wayland/src/connection.c

1390 lines
30 KiB
C
Raw Normal View History

2008-12-02 15:15:01 -05:00
/*
* Copyright © 2008 Kristian Høgsberg
* Copyright © 2013 Jason Ekstrand
2008-12-02 15:15:01 -05:00
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
2008-12-02 15:15:01 -05:00
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
2008-12-02 15:15:01 -05:00
*/
#define _GNU_SOURCE
#include <math.h>
2008-10-08 12:48:46 -04:00
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <sys/uio.h>
#include <fcntl.h>
2010-08-09 14:34:11 -04:00
#include <unistd.h>
2010-08-25 17:11:29 -04:00
#include <sys/types.h>
#include <sys/socket.h>
#include <time.h>
#include <ffi.h>
2008-10-08 12:48:46 -04:00
#include "wayland-util.h"
#include "wayland-private.h"
#include "wayland-os.h"
2008-10-08 12:48:46 -04:00
static inline uint32_t
div_roundup(uint32_t n, size_t a)
{
/* The cast to uint64_t is necessary to prevent overflow when rounding
* values close to UINT32_MAX. After the division it is again safe to
* cast back to uint32_t.
*/
return (uint32_t) (((uint64_t) n + (a - 1)) / a);
}
struct wl_ring_buffer {
2008-10-08 12:48:46 -04:00
char data[4096];
uint32_t head, tail;
2008-10-08 12:48:46 -04:00
};
#define MASK(i) ((i) & 4095)
#define MAX_FDS_OUT 28
#define CLEN (CMSG_LEN(MAX_FDS_OUT * sizeof(int32_t)))
2008-10-08 12:48:46 -04:00
struct wl_connection {
struct wl_ring_buffer in, out;
struct wl_ring_buffer fds_in, fds_out;
2008-10-08 12:48:46 -04:00
int fd;
int want_flush;
2008-10-08 12:48:46 -04:00
};
static int
ring_buffer_put(struct wl_ring_buffer *b, const void *data, size_t count)
{
uint32_t head, size;
if (count > sizeof(b->data)) {
wl_log("Data too big for buffer (%d > %d).\n",
count, sizeof(b->data));
errno = E2BIG;
return -1;
}
head = MASK(b->head);
if (head + count <= sizeof b->data) {
memcpy(b->data + head, data, count);
} else {
size = sizeof b->data - head;
memcpy(b->data + head, data, size);
memcpy(b->data, (const char *) data + size, count - size);
}
b->head += count;
return 0;
}
static void
ring_buffer_put_iov(struct wl_ring_buffer *b, struct iovec *iov, int *count)
{
uint32_t head, tail;
head = MASK(b->head);
tail = MASK(b->tail);
if (head < tail) {
iov[0].iov_base = b->data + head;
iov[0].iov_len = tail - head;
*count = 1;
} else if (tail == 0) {
iov[0].iov_base = b->data + head;
iov[0].iov_len = sizeof b->data - head;
*count = 1;
} else {
iov[0].iov_base = b->data + head;
iov[0].iov_len = sizeof b->data - head;
iov[1].iov_base = b->data;
iov[1].iov_len = tail;
*count = 2;
}
}
static void
ring_buffer_get_iov(struct wl_ring_buffer *b, struct iovec *iov, int *count)
{
uint32_t head, tail;
head = MASK(b->head);
tail = MASK(b->tail);
if (tail < head) {
iov[0].iov_base = b->data + tail;
iov[0].iov_len = head - tail;
*count = 1;
} else if (head == 0) {
iov[0].iov_base = b->data + tail;
iov[0].iov_len = sizeof b->data - tail;
*count = 1;
} else {
iov[0].iov_base = b->data + tail;
iov[0].iov_len = sizeof b->data - tail;
iov[1].iov_base = b->data;
iov[1].iov_len = head;
*count = 2;
}
}
static void
ring_buffer_copy(struct wl_ring_buffer *b, void *data, size_t count)
{
uint32_t tail, size;
tail = MASK(b->tail);
if (tail + count <= sizeof b->data) {
memcpy(data, b->data + tail, count);
} else {
size = sizeof b->data - tail;
memcpy(data, b->data + tail, size);
memcpy((char *) data + size, b->data, count - size);
}
}
static uint32_t
ring_buffer_size(struct wl_ring_buffer *b)
{
return b->head - b->tail;
}
2008-10-08 12:48:46 -04:00
struct wl_connection *
wl_connection_create(int fd)
2008-10-08 12:48:46 -04:00
{
struct wl_connection *connection;
connection = zalloc(sizeof *connection);
if (connection == NULL)
return NULL;
2008-10-08 12:48:46 -04:00
connection->fd = fd;
return connection;
}
static void
close_fds(struct wl_ring_buffer *buffer, int max)
{
int32_t fds[sizeof(buffer->data) / sizeof(int32_t)], i, count;
size_t size;
size = ring_buffer_size(buffer);
if (size == 0)
return;
ring_buffer_copy(buffer, fds, size);
count = size / sizeof fds[0];
if (max > 0 && max < count)
count = max;
size = count * sizeof fds[0];
for (i = 0; i < count; i++)
close(fds[i]);
buffer->tail += size;
}
void
wl_connection_close_fds_in(struct wl_connection *connection, int max)
{
close_fds(&connection->fds_in, max);
}
