink_input = NULL;
|
||||
|
||||
u->channels=ss.channels;
|
||||
u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
|
||||
pa_log("fft size: %ld",u->fft_size);
|
||||
u->window_size=15999;
|
||||
u->R=(u->window_size+1)/2;
|
||||
u->overlap_size=u->window_size-u->R;
|
||||
u->target_samples=1*u->R;
|
||||
u->samples_gathered=0;
|
||||
u->max_output=pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
|
||||
u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH,u->target_samples*fs, fs, fs, 0, 0, NULL);
|
||||
u->conv_buffer.memblock=pa_memblock_new(u->core->mempool,u->target_samples*fs);
|
||||
u->latency=u->R;
|
||||
|
||||
u->H=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
|
||||
u->W=alloc(u->window_size,sizeof(float));
|
||||
u->work_buffer=alloc(u->fft_size,sizeof(float));
|
||||
memset(u->work_buffer,0,u->fft_size*sizeof(float));
|
||||
u->input=(float **)malloc(sizeof(float *)*u->channels);
|
||||
u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
|
||||
u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
|
||||
for(size_t c=0;c<u->channels;++c){
|
||||
u->input[c]=alloc(u->target_samples+u->overlap_size,sizeof(float));
|
||||
u->channels = ss.channels;
|
||||
u->fft_size = pow(2, ceil(log(ss.rate)/log(2)));
|
||||
pa_log("fft size: %ld", u->fft_size);
|
||||
u->window_size = 7999;
|
||||
u->R = (u->window_size+1)/2;
|
||||
u->overlap_size = u->window_size-u->R;
|
||||
u->target_samples = 1*u->R;
|
||||
u->samples_gathered = 0;
|
||||
u->max_output = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss)/pa_frame_size(&ss);
|
||||
u->rendered_q = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, u->target_samples*fs, fs, fs, 0, 0, NULL);
|
||||
u->a_H = pa_aupdate_new();
|
||||
u->conv_buffer.memblock = pa_memblock_new(u->core->mempool, u->target_samples*fs);
|
||||
u->latency = u->R;
|
||||
for(size_t i = 0; i < 2; ++i){
|
||||
u->Hs[i] = alloc((u->fft_size / 2 + 1), sizeof(float));
|
||||
}
|
||||
u->W = alloc(u->window_size, sizeof(float));
|
||||
u->work_buffer = alloc(u->fft_size, sizeof(float));
|
||||
memset(u->work_buffer, 0, u->fft_size*sizeof(float));
|
||||
u->input = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
|
||||
u->overlap_accum = (float **)pa_xmalloc0(sizeof(float *)*u->channels);
|
||||
for(size_t c = 0; c < u->channels; ++c){
|
||||
u->input[c] = alloc(u->overlap_size+u->target_samples, sizeof(float));
|
||||
pa_assert_se(u->input[c]);
|
||||
memset(u->input[c],0,(u->target_samples+u->overlap_size)*sizeof(float));
|
||||
memset(u->input[c], 0, (u->overlap_size+u->target_samples)*sizeof(float));
|
||||
pa_assert_se(u->input[c]);
|
||||
u->overlap_accum[c]=alloc(u->overlap_size,sizeof(float));
|
||||
u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
|
||||
pa_assert_se(u->overlap_accum[c]);
|
||||
memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
|
||||
u->output_buffer[c]=alloc(u->window_size,sizeof(float));
|
||||
pa_assert_se(u->output_buffer[c]);
|
||||
memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
|
||||
}
|
||||
u->output_window=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
|
||||
u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
|
||||
u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);
|
||||
u->output_window = alloc((u->fft_size / 2 + 1), sizeof(fftwf_complex));
|
||||
u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
|
||||
u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);
|
||||
|
||||
hanning_window(u->W,u->window_size);
|
||||
hanning_window(u->W, u->window_size);
|
||||
|
||||
const int freqs[]={0,25,50,100,200,300,400,800,1500,
|
||||
2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
|
||||
13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
|
||||
