Fix compilation with -Werror=float-conversion

Better make the conversions explicit so that we don't get any surprises.

Fixes #4065
This commit is contained in:
Wim Taymans 2024-06-18 12:17:56 +02:00
parent 50870aac57
commit 1ae4374ccf
71 changed files with 286 additions and 284 deletions

View file

@ -388,7 +388,7 @@ static int cmd_set_volume(struct data *data, const struct command *cmd, int argc
return -EINVAL;
}
dev_id = atoi(argv[1]);
vol = atof(argv[2]);
vol = (float)atof(argv[2]);
if (dev_id >= card->n_devices)
return -EINVAL;
@ -418,12 +418,12 @@ static int adjust_volume(struct data *data, const struct command *cmd, int argc,
static int cmd_inc_volume(struct data *data, const struct command *cmd, int argc, char *argv[])
{
return adjust_volume(data, cmd, argc, argv, 0.2);
return adjust_volume(data, cmd, argc, argv, 0.2f);
}
static int cmd_dec_volume(struct data *data, const struct command *cmd, int argc, char *argv[])
{
return adjust_volume(data, cmd, argc, argv, -0.2);
return adjust_volume(data, cmd, argc, argv, -0.2f);
}
static int cmd_get_mute(struct data *data, const struct command *cmd, int argc, char *argv[])

View file

@ -1335,7 +1335,7 @@ static void mixer_volume_init(pa_card *impl, pa_alsa_device *dev)
pa_log_info("Using hardware volume control. Hardware dB scale %s.",
dev->mixer_path->has_dB ? "supported" : "not supported");
}
dev->device.base_volume = pa_sw_volume_to_linear(dev->base_volume);
dev->device.base_volume = (float)pa_sw_volume_to_linear(dev->base_volume);
dev->device.volume_step = 1.0f / dev->n_volume_steps;
if (impl->soft_mixer || !dev->mixer_path || !dev->mixer_path->has_mute) {
@ -2022,7 +2022,7 @@ static int get_volume(pa_cvolume *v, float *volume, uint32_t n_volume)
if (v->channels == 0)
return -EIO;
for (i = 0; i < n_volume; i++)
volume[i] = pa_sw_volume_to_linear(v->values[i % v->channels]);
volume[i] = (float)pa_sw_volume_to_linear(v->values[i % v->channels]);
return 0;
}

View file

@ -1147,7 +1147,7 @@ static int element_set_volume(pa_alsa_element *e, snd_mixer_t *m, const pa_chann
int rounding;
if (e->volume_limit >= 0 && value > (e->max_dB * 100))
value = e->max_dB * 100;
value = (long) (e->max_dB * 100);
if (e->direction == PA_ALSA_DIRECTION_OUTPUT) {
/* If we call set_playback_volume() without checking first

View file

@ -1206,7 +1206,7 @@ static unsigned devset_playback_priority(pa_idxset *devices, bool invert) {
}
if (priority > 0 && invert)
return 1.0 / priority;
return (unsigned)(1.0 / priority);
return (unsigned) priority;
}
@ -1224,7 +1224,7 @@ static unsigned devset_capture_priority(pa_idxset *devices, bool invert) {
}
if (priority > 0 && invert)
return 1.0 / priority;
return (unsigned)(1.0 / priority);
return (unsigned) priority;
}

View file

@ -2283,11 +2283,11 @@ int spa_alsa_update_rate_match(struct state *state)
* means that to adjust the playback rate, we need to apply the inverse
* of the given rate. */
if (state->stream == SND_PCM_STREAM_CAPTURE) {
pitch = 1000000 * state->rate_match->rate;
last_pitch = 1000000 * state->last_rate;
pitch = (uint64_t)(1000000 * state->rate_match->rate);
last_pitch = (uint64_t)(1000000 * state->last_rate);
} else {
pitch = 1000000 / state->rate_match->rate;
last_pitch = 1000000 / state->last_rate;
pitch = (uint64_t)(1000000 / state->rate_match->rate);
last_pitch = (uint64_t)(1000000 / state->last_rate);
}
/* The pitch adjustment is limited to 1 ppm */
@ -2727,7 +2727,7 @@ static int update_time(struct state *state, uint64_t current_time, snd_pcm_sfram
corr = 1.0;
if (diff < 0)
state->next_time += diff / corr * 1e9 / state->rate;
state->next_time += (uint64_t)(diff / corr * 1e9 / state->rate);
if (SPA_UNLIKELY((state->next_time - state->base_time) > BW_PERIOD)) {
state->base_time = state->next_time;
@ -2751,7 +2751,7 @@ static int update_time(struct state *state, uint64_t current_time, snd_pcm_sfram
SPA_FLAG_UPDATE(state->rate_match->flags, SPA_IO_RATE_MATCH_FLAG_ACTIVE, state->matching);
}
state->next_time += state->threshold / corr * 1e9 / state->rate;
state->next_time += (uint64_t)(state->threshold / corr * 1e9 / state->rate);
if (SPA_LIKELY(!follower && state->clock)) {
state->clock->nsec = current_time;
@ -2859,7 +2859,7 @@ static int alsa_write_sync(struct state *state, uint64_t current_time)
if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) {
spa_log_error(state->log, "get_status error: %s", spa_strerror(res));
state->next_time += state->threshold * 1e9 / state->rate;
state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate);
return res;
}
@ -3120,7 +3120,7 @@ static int alsa_read_sync(struct state *state, uint64_t current_time)
if (SPA_UNLIKELY((res = get_status(state, current_time, &avail, &delay, &target)) < 0)) {
spa_log_error(state->log, "get_status error: %s", spa_strerror(res));
state->next_time += state->threshold * 1e9 / state->rate;
state->next_time += (uint64_t)(state->threshold * 1e9 / state->rate);
return res;
}
@ -3442,7 +3442,7 @@ static void alsa_timer_wakeup_event(struct spa_source *source)
state->next_time - current_time, state->threshold,
state->sample_count, suppressed);
}
state->next_time = current_time + state->threshold * 1e9 / state->rate;
state->next_time = (uint64_t)(current_time + state->threshold * 1e9 / state->rate);
}
set_timeout(state, state->next_time);
}

