Parse BAP settings in a single place, and simplify QoS customization a
bit.
Ensure the selected preset gets selected.
For all the BAP codec settings, use device settings instead of global
monitor ones.
The current BAP QoS configuration allows to register a sampling
frequency based on the configuration done using wireplumber configuration.
However, for a scenario were the user need to use a specific SDU framelength
it cannot be done as the select_bap_qos function selects the QOS based on
priority and hence it will use the best possible config rather than the user
configured.
This PR adds option to select the QoS set based on user configured value. If
the remote device doesn't have the user configured capabilities it will always
use the best priority config.
Further, this change also allows the user to set RTN, Latency, Delay QoS config
for certain use case to have controller use optimum bandwidth usage.
Below are the example configuration on setting LC3 capabilities in config file:
bluez5.bap.set_name = "48_2_1"
bluez5.bap.rtn = 5
bluez5.bap.latency = 20
bluez5.bap.delay = 40000
bluez5.framing = false
The current BAP unicast QoS configuration allows to register a sampling
frequency based on the configuration done using wireplumber configuration.
However, for a scenario were the user need to use a specific SDU framelength
it cannot be done as the select_bap_qos function selects the QoS based on
priority and hence it will use the best possible config rather than the user
configured.
This PR adds option to select the QoS set based on user configured value. If
the remote device doesn't have the user configured capabilities it will always
use the best priority config.
Further, this change also allows the user to set RTN, Latency, Delay QoS config
for certain use case to have controller use optimum bandwidth usage.
Below is the example for the options that can be configured & selected
in config file:
bluez5.bap.set_name = "48_2_1"
bluez5.bap.rtn = 5
bluez5.bap.latency = 20
bluez5.bap.delay = 40000
bluez5.framing = false
Parameter values read into a 512 byte long buffer, which is insufficient
for medium to long filter-graph parameters.
Increase the buffer to 4096 bytes to give some wiggle-room.
Parse and use DSP formats.
Redo the conversion setup when the formats changed. We usually do this
when starting the node but the formats can change while running as well.
When the builder is overflowed, we might get a NULL pod. This is a valid
situation that we need to handle because it can be used to get the
required builder buffer size.
Get the dataType field from the Buffer param. This is a mask of the
supported data types for the buffers. Pass this to the allocating node
if there is one, otherwise use MemPtr as the allocated format.
The set_format function can return 1 when the format was adjusted to the
nearest supported format so return this from the port_set_param
function.
This instructs the adapter to recheck the configured format so that it
can store the adjuted format on the converter.
Because we advertize on out ports that we support DYNAMIC data, we need
to read the data pointer directly from the buffer and only fall back to
our cache (mmaped) pointer when it is NULL.
With DYNAMIC data, the peer element (mixer-dsp) directly copies the
input data pointer into the buffer data in the processing loop in order
to avoid a memcpy when there is no mixing needed.
When there is no data and the buffer is mmapable, try to mmap it. Unmap
again when clearing the buffers.
Use the mmaped data pointer of the buffer when processing.
Prefer to let the follower allocate buffers. If we are allocating
buffers, first do use_buffers on the allocating node or else the
non-allocating node just ends up with NULL buffers.
Keep the passthrough flag up to date when we unset a port format or when
it changes.
We should only fill in the buffer data/fd when the ALLOC flag is set.
We should only take the passthrough input buffer as output when we are
in passthrough mode.
Copy the header metadata.
The audioconverter starts in Convert mode, so make sure it goes to the
None mode before we attempt to reconfigure ourselves.
Also remove the ports on audioconvert when going to None mode. This used
to somewhat work because we configured it in DSP mode without any
params, which is like None without ports.
When we construct an Enum, check if we only added 1 value and remove the
duplicate default value we added. If we added more values, promote the
choice to an enum.
Try to avoid conversions by taking the output port format and using that
as a filter for the input port format.
Because filtering pods prefer the values of the filter, this will prefer
the output format values and thus avoid conversions.
Use per port allocated memory so that we can easily increase the size
and add more buffers. This is necessary when we add filter-graphs that
require more ports.
Check midi client version after setting it, to see if it was really
successfully set. Old kernels without UMP don't know about the midi
version fields, so snd_seq_set_client_midi_version() appears to fail
silently there.