const float coefficients[]={1,1,1,1,1,1,1,1,1,1,
|
||||
1,1,1,1,1,1,1,1,
|
||||
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
|
||||
const size_t ncoefficients=sizeof(coefficients)/sizeof(float);
|
||||
pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
|
||||
float *freq_translated=(float *) malloc(sizeof(float)*(ncoefficients));
|
||||
freq_translated[0]=1;
|
||||
//Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
|
||||
for(size_t i=1;i<ncoefficients-1;++i){
|
||||
freq_translated[i]=((float)freqs[i]*u->fft_size)/ss.rate;
|
||||
//pa_log("i: %ld: %d , %g",i,freqs[i],freq_translated[i]);
|
||||
pa_assert_se(freq_translated[i]>=freq_translated[i-1]);
|
||||
unsigned H_i = pa_aupdate_write_begin(u->a_H);
|
||||
u->H = u->Hs[H_i];
|
||||
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
|
||||
u->H[i] = 1.0;
|
||||
}
|
||||
freq_translated[ncoefficients-1]=FLT_MAX;
|
||||
//Interpolate the specified frequency band values
|
||||
u->H[0]=1;
|
||||
for(size_t i=1,j=0;i<(u->fft_size/2+1);++i){
|
||||
pa_assert_se(j<ncoefficients);
|
||||
//max frequency range passed, consider the rest as one band
|
||||
if(freq_translated[j+1]>=FLT_MAX){
|
||||
for(;i<(u->fft_size/2+1);++i){
|
||||
u->H[i]=coefficients[j];
|
||||
}
|
||||
break;
|
||||
}
|
||||
//pa_log("i: %d, j: %d, freq: %f",i,j,freq_translated[j]);
|
||||
//pa_log("interp: %0.4f %0.4f",freq_translated[j],freq_translated[j+1]);
|
||||
pa_assert_se(freq_translated[j]<freq_translated[j+1]);
|
||||
pa_assert_se(i>=freq_translated[j]);
|
||||
pa_assert_se(i<=freq_translated[j+1]);
|
||||
//bilinear-inerpolation of coefficients specified
|
||||
float c0=(i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
|
||||
pa_assert_se(c0>=0&&c0<=1.0);
|
||||
u->H[i]=((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
|
||||
pa_assert_se(u->H[i]>0);
|
||||
while(i>=floor(freq_translated[j+1])){
|
||||
j++;
|
||||
}
|
||||
}
|
||||
//divide out the fft gain
|
||||
for(size_t i=0;i<(u->fft_size/2+1);++i){
|
||||
u->H[i]/=u->fft_size;
|
||||
}
|
||||
free(freq_translated);
|
||||
|
||||
//TODO cut this out and leave it for the client side
|
||||
//const int freqs[] = {0,25,50,100,200,300,400,800,1500,
|
||||
// 2000,3000,4000,5000,6000,7000,8000,9000,10000,11000,12000,
|
||||
// 13000,14000,15000,16000,17000,18000,19000,20000,21000,22000,23000,24000,INT_MAX};
|
||||
//const float coefficients[] = {1,1,1,1,1,1,1,1,1,1,
|
||||
// 1,1,1,1,1,1,1,1,
|
||||
// 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1};
|
||||
//const size_t ncoefficients = sizeof(coefficients)/sizeof(float);
|
||||
//pa_assert_se(sizeof(freqs)/sizeof(int)==sizeof(coefficients)/sizeof(float));
|
||||
//float *freq_translated = (float *) pa_xmalloc0(sizeof(float)*(ncoefficients));
|
||||
//freq_translated[0] = 1;
|
||||
////Translate the frequencies in their natural sampling rate to the new sampling rate frequencies
|
||||
//for(size_t i = 1; i < ncoefficients-1; ++i){
|
||||
// freq_translated[i] = ((float)freqs[i]*u->fft_size)/ss.rate;
|
||||
// //pa_log("i: %ld: %d , %g",i, freqs[i], freq_translated[i]);
|
||||
// pa_assert_se(freq_translated[i] >= freq_translated[i-1]);
|
||||
//}
|
||||
//freq_translated[ncoefficients-1] = FLT_MAX;
|
||||
//
|
||||
////Interpolate the specified frequency band values
|
||||
//u->H[0] = 1;
|
||||
//for(size_t i = 1, j = 0; i < (u->fft_size / 2 + 1); ++i){
|
||||
// pa_assert_se(j < ncoefficients);
|
||||
// //max frequency range passed, consider the rest as one band
|
||||
// if(freq_translated[j+1] >= FLT_MAX){
|
||||
// for(; i < (u->fft_size / 2 + 1); ++i){
|
||||
// u->H[i] = coefficients[j];
|
||||
// }
|
||||
// break;
|
||||
// }
|
||||
// //pa_log("i: %d, j: %d, freq: %f", i, j, freq_translated[j]);
|
||||