View file

@ -797,9 +797,9 @@ static int update_time(struct seq_state *state, uint64_t nsec, bool follower)
* use the rate correction, else we will use the rate correction only for the new
* timeout. */
if (state->following)
state->queue_next += state->threshold * corr * 1e9 / state->rate.denom;
state->queue_next += (uint64_t)(state->threshold * corr * 1e9 / state->rate.denom);
else
state->queue_next += state->threshold * 1e9 / state->rate.denom;
state->queue_next += (uint64_t)(state->threshold * 1e9 / state->rate.denom);
if ((state->next_time - state->base_time) > BW_PERIOD) {
state->base_time = state->next_time;
@ -807,14 +807,14 @@ static int update_time(struct seq_state *state, uint64_t nsec, bool follower)
state, follower, corr, state->dll.bw, err,
state->dll.z1, state->dll.z2, state->dll.z3);
}
state->next_time += state->threshold / corr * 1e9 / state->rate.denom;
state->next_time += (uint64_t)(state->threshold / corr * 1e9 / state->rate.denom);
if (!follower && state->clock) {
state->clock->nsec = nsec;
state->clock->rate = state->rate;
state->clock->position += state->clock->duration;
state->clock->duration = state->duration;
state->clock->delay = state->duration * corr;
state->clock->delay = (int64_t)(state->duration * corr);
state->clock->rate_diff = corr;
state->clock->next_nsec = state->next_time;
}

View file

@ -16,7 +16,7 @@
#define DEFAULT_DEVICE "hw:0"
#define M_PI_M2 (M_PI + M_PI)
#define M_PI_M2f (M_PIf + M_PIf)
#define BW_PERIOD (SPA_NSEC_PER_SEC * 3)
@ -63,10 +63,10 @@ static int set_timeout(struct state *state, uint64_t time)
type *samples, v; \
samples = (type*)((uint8_t*)areas[0].addr + (areas[0].first + offset*areas[0].step) / 8); \
for (i = 0; i < frames; i++) { \
state->accumulator += M_PI_M2 * 440 / state->rate; \
if (state->accumulator >= M_PI_M2) \
state->accumulator -= M_PI_M2; \
v = sin(state->accumulator) * scale; \
state->accumulator += M_PI_M2f * 440.0f / state->rate; \
if (state->accumulator >= M_PI_M2f) \
state->accumulator -= M_PI_M2f; \
v = (type)(sin(state->accumulator) * scale); \
for (j = 0; j < state->channels; j++) \
*samples++ = v; \
} \
@ -135,7 +135,7 @@ static int on_timer_wakeup(struct state *state)
/* set our new adjusted timeout. alternatively, this value can
* instead be used to drive a resampler if this device is
* slaved. */
state->next_time += state->period / corr * 1e9 / state->rate;
state->next_time += (uint64_t)(state->period / corr * 1e9 / state->rate);
set_timeout(state, state->next_time);
if (state->next_time - state->prev_time > BW_PERIOD) {

View file

@ -26,11 +26,11 @@ static void set_coefficient(struct biquad *bq, double b0, double b1, double b2,
double a0, double a1, double a2)
{
double a0_inv = 1 / a0;
bq->b0 = b0 * a0_inv;
bq->b1 = b1 * a0_inv;
bq->b2 = b2 * a0_inv;
bq->a1 = a1 * a0_inv;
bq->a2 = a2 * a0_inv;
bq->b0 = (float)(b0 * a0_inv);
bq->b1 = (float)(b1 * a0_inv);
bq->b2 = (float)(b2 * a0_inv);
bq->a1 = (float)(a1 * a0_inv);
bq->a2 = (float)(a2 * a0_inv);
}
static void biquad_lowpass(struct biquad *bq, double cutoff)