connection: Leave fd open in wl_connection_destroy Calling close() on the same file descriptor that a previous call to close() already closed is wrong, and racy if another thread received that same file descriptor as a eg. new socket or actual file. There are two situations where wl_connection_destroy() would close its file descriptor and then another function up in the call chain would close the same file descriptor: * When wl_client_create() fails after calling wl_connection_create(), it will call wl_connection_destroy() before returning. However, its caller will always close the file descriptor if wl_client_create() fails. * wl_display_disconnect() unconditionally closes the display file descriptor and also calls wl_connection_destroy(). So these two seem to expect wl_connection_destroy() to leave the file descriptor open. The other caller of wl_connection_destroy(), wl_client_destroy(), does however expect wl_connection_destroy() to close its file descriptor, alas. This patch changes wl_connection_destroy() to indulge this majority of two callers by simply not closing the file descriptor. For the benefit of wl_client_destroy(), wl_connection_destroy() then returns the unclosed file descriptor so that wl_client_destroy() can close it itself. Since wl_connection_destroy() is a private function called from few places, changing its semantics seemed like the more expedient way to address the double-close() problem than shuffling around the logic in wl_client_create() to somehow enable it to always avoid calling wl_connection_destroy(). Signed-off-by: Benjamin Herr <ben@0x539.de> Reviewed-by: Marek Chalupa <mchqwerty@gmail.com> Reviewed-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk>
2014-09-30 14:43:03 +02:00
int
2008-10-08 12:48:46 -04:00
wl_connection_destroy(struct wl_connection *connection)
{
connection: Leave fd open in wl_connection_destroy Calling close() on the same file descriptor that a previous call to close() already closed is wrong, and racy if another thread received that same file descriptor as a eg. new socket or actual file. There are two situations where wl_connection_destroy() would close its file descriptor and then another function up in the call chain would close the same file descriptor: * When wl_client_create() fails after calling wl_connection_create(), it will call wl_connection_destroy() before returning. However, its caller will always close the file descriptor if wl_client_create() fails. * wl_display_disconnect() unconditionally closes the display file descriptor and also calls wl_connection_destroy(). So these two seem to expect wl_connection_destroy() to leave the file descriptor open. The other caller of wl_connection_destroy(), wl_client_destroy(), does however expect wl_connection_destroy() to close its file descriptor, alas. This patch changes wl_connection_destroy() to indulge this majority of two callers by simply not closing the file descriptor. For the benefit of wl_client_destroy(), wl_connection_destroy() then returns the unclosed file descriptor so that wl_client_destroy() can close it itself. Since wl_connection_destroy() is a private function called from few places, changing its semantics seemed like the more expedient way to address the double-close() problem than shuffling around the logic in wl_client_create() to somehow enable it to always avoid calling wl_connection_destroy(). Signed-off-by: Benjamin Herr <ben@0x539.de> Reviewed-by: Marek Chalupa <mchqwerty@gmail.com> Reviewed-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk>
2014-09-30 14:43:03 +02:00
int fd = connection->fd;
close_fds(&connection->fds_out, -1);
close_fds(&connection->fds_in, -1);
2008-10-08 12:48:46 -04:00
free(connection);
connection: Leave fd open in wl_connection_destroy Calling close() on the same file descriptor that a previous call to close() already closed is wrong, and racy if another thread received that same file descriptor as a eg. new socket or actual file. There are two situations where wl_connection_destroy() would close its file descriptor and then another function up in the call chain would close the same file descriptor: * When wl_client_create() fails after calling wl_connection_create(), it will call wl_connection_destroy() before returning. However, its caller will always close the file descriptor if wl_client_create() fails. * wl_display_disconnect() unconditionally closes the display file descriptor and also calls wl_connection_destroy(). So these two seem to expect wl_connection_destroy() to leave the file descriptor open. The other caller of wl_connection_destroy(), wl_client_destroy(), does however expect wl_connection_destroy() to close its file descriptor, alas. This patch changes wl_connection_destroy() to indulge this majority of two callers by simply not closing the file descriptor. For the benefit of wl_client_destroy(), wl_connection_destroy() then returns the unclosed file descriptor so that wl_client_destroy() can close it itself. Since wl_connection_destroy() is a private function called from few places, changing its semantics seemed like the more expedient way to address the double-close() problem than shuffling around the logic in wl_client_create() to somehow enable it to always avoid calling wl_connection_destroy(). Signed-off-by: Benjamin Herr <ben@0x539.de> Reviewed-by: Marek Chalupa <mchqwerty@gmail.com> Reviewed-by: Pekka Paalanen <pekka.paalanen@collabora.co.uk>