// //pa_log("interp: %0.4f %0.4f", freq_translated[j], freq_translated[j+1]);
|
||||
// pa_assert_se(freq_translated[j] < freq_translated[j+1]);
|
||||
// pa_assert_se(i >= freq_translated[j]);
|
||||
// pa_assert_se(i <= freq_translated[j+1]);
|
||||
// //bilinear-inerpolation of coefficients specified
|
||||
// float c0 = (i-freq_translated[j])/(freq_translated[j+1]-freq_translated[j]);
|
||||
// pa_assert_se(c0 >= 0&&c0 <= 1.0);
|
||||
// u->H[i] = ((1.0f-c0)*coefficients[j]+c0*coefficients[j+1]);
|
||||
// pa_assert_se(u->H[i]>0);
|
||||
// while(i >= floor(freq_translated[j+1])){
|
||||
// j++;
|
||||
// }
|
||||
//}
|
||||
//pa_xfree(freq_translated);
|
||||
fix_filter(u->H, u->fft_size);
|
||||
pa_aupdate_write_swap(u->a_H);
|
||||
pa_aupdate_write_end(u->a_H);
|
||||
|
||||
|
||||
/* Create sink */
|
||||
|
|
@ -858,8 +894,8 @@ int pa__init(pa_module*m) {
|
|||
|
||||
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
|
||||
pa_sink_set_rtpoll(u->sink, master->rtpoll);
|
||||
pa_sink_set_max_request(u->sink,u->R*fs);
|
||||
//pa_sink_set_fixed_latency(u->sink,pa_bytes_to_usec(u->R*fs,&ss));
|
||||
pa_sink_set_max_request(u->sink, u->R*fs);
|
||||
//pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss));
|
||||
|
||||
/* Create sink input */
|
||||
pa_sink_input_new_data_init(&sink_input_data);
|
||||
|
|
@ -896,6 +932,8 @@ int pa__init(pa_module*m) {
|
|||
|
||||
pa_xfree(use_default);
|
||||
|
||||
dbus_init(u);
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
|
|
@ -925,6 +963,7 @@ void pa__done(pa_module*m) {
|
|||
|
||||
if (!(u = m->userdata))
|
||||
return;
|
||||
dbus_done(u);
|
||||
|
||||
if (u->sink) {
|
||||
pa_sink_unlink(u->sink);
|
||||
|
|
@ -944,18 +983,152 @@ void pa__done(pa_module*m) {
|
|||
|
||||
fftwf_destroy_plan(u->inverse_plan);
|
||||
fftwf_destroy_plan(u->forward_plan);
|
||||
free(u->output_window);
|
||||
for(size_t c=0;c<u->channels;++c){
|
||||
free(u->output_buffer[c]);
|
||||
free(u->overlap_accum[c]);
|
||||
free(u->input[c]);
|
||||
pa_xfree(u->output_window);
|
||||
for(size_t c=0; c < u->channels; ++c){
|
||||
pa_xfree(u->overlap_accum[c]);
|
||||
pa_xfree(u->input[c]);
|
||||
}
|
||||
pa_xfree(u->overlap_accum);
|
||||
pa_xfree(u->input);
|
||||
pa_xfree(u->work_buffer);
|
||||
pa_xfree(u->W);
|
||||
for(size_t i = 0; i < 2; ++i){
|
||||
pa_xfree(u->Hs[i]);
|
||||
}
|
||||
free(u->output_buffer);
|
||||
free(u->overlap_accum);
|
||||
free(u->input);
|
||||
free(u->work_buffer);
|
||||
free(u->W);
|
||||
free(u->H);
|
||||
|
||||
pa_xfree(u);
|
||||
}
|
||||
|
||||
enum property_handler_index {
|
||||
PROPERTY_HANDLER_N_COEFS,
|
||||
PROPERTY_HANDLER_COEFS,
|
||||
PROPERTY_HANDLER_MAX
|
||||
};
|
||||
|
||||
static pa_dbus_property_handler property_handlers[PROPERTY_HANDLER_MAX]={
|
||||
[PROPERTY_HANDLER_N_COEFS]{.property_name="n_filter_coefficients",.type="u",.get_cb=get_n_coefs,.set_cb=NULL},
|
||||
[PROPERTY_HANDLER_COEFS]{.property_name="filter_coefficients",.type="ai",.get_cb=get_filter,.set_cb=set_filter}
|
||||
};
|
||||
|
||||
//static pa_dbus_arg_info new_equalizer_args[] = { { "path","o",NULL} };
|
||||
//static pa_dbus_signal_info signals[SIGNAL_MAX] = {
|
||||
// [SIGNAL_NEW_EQUALIZER]={.name="NewEqualizer",.arguments=new_equalizer_args,.n_arguments=1}
|
||||
//};
|
||||
|
||||
#define EXTNAME "org.PulseAudio.Ext.Equalizing1"
|
||||
|
||||
static pa_dbus_interface_info interface_info={
|
||||
.name=EXTNAME ".Equalizer",
|
||||
.method_handlers=NULL,
|
||||
.n_method_handlers=0,
|
||||
.property_handlers=property_handlers,
|
||||
.n_property_handlers=PROPERTY_HANDLER_MAX,
|
||||
.get_all_properties_cb=handle_get_all,
|
||||
.signals=NULL,
|
||||
.n_signals=0
|
||||
};
|
||||
|
||||
|
||||
void dbus_init(struct userdata *u){
