This flag is set by the producer and should be cleared by the consumer
when it promises to signal the release point.
When a consumer dequeues a buffer with the flag set, it should assume
the client is not going to signal the release point and so it should
reuse the buffer right away. This can only happen when the client
didn't dequeue the buffer at all (killed, timeout, error, ...) or when
it dequeued and queued the buffer without clearing the flag.
See #4885
Align RX of streams in same ISO group:
- Ensure all streams in ISO group have same target latency also for BAP
Client
- Determine rate matching to ISO group clock from RX times of all
streams in the group
- Based on this, compute nominal packet RX times, and feed them to
decode-buffer instead of the real RX time. This is enough for
sub-sample level sync.
- Customise buffer overrun handling for ISO so that it drops data to
arrive exactly at the target, for faster convergence at RX start
The ISO clock matching is done based on kernel-provided packet RX times,
so it has unknown offset from the actual ISO clock, probably a few ms.
Current kernels (6.17) do not provide anything better to use for the
clock matching, and doing it properly appears to be controller
vendor-defined (if possible at all).
Take resampler delay into account when computing the buffer fill level,
including the fractional part.
If decode-buffer is now fed nominal packet reference times in
write_packet(), it converges the total buffer + resampler latency to the
target at sub-sample accuracy.
This is needed for aligning RX of ISO streams in the same group, so that
e.g. stereo pair alignment is achieved even though the streams have
separate resamplers. Resampler phases get aligned via independent rate
matching.
The rate matching calculations are done in the system clock domain. If
the driver ticks at a different rate, the correction factor needs to be
adjusted by the rate_diff.
setup_matching() also needs to be before spa_bt_decode_buffer_process():
as follower we should use rate matching value calculated on the
*previous* cycle, because this is what driver is doing when it adjusts
it tick rate.
Based on testing, ALSA FireWire drivers introduce additional latency
determined by the buffer size.
Report that latency.
Pass device.bus to the node, so it can recognize firewire.
FireWire ALSA driver latency is determined by the buffer size and not the
period. Timer-based scheduling is then not really useful on these devices as
the latency is fixed.
In pro-audio profile, enable IRQ scheduling unconditionally for these
devices, so that controlling the latency works properly.
See #4785
Some devices (FireWire) fail to produce audio if period count is < 3,
and also have small buffer size. When quantum is too large, we might
then get too few periods and broken sound.
Set minimum for the period count in ALSA, to determine the maximum
period size we can use. If smaller than what we were going to use, round
down to power-of-2.
See #4785
With the removal of `SPA_DATA_MemPtr` support, this member is no longer used.
Fixes: b948ffdb25 ("spa: libcamera: source: remove `SPA_DATA_MemPtr` support")
On production systems, having a constant high latency is favored over
dynamically adjusting it in order to optimize for low latency,
because every time a dynamic adjustment happens, there's a glitch.
This adds an option to let the user specify the exact amount of latency
they want.
The hardcoded latency of 512/<rate> is quite low on some ALSA devices.
Instead of forcing that latency onto the graph, just don't set it at all
unless it originates from the BAP presentation delay. That means that
the functionality remains the same for BAP but changes for A2DP to favor
the preferred quantum of the ALSA sink (or whatever is the driver).
Also, avoid setting an empty string ("") latency and rate in the cases
where it's not defined. This allows users to override those properties
through the wireplumber monitor rules if they need to.
Currently the v4l2 and libcamera plugins map `SPA_PROP_exposure` in incompatible
ways. So change the v4l2 mapping to `V4L2_CID_EXPOSURE_ABSOLUTE` because at least
that is in units of time (a step closer to addressing #4697), and because that
is more relevant for UVC cameras.
Also change the pipewire-v4l2 translation layer.
The Max latency property only works for timer based scheduling so that
we don't select a quantum larger than we can handle in our buffer.
With IRQ based scheduling this does not make sense because we will
reconfigure the buffer completely when we change quantums and so the
currently selected buffer size does not limit the latency in any way.
Fixes#4877
Some drivers (Firewire) have a latency depending on the ALSA buffer size
instead of the period size.
In IRQ mode, we can safely use 2 (or 3 for batch devices) periods
because we always need to reconfigure the hardware when we want to
change the period and so we don't need to keep some headroom like we do
for timer based scheduling.