2014-09-30 14:43:03 +02:00
return fd;
2008-10-08 12:48:46 -04:00
}
void
wl_connection_copy(struct wl_connection *connection, void *data, size_t size)
{
ring_buffer_copy(&connection->in, data, size);
2008-10-08 12:48:46 -04:00
}
void
wl_connection_consume(struct wl_connection *connection, size_t size)
{
connection->in.tail += size;
2008-10-08 12:48:46 -04:00
}
static void
build_cmsg(struct wl_ring_buffer *buffer, char *data, size_t *clen)
{
struct cmsghdr *cmsg;
size_t size;
size = ring_buffer_size(buffer);
if (size > MAX_FDS_OUT * sizeof(int32_t))
size = MAX_FDS_OUT * sizeof(int32_t);
if (size > 0) {
cmsg = (struct cmsghdr *) data;
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(size);
ring_buffer_copy(buffer, CMSG_DATA(cmsg), size);
*clen = cmsg->cmsg_len;
} else {
*clen = 0;
}
}
static int
decode_cmsg(struct wl_ring_buffer *buffer, struct msghdr *msg)
{
struct cmsghdr *cmsg;
size_t size, max, i;
int overflow = 0;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg != NULL;
cmsg = CMSG_NXTHDR(msg, cmsg)) {
if (cmsg->cmsg_level != SOL_SOCKET ||
cmsg->cmsg_type != SCM_RIGHTS)
continue;
size = cmsg->cmsg_len - CMSG_LEN(0);
max = sizeof(buffer->data) - ring_buffer_size(buffer);
if (size > max || overflow) {
overflow = 1;
size /= sizeof(int32_t);
for (i = 0; i < size; i++)
close(((int*)CMSG_DATA(cmsg))[i]);
} else if (ring_buffer_put(buffer, CMSG_DATA(cmsg), size) < 0) {
return -1;
}
}
if (overflow) {
errno = EOVERFLOW;
return -1;
}
return 0;
}
int
wl_connection_flush(struct wl_connection *connection)
2008-10-08 12:48:46 -04:00
{
struct iovec iov[2];
connection: fix asan report on sendmsg call Initialiaze the entire msghdr struct to 0 before use. Example of the report fixed with this change: AddressSanitizer:DEADLYSIGNAL ================================================================= ==20035==ERROR: AddressSanitizer: SEGV on unknown address 0x2dad4dbffffa0d (pc 0x0055555c7488 bp 0x007fffffc760 sp 0x007fffffc760 T0) ==20035==The signal is caused by a READ memory access. #0 0x55555c7488 in read_msghdr(void*, __sanitizer::__sanitizer_msghdr*, long) (/home/ftrvx/w/_/uxn/bin/uxnemu+0x77488) #1 0x55555c810c in sendmsg (/home/ftrvx/w/_/uxn/bin/uxnemu+0x7810c) #2 0x7ff7f2db20 in wl_connection_flush /home/ftrvx/q/wayland/build/../src/connection.c:315:10 #3 0x7ff7f2d014 in wl_display_flush /home/ftrvx/q/wayland/build/../src/wayland-client.c:2154:9 #4 0x7ff7e80bc0 (/lib/libSDL2-2.0.so.0+0x104bc0) #5 0x7ff7e523b0 (/lib/libSDL2-2.0.so.0+0xd63b0) #6 0x7ff7e534e4 (/lib/libSDL2-2.0.so.0+0xd74e4) #7 0x7ff7e535e8 (/lib/libSDL2-2.0.so.0+0xd75e8) #8 0x7ff7daad54 (/lib/libSDL2-2.0.so.0+0x2ed54) #9 0x7ff7dab130 (/lib/libSDL2-2.0.so.0+0x2f130) #10 0x555565bb40 in main /home/ftrvx/w/_/uxn/src/uxnemu.c:519:2 #11 0x7ff7f62484 in libc_start_main_stage2 /builddir/musl-1.1.24/src/env/__libc_start_main.c:94:2 AddressSanitizer can not provide additional info. SUMMARY: AddressSanitizer: SEGV (/home/ftrvx/w/_/uxn/bin/uxnemu+0x77488) in read_msghdr(void*, __sanitizer::__sanitizer_msghdr*, long) ==20035==ABORTING Signed-off-by: Sigrid Solveig Haflínudóttir <ftrvxmtrx@gmail.com>
2022-03-29 17:59:15 +02:00
struct msghdr msg = {0};
char cmsg[CLEN];
int len = 0, count;
size_t clen;
uint32_t tail;
if (!connection->want_flush)
return 0;
2008-10-08 12:48:46 -04:00
tail = connection->out.tail;
while (connection->out.head - connection->out.tail > 0) {
ring_buffer_get_iov(&connection->out, iov, &count);
build_cmsg(&connection->fds_out, cmsg, &clen);
msg.msg_iov = iov;
msg.msg_iovlen = count;
msg.msg_control = (clen > 0) ? cmsg : NULL;
msg.msg_controllen = clen;
do {
len = sendmsg(connection->fd, &msg,
MSG_NOSIGNAL | MSG_DONTWAIT);
} while (len == -1 && errno == EINTR);
if (len == -1)
return -1;
2008-10-08 12:48:46 -04:00
close_fds(&connection->fds_out, MAX_FDS_OUT);
2008-10-08 12:48:46 -04:00
connection->out.tail += len;
}
connection->want_flush = 0;
return connection->out.head - tail;
}
uint32_t
wl_connection_pending_input(struct wl_connection *connection)
{
return ring_buffer_size(&connection->in);
}
int
wl_connection_read(struct wl_connection *connection)
{
struct iovec iov[2];
struct msghdr msg;
char cmsg[CLEN];
int len, count, ret;
if (ring_buffer_size(&connection->in) >= sizeof(connection->in.data)) {
errno = EOVERFLOW;
return -1;
}
ring_buffer_put_iov(&connection->in, iov, &count);
msg.msg_name = NULL;
msg.msg_namelen = 0;
msg.msg_iov = iov;
msg.msg_iovlen = count;
msg.msg_control = cmsg;
msg.msg_controllen = sizeof cmsg;
msg.msg_flags = 0;
2008-10-08 12:48:46 -04:00
do {