|
||||
u->dbus_protocol=pa_dbus_protocol_get(u->core);
|
||||
u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index);
|
||||
|
||||
pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &interface_info, u);
|
||||
pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME);
|
||||
}
|
||||
|
||||
void dbus_done(struct userdata *u){
|
||||
pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME);
|
||||
pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, EXTNAME);
|
||||
|
||||
pa_xfree(u->dbus_path);
|
||||
pa_dbus_protocol_unref(u->dbus_protocol);
|
||||
}
|
||||
|
||||
void get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u){
|
||||
pa_assert(conn);
|
||||
pa_assert(msg);
|
||||
pa_assert(_u);
|
||||
|
||||
struct userdata *u=(struct userdata *)_u;
|
||||
|
||||
uint32_t n_coefs=(uint32_t)(u->fft_size / 2 + 1);
|
||||
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs);
|
||||
}
|
||||
|
||||
void get_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
|
||||
pa_assert(conn);
|
||||
pa_assert(msg);
|
||||
pa_assert(_u);
|
||||
|
||||
struct userdata *u=(struct userdata *)_u;
|
||||
|
||||
unsigned n_coefs=(unsigned)(u->fft_size / 2 + 1);
|
||||
double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double));
|
||||
|
||||
unsigned H_i=pa_aupdate_read_begin(u->a_H);
|
||||
float *H=u->Hs[H_i];
|
||||
for(size_t i = 0;i < u->fft_size / 2 + 1; ++i){
|
||||
H_[i]=H[i];
|
||||
}
|
||||
pa_aupdate_read_end(u->a_H);
|
||||
pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_DOUBLE, &H_, n_coefs);
|
||||
pa_xfree(H_);
|
||||
}
|
||||
|
||||
void set_filter(DBusConnection *conn, DBusMessage *msg, void *_u){
|
||||
pa_assert(conn);
|
||||
pa_assert(msg);
|
||||
pa_assert(_u);
|
||||
|
||||
struct userdata *u=(struct userdata *)_u;
|
||||
double *H_;
|
||||
unsigned _n_coefs;
|
||||
pa_dbus_get_fixed_array_set_property_arg(conn, msg, DBUS_TYPE_DOUBLE, &H_, &_n_coefs);
|
||||
if(_n_coefs!=u->fft_size / 2 + 1){
|
||||
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %ld coefficients, you gave %d", u->fft_size / 2 + 1, _n_coefs);
|
||||
return;
|
||||
}
|
||||
unsigned H_i = pa_aupdate_write_begin(u->a_H);
|
||||
float *H = u->Hs[H_i];
|
||||
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
|
||||
H[i] = (float)H_[i];
|
||||
}
|
||||
pa_aupdate_write_swap(u->a_H);
|
||||
pa_aupdate_write_end(u->a_H);
|
||||
|
||||
pa_dbus_send_empty_reply(conn, msg);
|
||||
}
|
||||
|
||||
void handle_get_all(DBusConnection *conn, DBusMessage *msg, void *_u){
|
||||
pa_assert(conn);
|
||||
pa_assert(msg);
|
||||
pa_assert(_u);
|
||||
|
||||
struct userdata *u = (struct userdata *)_u;
|
||||
DBusMessage *reply = NULL;
|
||||
DBusMessageIter msg_iter, dict_iter;
|
||||
|
||||
int n_coefs=(unsigned)(u->fft_size / 2 + 1);
|
||||
double *H_=(double *)pa_xmalloc0(n_coefs*sizeof(double));
|
||||
|
||||
unsigned H_i=pa_aupdate_read_begin(u->a_H);
|
||||
float *H=u->Hs[H_i];
|
||||
for(size_t i = 0; i < u->fft_size / 2 + 1; ++i){
|
||||
H_[i] = H[i];
|
||||
}
|
||||
pa_aupdate_read_end(u->a_H);
|
||||
|
||||
pa_assert_se((reply = dbus_message_new_method_return(msg)));
|
||||
dbus_message_iter_init_append(reply, &msg_iter);
|
||||
pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter));
|
||||
|
||||
pa_dbus_append_basic_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs);
|
||||
pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, property_handlers[PROPERTY_HANDLER_COEFS].property_name, DBUS_TYPE_DOUBLE, H_, n_coefs);
|
||||
|
||||
pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter));
|
||||
pa_assert_se(dbus_connection_send(conn, reply, NULL));
|
||||
dbus_message_unref(reply);
|
||||
|
||||
pa_xfree(H_);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue