/* Spa * * Copyright © 2018 Wim Taymans * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include static void channelmix_copy_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, float v, int n_samples) { int i, n, unrolled; float **d = (float **)dst; float **s = (float **)src; __m128 vol = _mm_set1_ps(v); if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_samples * sizeof(float)); } else if (v == VOLUME_NORM) { for (i = 0; i < n_dst; i++) memcpy(d[i], s[i], n_samples * sizeof(float)); } else { for (i = 0; i < n_dst; i++) { float *di = d[i], *si = s[i]; if (SPA_IS_ALIGNED(di, 16) && SPA_IS_ALIGNED(si, 16)) unrolled = n_samples / 4; else unrolled = 0; for(n = 0; unrolled--; n += 4) _mm_store_ps(&di[n], _mm_mul_ps(_mm_load_ps(&si[n]), vol)); for(; n < n_samples; n++) _mm_store_ss(&di[n], _mm_mul_ss(_mm_load_ss(&si[n]), vol)); } } } static void channelmix_f32_2_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, float v, int n_samples) { int i, n, unrolled; float **d = (float **)dst; float **s = (float **)src; __m128 vol = _mm_set1_ps(v); __m128 in; float *sFL = s[0], *sFR = s[1]; float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3]; if (SPA_IS_ALIGNED(sFL, 16) && SPA_IS_ALIGNED(sFR, 16) && SPA_IS_ALIGNED(dFL, 16) && SPA_IS_ALIGNED(dFR, 16) && SPA_IS_ALIGNED(dRL, 16) && SPA_IS_ALIGNED(dRR, 16)) unrolled = n_samples / 4; else unrolled = 0; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_samples * sizeof(float)); } else if (v == VOLUME_NORM) { for(n = 0; unrolled--; n += 4) { in = _mm_load_ps(&sFL[n]); _mm_store_ps(&dFL[n], in); _mm_store_ps(&dRL[n], in); in = _mm_load_ps(&sFR[n]); _mm_store_ps(&dFR[n], in); _mm_store_ps(&dRR[n], in); } for(; n < n_samples; n++) { in = _mm_load_ss(&sFL[n]); _mm_store_ss(&dFL[n], in); _mm_store_ss(&dRL[n], in); in = _mm_load_ss(&sFR[n]); _mm_store_ss(&dFR[n], in); _mm_store_ss(&dRR[n], in); } } else { for(n = 0; unrolled--; n += 4) { in = _mm_mul_ps(_mm_load_ps(&sFL[n]), vol); _mm_store_ps(&dFL[n], in); _mm_store_ps(&dRL[n], in); in = _mm_mul_ps(_mm_load_ps(&sFR[n]), vol); _mm_store_ps(&dFR[n], in); _mm_store_ps(&dRR[n], in); } for(; n < n_samples; n++) { in = _mm_mul_ss(_mm_load_ss(&sFL[n]), vol); _mm_store_ss(&dFL[n], in); _mm_store_ss(&dRL[n], in); in = _mm_mul_ss(_mm_load_ss(&sFR[n]), vol); _mm_store_ss(&dFR[n], in); _mm_store_ss(&dRR[n], in); } } } /* FL+FR+FC+LFE+SL+SR -> FL+FR */ static void channelmix_f32_5p1_2_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, float v, int n_samples) { int n, unrolled; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; __m128 clev = _mm_set1_ps(m[2]); __m128 llev = _mm_set1_ps(m[3]); __m128 slev = _mm_set1_ps(m[4]); __m128 vol = _mm_set1_ps(v); __m128 in, ctr; float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5]; float *dFL = d[0], *dFR = d[1]; if (SPA_IS_ALIGNED(sFL, 16) && SPA_IS_ALIGNED(sFR, 16) && SPA_IS_ALIGNED(sFC, 16) && SPA_IS_ALIGNED(sLFE, 16) && SPA_IS_ALIGNED(sSL, 16) && SPA_IS_ALIGNED(sSR, 16) && SPA_IS_ALIGNED(dFL, 16) && SPA_IS_ALIGNED(dFR, 16)) unrolled = n_samples / 4; else unrolled = 0; if (v <= VOLUME_MIN) { memset(dFL, 