client: Add wl_display_prepare_read() API to relax thread model assumptions The current thread model assumes that the application or toolkit will have one thread that either polls the display fd and dispatches events or just dispatches in a loop. Only this main thread will read from the fd while all other threads will block on a pthread condition and expect the main thread to deliver events to them. This turns out to be too restrictive. We can't assume that there always will be a thread like that. Qt QML threaded rendering will block the main thread on a condition that's signaled by a rendering thread after it finishes rendering. This leads to a deadlock when the rendering threads blocks in eglSwapBuffers(), and the main thread is waiting on the condition. Another problematic use case is with games that has a rendering thread for a splash screen while the main thread is busy loading game data or compiling shaders. The main thread isn't responsive and ends up blocking eglSwapBuffers() in the rendering thread. We also can't assume that there will be only one thread polling on the file descriptor. A valid use case is a thread receiving data from a custom wayland interface as well as a device fd or network socket. The thread may want to wait on either events from the wayland interface or data from the fd, in which case it needs to poll on both the wayland display fd and the device/network fd. The solution seems pretty straightforward: just let all threads read from the fd. However, the main-thread restriction was introduced to avoid a race. Simplified, main loops will do something like this: wl_display_dispatch_pending(display); /* Race here if other thread reads from fd and places events * in main eent queue. We go to sleep in poll while sitting on * events that may stall the application if not dispatched. */ poll(fds, nfds, -1); /* Race here if other thread reads and doesn't queue any * events for main queue. wl_display_dispatch() below will block * trying to read from the fd, while other fds in the mainloop * are ignored. */ wl_display_dispatch(display); The restriction that only the main thread can read from the fd avoids these races, but has the problems described above. This patch introduces new API to solve both problems. We add int wl_display_prepare_read(struct wl_display *display); and int wl_display_read_events(struct wl_display *display); wl_display_prepare_read() registers the calling thread as a potential reader of events. Once data is available on the fd, all reader threads must call wl_display_read_events(), at which point one of the threads will read from the fd and distribute the events to event queues. When that is done, all threads return from wl_display_read_events(). From the point of view of a single thread, this ensures that between calling wl_display_prepare_read() and wl_display_read_events(), no other thread will read from the fd and queue events in its event queue. This avoids the race conditions described above, and we avoid relying on any one thread to be available to read events.
2013-03-17 14:21:48 -04:00
len = wl_os_recvmsg_cloexec(connection->fd, &msg, MSG_DONTWAIT);
} while (len < 0 && errno == EINTR);
if (len <= 0)
return len;
ret = decode_cmsg(&connection->fds_in, &msg);
if (ret)
return -1;
connection->in.head += len;
2008-10-08 12:48:46 -04:00
return wl_connection_pending_input(connection);
2008-10-08 12:48:46 -04:00
}
int
wl_connection_write(struct wl_connection *connection,
const void *data, size_t count)
2008-10-08 12:48:46 -04:00
{
if (connection->out.head - connection->out.tail +
count > ARRAY_LENGTH(connection->out.data)) {
connection->want_flush = 1;
if (wl_connection_flush(connection) < 0)
return -1;
}
if (ring_buffer_put(&connection->out, data, count) < 0)
return -1;
connection->want_flush = 1;
return 0;
}
int
wl_connection_queue(struct wl_connection *connection,
const void *data, size_t count)
{
if (connection->out.head - connection->out.tail +
count > ARRAY_LENGTH(connection->out.data)) {
connection->want_flush = 1;
if (wl_connection_flush(connection) < 0)
return -1;
}
return ring_buffer_put(&connection->out, data, count);
2008-10-08 12:48:46 -04:00
}
int
wl_message_count_arrays(const struct wl_message *message)
{
int i, arrays;
for (i = 0, arrays = 0; message->signature[i]; i++) {
if (message->signature[i] == 'a')
arrays++;
}
return arrays;
}
int
wl_connection_get_fd(struct wl_connection *connection)
{
return connection->fd;
}
static int
wl_connection_put_fd(struct wl_connection *connection, int32_t fd)
{
if (ring_buffer_size(&connection->fds_out) == MAX_FDS_OUT * sizeof fd) {
connection->want_flush = 1;
if (wl_connection_flush(connection) < 0)
return -1;
}
return ring_buffer_put(&connection->fds_out, &fd, sizeof fd);
}
const char *
get_next_argument(const char *signature, struct argument_details *details)
{
details->nullable = 0;
for(; *signature; ++signature) {
switch(*signature) {
case 'i':
case 'u':
case 'f':
case 's':
case 'o':
case 'n':
case 'a':
case 'h':
details->type = *signature;
return signature + 1;
case '?':
details->nullable = 1;
}
}
details->type = '\0';
return signature;
}
int
arg_count_for_signature(const char *signature)
{
int count = 0;
for(; *signature; ++signature) {
switch(*signature) {
case 'i':
case 'u':
case 'f':
case 's':
case 'o':
case 'n':
case 'a':
case 'h':
++count;
}
}
return count;
}
int
wl_message_get_since(const struct wl_message *message)
{
int since;
since = atoi(message->signature);
if (since == 0)
since = 1;
return since;
}
void
wl_argument_from_va_list(const char *signature, union wl_argument *args,
int count, va_list ap)
{
int i;
const char *sig_iter;
struct argument_details arg;
sig_iter = signature;
for (i = 0; i < count; i++) {
sig_iter = get_next_argument(sig_iter, &arg);
switch(arg.type) {
case 'i':
args[i].i = va_arg(ap, int32_t);
break;
case 'u':
args[i].u = va_arg(ap, uint32_t);
break;
case 'f':
args[i].f = va_arg(ap, wl_fixed_t);
break;
case 's':
args[i].s = va_arg(ap, const char *);
break;
case 'o':
args[i].o = va_arg(ap, struct wl_object *);
break;
case 'n':
args[i].o = va_arg(ap, struct wl_object *);
break;
case 'a':
args[i].a = va_arg(ap, struct wl_array *);
break;
case 'h':
args[i].h = va_arg(ap, int32_t);
break;
case '\0':
return;
}
}
}
static void
wl_closure_clear_fds(struct wl_closure *closure)
{
const char *signature = closure->message->signature;
struct argument_details arg;
int i;
for (i = 0; i < closure->count; i++) {
signature = get_next_argument(signature, &arg);
if (arg.type == 'h')
closure->args[i].h = -1;
}
}
static struct wl_closure *
wl_closure_init(const struct wl_message *message, uint32_t size,
int *num_arrays, union wl_argument *args)
{
struct wl_closure *closure;
int count;
count = arg_count_for_signature(message->signature);
if (count > WL_CLOSURE_MAX_ARGS) {
wl_log("too many args (%d)\n", count);
errno = EINVAL;
return NULL;
}
if (size) {
*num_arrays = wl_message_count_arrays(message);
closure = zalloc(sizeof *closure + size +
*num_arrays * sizeof(struct wl_array));
} else {
closure = zalloc(sizeof *closure);
}
if (!closure) {
errno = ENOMEM;
return NULL;
}
if (args)
memcpy(closure->args, args, count * sizeof *args);
closure->message = message;
closure->count = count;
/* Set these all to -1 so we can close any that have been
* set to a real value during wl_closure_destroy().
* We may have copied a bunch of fds into the closure with
* memcpy previously, but those are undup()d client fds
* that we would have replaced anyway.
*/
wl_closure_clear_fds(closure);
return closure;
}
struct wl_closure *
wl_closure_marshal(struct wl_object *sender, uint32_t opcode,
union wl_argument *args,
const struct wl_message *message)
{
struct wl_closure *closure;
struct wl_object *object;
int i, count, fd, dup_fd;
const char *signature;
struct argument_details arg;
closure = wl_closure_init(message, 0, NULL, args);
if (closure == NULL)
return NULL;
count = closure->count;
signature = message->signature;
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
switch (arg.type) {
case 'f':
case 'u':
case 'i':
break;
case 's':
if (!arg.nullable && args[i].s == NULL)
goto err_null;
break;
case 'o':
if (!arg.nullable && args[i].o == NULL)
goto err_null;
break;
case 'n':
object = args[i].o;
if (object == NULL)
goto err_null;
closure->args[i].n = object ? object->id : 0;
break;
case 'a':
if (args[i].a == NULL)
goto err_null;
break;
case 'h':
fd = args[i].h;
dup_fd = wl_os_dupfd_cloexec(fd, 0);
if (dup_fd < 0) {
wl_closure_destroy(closure);
wl_log("error marshalling arguments for %s: dup failed: %s\n",
message->name, strerror(errno));
return NULL;
}
closure->args[i].h = dup_fd;
break;
default:
wl_abort("unhandled format code: '%c'\n", arg.type);
break;
}
}
closure->sender_id = sender->id;
closure->opcode = opcode;
return closure;
err_null:
wl_closure_destroy(closure);
wl_log("error marshalling arguments for %s (signature %s): "
"null value passed for arg %i\n", message->name,
message->signature, i);
errno = EINVAL;
return NULL;
}
struct wl_closure *
wl_closure_vmarshal(struct wl_object *sender, uint32_t opcode, va_list ap,
const struct wl_message *message)
{
union wl_argument args[WL_CLOSURE_MAX_ARGS];
wl_argument_from_va_list(message->signature, args,
WL_CLOSURE_MAX_ARGS, ap);
return wl_closure_marshal(sender, opcode, args, message);
}
struct wl_closure *
wl_connection_demarshal(struct wl_connection *connection,
uint32_t size,
struct wl_map *objects,
const struct wl_message *message)
{
uint32_t *p, *next, *end, length, length_in_u32, id;
int fd;
char *s;
int i, count, num_arrays;
const char *signature;
