mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-05 13:29:57 -05:00
FSF addresses used in PA sources are no longer valid and rpmlint generates numerous warnings during packaging because of this. This patch changes all FSF addresses to FSF web page according to the GPL how-to: https://www.gnu.org/licenses/gpl-howto.en.html Done automatically by sed-ing through sources.
324 lines
10 KiB
C
324 lines
10 KiB
C
/***
|
|
This file is part of PulseAudio.
|
|
|
|
Copyright 2013 Collabora Ltd.
|
|
Author: Arun Raghavan <arun.raghavan@collabora.co.uk>
|
|
|
|
PulseAudio is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 2.1 of the License,
|
|
or (at your option) any later version.
|
|
|
|
PulseAudio is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
|
|
***/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <math.h>
|
|
|
|
#include <pulsecore/log.h>
|
|
#include <pulsecore/macro.h>
|
|
#include <pulsecore/core-util.h>
|
|
|
|
#include "lo-test-util.h"
|
|
|
|
/* Keep the frequency high so RMS over ranges of a few ms remains relatively
|
|
* high as well */
|
|
#define TONE_HZ 4410
|
|
|
|
static void nop_free_cb(void *p) {
|
|
}
|
|
|
|
static void underflow_cb(struct pa_stream *s, void *userdata) {
|
|
pa_log_warn("Underflow\n");
|
|
}
|
|
|
|
static void overflow_cb(struct pa_stream *s, void *userdata) {
|
|
pa_log_warn("Overlow\n");
|
|
}
|
|
|
|
/*
|
|
* We run a simple volume calibration so that we know we can detect the signal
|
|
* being played back. We start with the playback stream at 100% volume, and
|
|
* capture at 0.
|
|
*
|
|
* First, we then play a sine wave and increase the capture volume till the
|
|
* signal is clearly received.
|
|
*
|
|
* Next, we play back silence and make sure that the level is low enough to
|
|
* distinguish from when playback is happening.
|
|
*
|
|
* Finally, we hand off to the real read/write callbacks to run the actual
|
|
* test.
|
|
*/
|
|
|
|
enum {
|
|
CALIBRATION_ONE,
|
|
CALIBRATION_ZERO,
|
|
CALIBRATION_DONE,
|
|
};
|
|
|
|
static int cal_state = CALIBRATION_ONE;
|
|
|
|
static void calibrate_write_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
|
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
|
int i, nsamp = nbytes / ctx->fs;
|
|
float tmp[nsamp][2];
|
|
static int count = 0;
|
|
|
|
/* Write out a sine tone */
|
|
for (i = 0; i < nsamp; i++)
|
|
tmp[i][0] = tmp[i][1] = cal_state == CALIBRATION_ONE ? sinf(count++ * TONE_HZ * 2 * M_PI / ctx->sample_spec.rate) : 0.0f;
|
|
|
|
pa_assert_se(pa_stream_write(s, &tmp, nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE) == 0);
|
|
|
|
if (cal_state == CALIBRATION_DONE)
|
|
pa_stream_set_write_callback(s, ctx->write_cb, ctx);
|
|
}
|
|
|
|
static void calibrate_read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
|
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
|
static double v = 0;
|
|
static int skip = 0, confirm;
|
|
|
|
pa_cvolume vol;
|
|
pa_operation *o;
|
|
int nsamp;
|
|
float *in;
|
|
size_t l;
|
|
|
|
pa_assert_se(pa_stream_peek(s, (const void **)&in, &l) == 0);
|
|
|
|
nsamp = l / ctx->fs;
|
|
|
|
/* For each state or volume step change, throw out a few samples so we know
|
|
* we're seeing the changed samples. */
|
|
if (skip++ < 100)
|
|
goto out;
|
|
else
