mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-31 22:25:38 -04:00
Improve the allocators to always align the buffer memory to the requested alignment Use aligned read and writes for sse functions and check alignment, optionally falling back to unaligned path. Add more tests and benchmark cases Check and warn for misaligned memory in plugins.
357 lines
12 KiB
C
357 lines
12 KiB
C
/* Spa
|
|
*
|
|
* Copyright © 2018 Wim Taymans
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
|
* DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <xmmintrin.h>
|
|
|
|
static void
|
|
channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, float v, int n_samples)
|
|
{
|
|
int i, n, unrolled;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
__m128 vol = _mm_set1_ps(v);
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memcpy(d[i], s[i], n_samples * sizeof(float));
|
|
}
|
|
else {
|
|
for (i = 0; i < n_dst; i++) {
|
|
float *di = d[i], *si = s[i];
|
|
|
|
if (SPA_IS_ALIGNED(di, 16) &&
|
|
SPA_IS_ALIGNED(si, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; unrolled--; n += 4)
|
|
_mm_store_ps(&di[n], _mm_mul_ps(_mm_load_ps(&si[n]), vol));
|
|
for(; n < n_samples; n++)
|
|
_mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, float v, int n_samples)
|
|
{
|
|
int i, n, unrolled;
|
|
float **d = (float **)dst;
|
|
float **s = (float **)src;
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in;
|
|
float *sFL = s[0], *sFR = s[1];
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dRL, 16) &&
|
|
SPA_IS_ALIGNED(dRR, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_load_ps(&sFL[n]);
|
|
_mm_store_ps(&dFL[n], in);
|
|
_mm_store_ps(&dRL[n], in);
|
|
in = _mm_load_ps(&sFR[n]);
|
|
_mm_store_ps(&dFR[n], in);
|
|
_mm_store_ps(&dRR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in = _mm_load_ss(&sFL[n]);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_load_ss(&sFR[n]);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
in = _mm_mul_ps(_mm_load_ps(&sFL[n]), vol);
|
|
_mm_store_ps(&dFL[n], in);
|
|
_mm_store_ps(&dRL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sFR[n]), vol);
|
|
_mm_store_ps(&dFR[n], in);
|
|
_mm_store_ps(&dRR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
_mm_store_ss(&dRL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
_mm_store_ss(&dRR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR */
|
|
static void
|
|
channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, float v, int n_samples)
|
|
{
|
|
int n, unrolled;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
__m128 clev = _mm_set1_ps(m[2]);
|
|
__m128 llev = _mm_set1_ps(m[3]);
|
|
__m128 slev = _mm_set1_ps(m[4]);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 in, ctr;
|
|
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
memset(dFL, 0, n_samples * sizeof(float));
|
|
memset(dFR, 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
|
|
_mm_store_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
|
|
_mm_store_ps(&dFR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFL[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_store_ps(&dFL[n], in);
|
|
in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev);
|
|
in = _mm_add_ps(in, ctr);
|
|
in = _mm_add_ps(in, _mm_load_ps(&sFR[n]));
|
|
in = _mm_mul_ps(in, vol);
|
|
_mm_store_ps(&dFR[n], in);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFL[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFL[n], in);
|
|
in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev);
|
|
in = _mm_add_ss(in, ctr);
|
|
in = _mm_add_ss(in, _mm_load_ss(&sFR[n]));
|
|
in = _mm_mul_ss(in, vol);
|
|
_mm_store_ss(&dFR[n], in);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/
|
|
static void
|
|
channelmix_f32_5p1_3p1_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, float v, int n_samples)
|
|
{
|
|
int i, n, unrolled;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
__m128 mix = _mm_set1_ps(v * 0.5f);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 avg;
|
|
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1], *dFC = d[2], *dLFE = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dFC, 16) &&
|
|
SPA_IS_ALIGNED(dLFE, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
avg = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(avg, mix));
|
|
avg = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(avg, mix));
|
|
_mm_store_ps(&dFC[n], _mm_load_ps(&sFC[n]));
|
|
_mm_store_ps(&dLFE[n], _mm_load_ps(&sLFE[n]));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
avg = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(avg, mix));
|
|
avg = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(avg, mix));
|
|
_mm_store_ss(&dFC[n], _mm_load_ss(&sFC[n]));
|
|
_mm_store_ss(&dLFE[n], _mm_load_ss(&sLFE[n]));
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
avg = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n]));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(avg, mix));
|
|
avg = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n]));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(avg, mix));
|
|
_mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), vol));
|
|
_mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), vol));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
avg = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(avg, mix));
|
|
avg = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n]));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(avg, mix));
|
|
_mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), vol));
|
|
_mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), vol));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/
|
|
static void
|
|
channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst],
|
|
int n_src, const void *src[n_src], void *matrix, float v, int n_samples)
|
|
{
|
|
int i, n, unrolled;
|
|
float **d = (float **) dst;
|
|
float **s = (float **) src;
|
|
float *m = matrix;
|
|
__m128 clev = _mm_set1_ps(m[2]);
|
|
__m128 llev = _mm_set1_ps(m[3]);
|
|
__m128 vol = _mm_set1_ps(v);
|
|
__m128 ctr;
|
|
float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5];
|
|
float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3];
|
|
|
|
if (SPA_IS_ALIGNED(sFL, 16) &&
|
|
SPA_IS_ALIGNED(sFR, 16) &&
|
|
SPA_IS_ALIGNED(sFC, 16) &&
|
|
SPA_IS_ALIGNED(sLFE, 16) &&
|
|
SPA_IS_ALIGNED(sSL, 16) &&
|
|
SPA_IS_ALIGNED(sSR, 16) &&
|
|
SPA_IS_ALIGNED(dFL, 16) &&
|
|
SPA_IS_ALIGNED(dFR, 16) &&
|
|
SPA_IS_ALIGNED(dRL, 16) &&
|
|
SPA_IS_ALIGNED(dRR, 16))
|
|
unrolled = n_samples / 4;
|
|
else
|
|
unrolled = 0;
|
|
|
|
if (v <= VOLUME_MIN) {
|
|
for (i = 0; i < n_dst; i++)
|
|
memset(d[i], 0, n_samples * sizeof(float));
|
|
}
|
|
else if (v == VOLUME_NORM) {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
_mm_store_ps(&dFL[n], _mm_add_ps(_mm_load_ps(&sFL[n]), ctr));
|
|
_mm_store_ps(&dFR[n], _mm_add_ps(_mm_load_ps(&sFR[n]), ctr));
|
|
_mm_store_ps(&dRL[n], _mm_load_ps(&sSL[n]));
|
|
_mm_store_ps(&dRR[n], _mm_load_ps(&sSR[n]));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr));
|
|
_mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr));
|
|
_mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n]));
|
|
_mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n]));
|
|
}
|
|
}
|
|
else {
|
|
for(n = 0; unrolled--; n += 4) {
|
|
ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev);
|
|
ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev));
|
|
_mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), vol));
|
|
_mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), vol));
|
|
_mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), vol));
|
|
_mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), vol));
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev);
|
|
ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev));
|
|
_mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol));
|
|
_mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol));
|
|
_mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol));
|
|
_mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol));
|
|
}
|
|
}
|
|
}
|