struct argument_details arg;
struct wl_closure *closure;
struct wl_array *array_extra;
/* Space for sender_id and opcode */
if (size < 2 * sizeof *p) {
wl_log("message too short, invalid header\n");
wl_connection_consume(connection, size);
errno = EINVAL;
return NULL;
}
closure = wl_closure_init(message, size, &num_arrays, NULL);
if (closure == NULL) {
wl_connection_consume(connection, size);
return NULL;
}
count = closure->count;
array_extra = closure->extra;
p = (uint32_t *)(closure->extra + num_arrays);
end = p + size / sizeof *p;
wl_connection_copy(connection, p, size);
closure->sender_id = *p++;
closure->opcode = *p++ & 0x0000ffff;
signature = message->signature;
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
if (arg.type != 'h' && p + 1 > end) {
wl_log("message too short, "
2010-08-09 14:34:11 -04:00
"object (%d), message %s(%s)\n",
closure->sender_id, message->name,
message->signature);
2010-08-09 14:34:11 -04:00
errno = EINVAL;
goto err;
2010-08-09 14:34:11 -04:00
}
switch (arg.type) {
case 'u':
closure->args[i].u = *p++;
break;
case 'i':
closure->args[i].i = *p++;
break;
case 'f':
closure->args[i].f = *p++;
break;
case 's':
length = *p++;
2010-08-09 14:34:11 -04:00
if (length == 0 && !arg.nullable) {
wl_log("NULL string received on non-nullable "
"type, message %s(%s)\n", message->name,
message->signature);
errno = EINVAL;
goto err;
}
if (length == 0) {
closure->args[i].s = NULL;
break;
}
length_in_u32 = div_roundup(length, sizeof *p);
if ((uint32_t) (end - p) < length_in_u32) {
wl_log("message too short, "
2010-08-09 14:34:11 -04:00
"object (%d), message %s(%s)\n",
closure->sender_id, message->name,
message->signature);
2010-08-09 14:34:11 -04:00
errno = EINVAL;
goto err;
2010-08-09 14:34:11 -04:00
}
next = p + length_in_u32;
2010-08-09 14:34:11 -04:00
s = (char *) p;
if (length > 0 && s[length - 1] != '\0') {
wl_log("string not nul-terminated, "
"message %s(%s)\n",
message->name, message->signature);
errno = EINVAL;
goto err;
}
closure->args[i].s = s;
2010-08-09 14:34:11 -04:00
p = next;
break;
case 'o':
id = *p++;
closure->args[i].n = id;
if (id == 0 && !arg.nullable) {
wl_log("NULL object received on non-nullable "
"type, message %s(%s)\n", message->name,
message->signature);
errno = EINVAL;
goto err;
}
break;
case 'n':
id = *p++;
closure->args[i].n = id;
if (id == 0) {
wl_log("NULL new ID received on non-nullable "
"type, message %s(%s)\n", message->name,
message->signature);
errno = EINVAL;
goto err;
}
if (wl_map_reserve_new(objects, id) < 0) {
if (errno == EINVAL) {
wl_log("not a valid new object id (%u), "
"message %s(%s)\n", id,
message->name,
message->signature);
}
goto err;
2010-08-09 14:34:11 -04:00
}
break;
case 'a':
length = *p++;
2010-08-09 14:34:11 -04:00
length_in_u32 = div_roundup(length, sizeof *p);
if ((uint32_t) (end - p) < length_in_u32) {
wl_log("message too short, "
2010-08-09 14:34:11 -04:00
"object (%d), message %s(%s)\n",
closure->sender_id, message->name,
message->signature);
2010-08-09 14:34:11 -04:00
errno = EINVAL;
goto err;
2010-08-09 14:34:11 -04:00
}
next = p + length_in_u32;
2010-08-09 14:34:11 -04:00
array_extra->size = length;
array_extra->alloc = 0;
array_extra->data = p;
closure->args[i].a = array_extra++;
2010-08-09 14:34:11 -04:00
p = next;
break;
case 'h':
if (connection->fds_in.tail == connection->fds_in.head) {
wl_log("file descriptor expected, "
"object (%d), message %s(%s)\n",
closure->sender_id, message->name,
message->signature);
errno = EINVAL;
goto err;
}
ring_buffer_copy(&connection->fds_in, &fd, sizeof fd);
connection->fds_in.tail += sizeof fd;
closure->args[i].h = fd;
break;
default:
wl_abort("unknown type\n");
break;
}
}
wl_connection_consume(connection, size);
return closure;
err:
wl_closure_destroy(closure);
wl_connection_consume(connection, size);
return NULL;
}
bool
wl_object_is_zombie(struct wl_map *map, uint32_t id)
{
uint32_t flags;
/* Zombie objects only exist on the client side. */
if (map->side == WL_MAP_SERVER_SIDE)
return false;
/* Zombie objects can only have been created by the client. */
if (id >= WL_SERVER_ID_START)
return false;
flags = wl_map_lookup_flags(map, id);
return !!(flags & WL_MAP_ENTRY_ZOMBIE);
}
int
wl_closure_lookup_objects(struct wl_closure *closure, struct wl_map *objects)
{
struct wl_object *object;
const struct wl_message *message;
const char *signature;
struct argument_details arg;
int i, count;
uint32_t id;
message = closure->message;
signature = message->signature;
count = arg_count_for_signature(signature);
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
switch (arg.type) {
case 'o':
id = closure->args[i].n;
closure->args[i].o = NULL;
object = wl_map_lookup(objects, id);
if (wl_object_is_zombie(objects, id)) {
/* references object we've already