|
|
skip = 0;
|
|
|
|
switch (cal_state) {
|
|
case CALIBRATION_ONE:
|
|
/* Try to detect the sine wave. RMS is 0.5, */
|
|
if (pa_rms(in, nsamp) < 0.40f) {
|
|
confirm = 0;
|
|
v += 0.02f;
|
|
|
|
if (v > 1.0) {
|
|
pa_log_error("Capture signal too weak at 100%% volume (%g). Giving up.\n", pa_rms(in, nsamp));
|
|
pa_assert_not_reached();
|
|
}
|
|
|
|
pa_cvolume_set(&vol, ctx->sample_spec.channels, v * PA_VOLUME_NORM);
|
|
o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
|
pa_assert(o != NULL);
|
|
pa_operation_unref(o);
|
|
} else {
|
|
/* Make sure the signal strength is steadily above our threshold */
|
|
if (++confirm > 5) {
|
|
#if 0
|
|
pa_log_debug(stderr, "Capture volume = %g (%g)\n", v, pa_rms(in, nsamp));
|
|
#endif
|
|
cal_state = CALIBRATION_ZERO;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
case CALIBRATION_ZERO:
|
|
/* Now make sure silence doesn't trigger a false positive because
|
|
* of noise. */
|
|
if (pa_rms(in, nsamp) > 0.1f) {
|
|
fprintf(stderr, "Too much noise on capture (%g). Giving up.\n", pa_rms(in, nsamp));
|
|
pa_assert_not_reached();
|
|
}
|
|
|
|
cal_state = CALIBRATION_DONE;
|
|
pa_stream_set_read_callback(s, ctx->read_cb, ctx);
|
|
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out:
|
|
pa_stream_drop(s);
|
|
}
|
|
|
|
/* This routine is called whenever the stream state changes */
|
|
static void stream_state_callback(pa_stream *s, void *userdata) {
|
|
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
|
|
|
switch (pa_stream_get_state(s)) {
|
|
case PA_STREAM_UNCONNECTED:
|
|
case PA_STREAM_CREATING:
|
|
case PA_STREAM_TERMINATED:
|
|
break;
|
|
|
|
case PA_STREAM_READY: {
|
|
pa_cvolume vol;
|
|
pa_operation *o;
|
|
|
|
/* Set volumes for calibration */
|
|
if (s == ctx->play_stream) {
|
|
pa_cvolume_set(&vol, ctx->sample_spec.channels, PA_VOLUME_NORM);
|
|
o = pa_context_set_sink_input_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
|
} else {
|
|
pa_cvolume_set(&vol, ctx->sample_spec.channels, pa_sw_volume_from_linear(0.0));
|
|
o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
|
}
|
|
|
|
if (!o) {
|
|
pa_log_error("Could not set stream volume: %s\n", pa_strerror(pa_context_errno(ctx->context)));
|
|
pa_assert_not_reached();
|
|
} else
|
|
pa_operation_unref(o);
|
|
|
|
break;
|
|
}
|
|
|
|
case PA_STREAM_FAILED:
|
|
default:
|
|
pa_log_error("Stream error: %s\n", pa_strerror(pa_context_errno(ctx->context)));
|
|
pa_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* This is called whenever the context status changes */
|
|
static void context_state_callback(pa_context *c, void *userdata) {
|
|
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
|
pa_mainloop_api *api;
|
|
|
|
switch (pa_context_get_state(c)) {
|
|
case PA_CONTEXT_CONNECTING:
|
|
case PA_CONTEXT_AUTHORIZING:
|
|
case PA_CONTEXT_SETTING_NAME:
|
|
break;
|
|
|
|
case PA_CONTEXT_READY: {
|
|
pa_buffer_attr buffer_attr;
|
|
|
|
pa_make_realtime(4);
|
|
|
|
/* Create playback stream */
|
|
buffer_attr.maxlength = -1;
|
|
buffer_attr.tlength = ctx->sample_spec.rate * ctx->fs * ctx->play_latency / 1000;
|
|
buffer_attr.prebuf = 0; /* Setting prebuf to 0 guarantees us the stream will run synchronously, no matter what */
|
|
buffer_attr.minreq = -1;
|
|