See #4785
Without this change the playback with different number of channels
fails with `input port %s[%d]:%s already used as input %d, use mixer`
on the first port.
Signed-off-by: Martin Geier <martin.geier@streamunlimited.com>
Fixes#4866
Force filter graph reconfiguration in setup_convert.
When adding/removing filter-graphs, only perform setup when we were
already setup, otherwise we will do this in setup_convert later.
Don't do channelmix_init when we were not setup.
Deactivate the filter-graphs when we suspend.
Fixes#4866
I don't think those qualifiers are needed when doing the atomic
operations.
../spa/include/spa/pod/body.h:250:9: note: in expansion of macro ‘SPA_POD_BODY_LOAD_FIELD_ONCE’
250 | SPA_POD_BODY_LOAD_FIELD_ONCE(&b, body, value);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
../spa/include/spa/pod/body.h: In function ‘int spa_pod_body_get_rectangle(const spa_pod*, const void*, spa_rectangle*)’:
../spa/include/spa/pod/body.h:110:81: warning: type qualifiers ignored on cast result type [-Wignored-qualifiers]
110 | #define SPA_POD_BODY_LOAD_FIELD_ONCE(a, b, field) ((a)->field = SPA_LOAD_ONCE(&((volatile __typeof__(a))(b))->field))
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~
../spa/include/spa/utils/atomic.h:22:58: note: in definition of macro ‘SPA_LOAD_ONCE’
22 | #define SPA_LOAD_ONCE(s) __atomic_load_n((s), __ATOMIC_RELAXED)
| ^
This makes it a bit more generic and allows us to connect other things
that float arrays.
Add a SPA_FGA_PORT_SEQUENCE as a new port type. The data to connect to
this port is a Sequence type with the size field set to the max/size of
the data.
Improve the spa_ump_to_midi function so that it can consume multiple UMP
messages and produce multiple midi messages.
Some UMP messages (like program changes) need to be translated into up
to 3 midi messages. Do this byt adding a state to the function and by
making it consume the input bytes, just like the spa_ump_from_midi
function.
Adapt code to this new world. This is a little API break..
When clearing the buffers, remove the stale pointers and file descriptors
as accidental reuse of those is problematic and potentially difficult to
diagnose. Do this for every data plane.
Also clear the node's `buffer` structures to remove any references to
the provided `spa_buffer` objects and related metadata.
The current handling of `SPA_DATA_MemPtr` is not entirely correct because
its handling of multi-planar buffers is not appropriate: it leaks memory
mappings because it overwrites `buffer::ptr` for each plane.
Since this data type should not really be in use in normal deployments,
let's remove it for now.
After e0e8bf083 ("spa: libcamera: source: create eventfd before starting camera"),
things are still not entirely correct. This change ensures that if starting
the camera fails, then the runtime state, most importantly the ring buffer
of completed requests is restored to its initial state.
Furthermore, it is also ensured that `impl::active` can never be observed
by the data thread while it is being changed, which is achieved by setting
it before/after adding/removing the event source.
While concurrent `spa_loop_add_source()` invocations work with the current
main epoll-based implementation, this is not guaranteed, so lock the loop.
Similarly to how it is done elsewhere and for removal already.
pipewire assumes that the buffers are removed from a port when its format is
changed even without an explicit call to `port_use_buffer()`.
So if the format is not just tested, clear the buffers, as well as the libcamera
requests and buffers because they are also recreated when a new format is set.
This matches the behaviour of the v4l2 plugin. Furthermore, this change also
removes the call to `spa_libcamera_use_buffers()` because that function does
nothing. And finally this change necessitates that the current format is always
reset (when not testing), not just before reaching `spa_libcamera_set_format()`.
Remove the code that is supposed to compare the current and the to-be-set
format for returning early if they match. This is removed:
* v4l2 also does not have it either;
* it needs more consideration (there are not properly handled fields);
* it would make later changes somewhat more complicated.
Since `impl::requestComplete()` runs in an internal libcamera thread, extra care
would need to be taken to validate all accesses to common data structures. For
example, the function might call `spa_libcamera_buffer_recycle()`, which accesses
`impl::ctrls`, which would be unsafe because it could read or modified at the same
time on the data thread. So move the processing of requests to the data loop.