* destroyed client side */
object = NULL;
} else if (object == NULL && id != 0) {
wl_log("unknown object (%u), message %s(%s)\n",
id, message->name, message->signature);
errno = EINVAL;
return -1;
}
if (object != NULL && message->types[i] != NULL &&
!wl_interface_equal((object)->interface,
message->types[i])) {
wl_log("invalid object (%u), type (%s), "
"message %s(%s)\n",
id, (object)->interface->name,
message->name, message->signature);
errno = EINVAL;
return -1;
}
closure->args[i].o = object;
}
}
return 0;
}
static void
convert_arguments_to_ffi(const char *signature, uint32_t flags,
union wl_argument *args,
int count, ffi_type **ffi_types, void** ffi_args)
{
int i;
const char *sig_iter;
struct argument_details arg;
sig_iter = signature;
for (i = 0; i < count; i++) {
sig_iter = get_next_argument(sig_iter, &arg);
switch(arg.type) {
case 'i':
ffi_types[i] = &ffi_type_sint32;
ffi_args[i] = &args[i].i;
break;
case 'u':
ffi_types[i] = &ffi_type_uint32;
ffi_args[i] = &args[i].u;
break;
case 'f':
ffi_types[i] = &ffi_type_sint32;
ffi_args[i] = &args[i].f;
break;
case 's':
ffi_types[i] = &ffi_type_pointer;
ffi_args[i] = &args[i].s;
break;
case 'o':
ffi_types[i] = &ffi_type_pointer;
ffi_args[i] = &args[i].o;
break;
case 'n':
if (flags & WL_CLOSURE_INVOKE_CLIENT) {
ffi_types[i] = &ffi_type_pointer;
ffi_args[i] = &args[i].o;
} else {
ffi_types[i] = &ffi_type_uint32;
ffi_args[i] = &args[i].n;
}
break;
case 'a':
ffi_types[i] = &ffi_type_pointer;
ffi_args[i] = &args[i].a;
break;
case 'h':
ffi_types[i] = &ffi_type_sint32;
ffi_args[i] = &args[i].h;
break;
default:
wl_abort("unknown type\n");
break;
}
}
}
void
wl_closure_invoke(struct wl_closure *closure, uint32_t flags,
struct wl_object *target, uint32_t opcode, void *data)
{
int count;
ffi_cif cif;
ffi_type *ffi_types[WL_CLOSURE_MAX_ARGS + 2];
void * ffi_args[WL_CLOSURE_MAX_ARGS + 2];
void (* const *implementation)(void);
count = arg_count_for_signature(closure->message->signature);
ffi_types[0] = &ffi_type_pointer;
ffi_args[0] = &data;
ffi_types[1] = &ffi_type_pointer;
ffi_args[1] = &target;
convert_arguments_to_ffi(closure->message->signature, flags, closure->args,
count, ffi_types + 2, ffi_args + 2);
ffi_prep_cif(&cif, FFI_DEFAULT_ABI,
count + 2, &ffi_type_void, ffi_types);
implementation = target->implementation;
if (!implementation[opcode]) {
wl_abort("listener function for opcode %u of %s is NULL\n",
opcode, target->interface->name);
}
ffi_call(&cif, implementation[opcode], NULL, ffi_args);
wl_closure_clear_fds(closure);
}
void
wl_closure_dispatch(struct wl_closure *closure, wl_dispatcher_func_t dispatcher,
struct wl_object *target, uint32_t opcode)
{
dispatcher(target->implementation, target, opcode, closure->message,
closure->args);
wl_closure_clear_fds(closure);
}
static int
copy_fds_to_connection(struct wl_closure *closure,
struct wl_connection *connection)
{
const struct wl_message *message = closure->message;
uint32_t i, count;
struct argument_details arg;
const char *signature = message->signature;
int fd;
count = arg_count_for_signature(signature);
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
if (arg.type != 'h')
continue;
fd = closure->args[i].h;
if (wl_connection_put_fd(connection, fd)) {
wl_log("request could not be marshaled: "
"can't send file descriptor\n");
return -1;
}
closure->args[i].h = -1;
}
return 0;
}
static uint32_t
buffer_size_for_closure(struct wl_closure *closure)
{
const struct wl_message *message = closure->message;
int i, count;
struct argument_details arg;
const char *signature;
uint32_t size, buffer_size = 0;
signature = message->signature;
count = arg_count_for_signature(signature);
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
switch (arg.type) {
case 'h':
break;
case 'u':
case 'i':
case 'f':
case 'o':
case 'n':
buffer_size++;
break;
case 's':
if (closure->args[i].s == NULL) {
buffer_size++;
break;
}
size = strlen(closure->args[i].s) + 1;
buffer_size += 1 + div_roundup(size, sizeof(uint32_t));
break;
case 'a':
if (closure->args[i].a == NULL) {
buffer_size++;
break;
}
size = closure->args[i].a->size;
buffer_size += (1 + div_roundup(size, sizeof(uint32_t)));
break;
default:
break;
}
}
return buffer_size + 2;
}
static int
serialize_closure(struct wl_closure *closure, uint32_t *buffer,
size_t buffer_count)
{
const struct wl_message *message = closure->message;
unsigned int i, count, size;
uint32_t *p, *end;
struct argument_details arg;
const char *signature;
if (buffer_count < 2)
goto overflow;
p = buffer + 2;
end = buffer + buffer_count;
signature = message->signature;
count = arg_count_for_signature(signature);
for (i = 0; i < count; i++) {
signature = get_next_argument(signature, &arg);
if (arg.type == 'h')
continue;
if (p + 1 > end)
goto overflow;
switch (arg.type) {
case 'u':