buffer_attr.fragsize = -1;
|
|
|
|
ctx->play_stream = pa_stream_new(c, "loopback: play", &ctx->sample_spec, NULL);
|
|
pa_assert(ctx->play_stream != NULL);
|
|
pa_stream_set_state_callback(ctx->play_stream, stream_state_callback, ctx);
|
|
pa_stream_set_write_callback(ctx->play_stream, calibrate_write_cb, ctx);
|
|
pa_stream_set_underflow_callback(ctx->play_stream, underflow_cb, userdata);
|
|
|
|
pa_stream_connect_playback(ctx->play_stream, getenv("TEST_SINK"), &buffer_attr,
|
|
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL);
|
|
|
|
/* Create capture stream */
|
|
buffer_attr.maxlength = -1;
|
|
buffer_attr.tlength = (uint32_t) -1;
|
|
buffer_attr.prebuf = 0;
|
|
buffer_attr.minreq = (uint32_t) -1;
|
|
buffer_attr.fragsize = ctx->sample_spec.rate * ctx->fs * ctx->rec_latency / 1000;
|
|
|
|
ctx->rec_stream = pa_stream_new(c, "loopback: rec", &ctx->sample_spec, NULL);
|
|
pa_assert(ctx->rec_stream != NULL);
|
|
pa_stream_set_state_callback(ctx->rec_stream, stream_state_callback, ctx);
|
|
pa_stream_set_read_callback(ctx->rec_stream, calibrate_read_cb, ctx);
|
|
pa_stream_set_overflow_callback(ctx->rec_stream, overflow_cb, userdata);
|
|
|
|
pa_stream_connect_record(ctx->rec_stream, getenv("TEST_SOURCE"), &buffer_attr,
|
|
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE);
|
|
|
|
break;
|
|
}
|
|
|
|
case PA_CONTEXT_TERMINATED:
|
|
api = pa_mainloop_get_api(ctx->mainloop);
|
|
api->quit(api, 0);
|
|
break;
|
|
|
|
case PA_CONTEXT_FAILED:
|
|
default:
|
|
pa_log_error("Context error: %s\n", pa_strerror(pa_context_errno(c)));
|
|
pa_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
int pa_lo_test_init(pa_lo_test_context *ctx) {
|
|
/* FIXME: need to deal with non-float samples at some point */
|
|
pa_assert(ctx->sample_spec.format == PA_SAMPLE_FLOAT32);
|
|
|
|
ctx->ss = pa_sample_size(&ctx->sample_spec);
|
|
ctx->fs = pa_frame_size(&ctx->sample_spec);
|
|
|
|
ctx->mainloop = pa_mainloop_new();
|
|
ctx->context = pa_context_new(pa_mainloop_get_api(ctx->mainloop), ctx->context_name);
|
|
|
|
pa_context_set_state_callback(ctx->context, context_state_callback, ctx);
|
|
|
|
/* Connect the context */
|
|
if (pa_context_connect(ctx->context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) {
|
|
pa_log_error("pa_context_connect() failed.\n");
|
|
goto quit;
|
|
}
|
|
|
|
return 0;
|
|
|
|
quit:
|
|
pa_context_unref(ctx->context);
|
|
pa_mainloop_free(ctx->mainloop);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int pa_lo_test_run(pa_lo_test_context *ctx) {
|
|
int ret;
|
|
|
|
if (pa_mainloop_run(ctx->mainloop, &ret) < 0) {
|
|
pa_log_error("pa_mainloop_run() failed.\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pa_lo_test_deinit(pa_lo_test_context *ctx) {
|
|
if (ctx->play_stream) {
|
|
pa_stream_disconnect(ctx->play_stream);
|
|
pa_stream_unref(ctx->play_stream);
|
|
}
|
|
|
|
if (ctx->rec_stream) {
|
|
pa_stream_disconnect(ctx->rec_stream);
|
|
pa_stream_unref(ctx->rec_stream);
|
|
}
|
|
|
|
if (ctx->context)
|
|
pa_context_unref(ctx->context);
|
|
|
|
if (ctx->mainloop)
|
|
pa_mainloop_free(ctx->mainloop);
|
|
}
|
|
|
|
float pa_rms(const float *s, int n) {
|
|
float sq = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
sq += s[i] * s[i];
|
|
|
|
return sqrtf(sq / n);
|
|
}
|