0, n_samples * sizeof(float)); memset(dFR, 0, n_samples * sizeof(float)); } else if (v == VOLUME_NORM) { for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev)); in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_load_ps(&sFL[n])); _mm_store_ps(&dFL[n], in); in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_load_ps(&sFR[n])); _mm_store_ps(&dFR[n], in); } for(; n < n_samples; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev)); in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFL[n])); _mm_store_ss(&dFL[n], in); in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFR[n])); _mm_store_ss(&dFR[n], in); } } else { for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev)); in = _mm_mul_ps(_mm_load_ps(&sSL[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_load_ps(&sFL[n])); in = _mm_mul_ps(in, vol); _mm_store_ps(&dFL[n], in); in = _mm_mul_ps(_mm_load_ps(&sSR[n]), slev); in = _mm_add_ps(in, ctr); in = _mm_add_ps(in, _mm_load_ps(&sFR[n])); in = _mm_mul_ps(in, vol); _mm_store_ps(&dFR[n], in); } for(; n < n_samples; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev)); in = _mm_mul_ss(_mm_load_ss(&sSL[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFL[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&dFL[n], in); in = _mm_mul_ss(_mm_load_ss(&sSR[n]), slev); in = _mm_add_ss(in, ctr); in = _mm_add_ss(in, _mm_load_ss(&sFR[n])); in = _mm_mul_ss(in, vol); _mm_store_ss(&dFR[n], in); } } } /* FL+FR+FC+LFE+SL+SR -> FL+FR+FC+LFE*/ static void channelmix_f32_5p1_3p1_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, float v, int n_samples) { int i, n, unrolled; float **d = (float **) dst; float **s = (float **) src; __m128 mix = _mm_set1_ps(v * 0.5f); __m128 vol = _mm_set1_ps(v); __m128 avg; float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5]; float *dFL = d[0], *dFR = d[1], *dFC = d[2], *dLFE = d[3]; if (SPA_IS_ALIGNED(sFL, 16) && SPA_IS_ALIGNED(sFR, 16) && SPA_IS_ALIGNED(sFC, 16) && SPA_IS_ALIGNED(sLFE, 16) && SPA_IS_ALIGNED(sSL, 16) && SPA_IS_ALIGNED(sSR, 16) && SPA_IS_ALIGNED(dFL, 16) && SPA_IS_ALIGNED(dFR, 16) && SPA_IS_ALIGNED(dFC, 16) && SPA_IS_ALIGNED(dLFE, 16)) unrolled = n_samples / 4; else unrolled = 0; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_samples * sizeof(float)); } else if (v == VOLUME_NORM) { for(n = 0; unrolled--; n += 4) { avg = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n])); _mm_store_ps(&dFL[n], _mm_mul_ps(avg, mix)); avg = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n])); _mm_store_ps(&dFR[n], _mm_mul_ps(avg, mix)); _mm_store_ps(&dFC[n], _mm_load_ps(&sFC[n])); _mm_store_ps(&dLFE[n], _mm_load_ps(&sLFE[n])); } for(; n < n_samples; n++) { avg = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n])); _mm_store_ss(&dFL[n], _mm_mul_ss(avg, mix)); avg = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n])); _mm_store_ss(&dFR[n], _mm_mul_ss(avg, mix)); _mm_store_ss(&dFC[n], _mm_load_ss(&sFC[n])); _mm_store_ss(&dLFE[n], _mm_load_ss(&sLFE[n])); } } else { for(n = 0; unrolled--; n += 4) { avg = _mm_add_ps(_mm_load_ps(&sFL[n]), _mm_load_ps(&sSL[n])); _mm_store_ps(&dFL[n], _mm_mul_ps(avg, mix)); avg = _mm_add_ps(_mm_load_ps(&sFR[n]), _mm_load_ps(&sSR[n])); _mm_store_ps(&dFR[n], _mm_mul_ps(avg, mix)); _mm_store_ps(&dFC[n], _mm_mul_ps(_mm_load_ps(&sFC[n]), vol)); _mm_store_ps(&dLFE[n], _mm_mul_ps(_mm_load_ps(&sLFE[n]), vol)); } for(; n < n_samples; n++) { avg = _mm_add_ss(_mm_load_ss(&sFL[n]), _mm_load_ss(&sSL[n])); _mm_store_ss(&dFL[n], _mm_mul_ss(avg, mix)); avg = _mm_add_ss(_mm_load_ss(&sFR[n]), _mm_load_ss(&sSR[n])); _mm_store_ss(&dFR[n], _mm_mul_ss(avg, mix)); _mm_store_ss(&dFC[n], _mm_mul_ss(_mm_load_ss(&sFC[n]), vol)); _mm_store_ss(&dLFE[n], _mm_mul_ss(_mm_load_ss(&sLFE[n]), vol)); } } } /* FL+FR+FC+LFE+SL+SR -> FL+FR+RL+RR*/ static void channelmix_f32_5p1_4_sse(void *data, int n_dst, void *dst[n_dst], int n_src, const void *src[n_src], void *matrix, float v, int n_samples) { int i, n, unrolled; float **d = (float **) dst; float **s = (float **) src; float *m = matrix; __m128 clev = _mm_set1_ps(m[2]); __m128 llev = _mm_set1_ps(m[3]); __m128 vol = _mm_set1_ps(v); __m128 ctr; float *sFL = s[0], *sFR = s[1], *sFC = s[2], *sLFE = s[3], *sSL = s[4], *sSR = s[5]; float *dFL = d[0], *dFR = d[1], *dRL = d[2], *dRR = d[3]; if (SPA_IS_ALIGNED(sFL, 16) && SPA_IS_ALIGNED(sFR, 16) && SPA_IS_ALIGNED(sFC, 16) && SPA_IS_ALIGNED(sLFE, 16) && SPA_IS_ALIGNED(sSL, 16) && SPA_IS_ALIGNED(sSR, 16) && SPA_IS_ALIGNED(dFL, 16) && SPA_IS_ALIGNED(dFR, 16) && SPA_IS_ALIGNED(dRL, 16) && SPA_IS_ALIGNED(dRR, 16)) unrolled = n_samples / 4; else unrolled = 0; if (v <= VOLUME_MIN) { for (i = 0; i < n_dst; i++) memset(d[i], 0, n_samples * sizeof(float)); } else if (v == VOLUME_NORM) { for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev)); _mm_store_ps(&dFL[n], _mm_add_ps(_mm_load_ps(&sFL[n]), ctr)); _mm_store_ps(&dFR[n], _mm_add_ps(_mm_load_ps(&sFR[n]), ctr)); _mm_store_ps(&dRL[n], _mm_load_ps(&sSL[n])); _mm_store_ps(&dRR[n], _mm_load_ps(&sSR[n])); } for(; n < n_samples; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev)); _mm_store_ss(&dFL[n], _mm_add_ss(_mm_load_ss(&sFL[n]), ctr)); _mm_store_ss(&dFR[n], _mm_add_ss(_mm_load_ss(&sFR[n]), ctr)); _mm_store_ss(&dRL[n], _mm_load_ss(&sSL[n])); _mm_store_ss(&dRR[n], _mm_load_ss(&sSR[n])); } } else { for(n = 0; unrolled--; n += 4) { ctr = _mm_mul_ps(_mm_load_ps(&sFC[n]), clev); ctr = _mm_add_ps(ctr, _mm_mul_ps(_mm_load_ps(&sLFE[n]), llev)); _mm_store_ps(&dFL[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFL[n]), ctr), vol)); _mm_store_ps(&dFR[n], _mm_mul_ps(_mm_add_ps(_mm_load_ps(&sFR[n]), ctr), vol)); _mm_store_ps(&dRL[n], _mm_mul_ps(_mm_load_ps(&sSL[n]), vol)); _mm_store_ps(&dRR[n], _mm_mul_ps(_mm_load_ps(&sSR[n]), vol)); } for(; n < n_samples; n++) { ctr = _mm_mul_ss(_mm_load_ss(&sFC[n]), clev); ctr = _mm_add_ss(ctr, _mm_mul_ss(_mm_load_ss(&sLFE[n]), llev)); _mm_store_ss(&dFL[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFL[n]), ctr), vol)); _mm_store_ss(&dFR[n], _mm_mul_ss(_mm_add_ss(_mm_load_ss(&sFR[n]), ctr), vol)); _mm_store_ss(&dRL[n], _mm_mul_ss(_mm_load_ss(&sSL[n]), vol)); _mm_store_ss(&dRR[n], _mm_mul_ss(_mm_load_ss(&sSR[n]), vol)); } } }