*p++ = closure->args[i].u;
break;
case 'i':
*p++ = closure->args[i].i;
break;
case 'f':
*p++ = closure->args[i].f;
break;
case 'o':
*p++ = closure->args[i].o ? closure->args[i].o->id : 0;
break;
case 'n':
*p++ = closure->args[i].n;
break;
case 's':
if (closure->args[i].s == NULL) {
*p++ = 0;
break;
}
size = strlen(closure->args[i].s) + 1;
*p++ = size;
if (p + div_roundup(size, sizeof *p) > end)
goto overflow;
memcpy(p, closure->args[i].s, size);
p += div_roundup(size, sizeof *p);
break;
case 'a':
if (closure->args[i].a == NULL) {
*p++ = 0;
break;
}
size = closure->args[i].a->size;
*p++ = size;
if (p + div_roundup(size, sizeof *p) > end)
goto overflow;
memcpy(p, closure->args[i].a->data, size);
p += div_roundup(size, sizeof *p);
break;
default:
break;
}
}
size = (p - buffer) * sizeof *p;
buffer[0] = closure->sender_id;
buffer[1] = size << 16 | (closure->opcode & 0x0000ffff);
return size;
overflow:
errno = ERANGE;
return -1;
}
int
wl_closure_send(struct wl_closure *closure, struct wl_connection *connection)
{
int size;
uint32_t buffer_size;
uint32_t *buffer;
int result;
if (copy_fds_to_connection(closure, connection))
return -1;
buffer_size = buffer_size_for_closure(closure);
buffer = zalloc(buffer_size * sizeof buffer[0]);
if (buffer == NULL)
return -1;
size = serialize_closure(closure, buffer, buffer_size);
if (size < 0) {
free(buffer);
return -1;
}
result = wl_connection_write(connection, buffer, size);
free(buffer);
return result;
}
int
wl_closure_queue(struct wl_closure *closure, struct wl_connection *connection)
{
int size;
uint32_t buffer_size;
uint32_t *buffer;
int result;
if (copy_fds_to_connection(closure, connection))
return -1;
buffer_size = buffer_size_for_closure(closure);
buffer = malloc(buffer_size * sizeof buffer[0]);
if (buffer == NULL)
return -1;
size = serialize_closure(closure, buffer, buffer_size);
if (size < 0) {
free(buffer);
return -1;
}
result = wl_connection_queue(connection, buffer, size);
free(buffer);
return result;
}
2010-09-07 10:58:19 -04:00
void
wl_closure_print(struct wl_closure *closure, struct wl_object *target,
int send, int discarded, uint32_t (*n_parse)(union wl_argument *arg))
2010-09-07 10:58:19 -04:00
{
int i;
struct argument_details arg;
const char *signature = closure->message->signature;
struct timespec tp;
unsigned int time;
uint32_t nval;
FILE *f;
char *buffer;
size_t buffer_length;
f = open_memstream(&buffer, &buffer_length);
if (f == NULL)
return;
2010-09-07 10:58:19 -04:00
clock_gettime(CLOCK_REALTIME, &tp);
time = (tp.tv_sec * 1000000L) + (tp.tv_nsec / 1000);
fprintf(f, "[%7u.%03u] %s%s%s@%u.%s(",
time / 1000, time % 1000,
discarded ? "discarded " : "",
send ? " -> " : "",
2010-09-07 10:58:19 -04:00
target->interface->name, target->id,
closure->message->name);
for (i = 0; i < closure->count; i++) {
signature = get_next_argument(signature, &arg);
if (i > 0)
fprintf(f, ", ");
switch (arg.type) {
2010-09-07 10:58:19 -04:00
case 'u':
fprintf(f, "%u", closure->args[i].u);
2010-09-07 10:58:19 -04:00
break;
case 'i':
fprintf(f, "%d", closure->args[i].i);
break;
case 'f':
/* The magic number 390625 is 1e8 / 256 */
if (closure->args[i].f >= 0) {
fprintf(f, "%d.%08d",
closure->args[i].f / 256,
390625 * (closure->args[i].f % 256));
} else {
fprintf(f, "-%d.%08d",
closure->args[i].f / -256,
-390625 * (closure->args[i].f % 256));
}
2010-09-07 10:58:19 -04:00
break;
case 's':
if (closure->args[i].s)
fprintf(f, "\"%s\"", closure->args[i].s);
else
fprintf(f, "nil");
2010-09-07 10:58:19 -04:00
break;
case 'o':
if (closure->args[i].o)
fprintf(f, "%s@%u",
closure->args[i].o->interface->name,
closure->args[i].o->id);
else
fprintf(f, "nil");
2010-09-07 10:58:19 -04:00
break;
case 'n':
if (n_parse)
nval = n_parse(&closure->args[i]);
else
nval = closure->args[i].n;
fprintf(f, "new id %s@",
(closure->message->types[i]) ?
closure->message->types[i]->name :
"[unknown]");
if (nval != 0)
fprintf(f, "%u", nval);
else
fprintf(f, "nil");
2010-09-07 10:58:19 -04:00
break;
case 'a':
fprintf(f, "array[%zu]", closure->args[i].a->size);
2010-09-07 10:58:19 -04:00
break;
case 'h':
fprintf(f, "fd %d", closure->args[i].h);
2010-09-07 10:58:19 -04:00
break;
}
}
fprintf(f, ")\n");
if (fclose(f) == 0) {
fprintf(stderr, "%s", buffer);
free(buffer);
}
2010-09-07 10:58:19 -04:00
}
static int
wl_closure_close_fds(struct wl_closure *closure)
{
int i;
struct argument_details arg;
const char *signature = closure->message->signature;
for (i = 0; i < closure->count; i++) {
signature = get_next_argument(signature, &arg);
if (arg.type == 'h' && closure->args[i].h != -1)
close(closure->args[i].h);
}
return 0;
}
void
wl_closure_destroy(struct wl_closure *closure)
{
/* wl_closure_destroy has free() semantics */
if (!closure)
return;
wl_closure_close_fds(closure);
free(closure);
}