View file

@ -649,7 +649,7 @@ done:
spa_debug_type_find_short_name(spa_type_audio_channel, j + _SH));
mix->matrix_orig[ic][jc++] = matrix[i][j];
sum += fabs(matrix[i][j]);
sum += fabsf(matrix[i][j]);
if (matrix[i][j] == 0.0f)
spa_strbuf_append(&sb1, " ");
@ -772,7 +772,7 @@ int channelmix_init(struct channelmix *mix)
mix->process = info->process;
mix->set_volume = impl_channelmix_set_volume;
mix->cpu_flags = info->cpu_flags;
mix->delay = mix->rear_delay * mix->freq / 1000.0f;
mix->delay = (uint32_t)(mix->rear_delay * mix->freq / 1000.0f);
mix->func_name = info->name;
spa_log_debug(mix->log, "selected %s delay:%d options:%08x", info->name, mix->delay,

View file

@ -969,7 +969,8 @@ conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void
s += 4*n_channels;
}
for(; n < n_samples; n++) {
d0[n] = bswap_32(*s);
uint32_t *di = (uint32_t*)&d0[n], *si = (uint32_t*)s;
*di = bswap_32(*si);
s += n_channels;
}
}
@ -1011,10 +1012,10 @@ conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void
s += 4 * n_channels;
}
for(; n < n_samples; n++) {
d0[n] = bswap_32(s[0]);
d1[n] = bswap_32(s[1]);
d2[n] = bswap_32(s[2]);
d3[n] = bswap_32(s[3]);
*((uint32_t*)&d0[n]) = bswap_32(*((uint32_t*)&s[0]));
*((uint32_t*)&d1[n]) = bswap_32(*((uint32_t*)&s[1]));
*((uint32_t*)&d2[n]) = bswap_32(*((uint32_t*)&s[2]));
*((uint32_t*)&d3[n]) = bswap_32(*((uint32_t*)&s[3]));
s += n_channels;
}
}

View file

@ -17,9 +17,9 @@ static inline void blackman_window(float *taps, int n_taps)
{
int n;
for (n = 0; n < n_taps; n++) {
float w = 2 * M_PI * n / (n_taps-1);
taps[n] = 0.3635819 - 0.4891775 * cos(w)
+ 0.1365995 * cos(2 * w) - 0.0106411 * cos(3 * w);
float w = 2.0f * M_PIf * n / (n_taps-1);
taps[n] = 0.3635819f - 0.4891775f * cosf(w)
+ 0.1365995f * cosf(2 * w) - 0.0106411f * cosf(3 * w);
}
}
@ -33,7 +33,7 @@ static inline int hilbert_generate(float *taps, int n_taps)
for (i = 0; i < n_taps; i++) {
int k = -(n_taps / 2) + i;
if (k & 1) {
float pk = M_PI * k;
float pk = M_PIf * k;
taps[i] *= (1.0f - cosf(pk)) / pk;
} else {
taps[i] = 0.0f;

View file

@ -99,7 +99,7 @@ DEFINE_RESAMPLER(full,arch) \
float *d = dst[c]; \
\
index = ioffs; \
phase = data->phase; \
phase = (uint32_t)data->phase; \
\
for (o = ooffs; o < olen && index + n_taps <= ilen; o++) { \
inner_product_##arch(&d[o], &s[index], \
@ -117,12 +117,12 @@ DEFINE_RESAMPLER(full,arch) \
DEFINE_RESAMPLER(inter,arch) \
{ \
struct native_data *data = r->data; \
uint32_t index, stride = data->filter_stride; \
uint32_t index, stride = data->filter_stride; \
uint32_t n_phases = data->n_phases, out_rate = data->out_rate; \
uint32_t n_taps = data->n_taps; \
uint32_t c, o, olen = *out_len, ilen = *in_len; \
uint32_t inc = data->inc, frac = data->frac; \
float phase; \
float phase; \
\
if (r->channels == 0) \
return; \
@ -135,8 +135,8 @@ DEFINE_RESAMPLER(inter,arch) \
phase = data->phase; \
\
for (o = ooffs; o < olen && index + n_taps <= ilen; o++) { \
float ph = phase * n_phases / out_rate; \
uint32_t offset = floorf(ph); \
float ph = phase * n_phases / out_rate; \
uint32_t offset = (uint32_t)floorf(ph); \
inner_product_ip_##arch(&d[o], &s[index], \
&data->filter[(offset + 0) * stride], \
&data->filter[(offset + 1) * stride], \

View file

@ -72,8 +72,8 @@ static int build_filter(float *taps, uint32_t stride, uint32_t n_taps, uint32_t
for (j = 0; j < n_taps12; j++, t += 1.0) {
/* exploit symmetry in filter taps */
taps[(n_phases - i) * stride + n_taps12 + j] =
taps[i * stride + (n_taps12 - j - 1)] =
cutoff * sinc(t * cutoff) * window(t, n_taps);
taps[i * stride + (n_taps12 - j - 1)] = (float)
(cutoff * sinc(t * cutoff) * window(t, n_taps));
}
}
return 0;
@ -141,7 +141,7 @@ static void impl_native_update_rate(struct resample *r, double rate)
return;
old_out_rate = data->out_rate;
in_rate = r->i_rate / rate;
in_rate = (uint32_t)(r->i_rate / rate);
out_rate = r->o_rate;
phase = data->phase;
@ -180,7 +180,7 @@ static uint32_t impl_native_in_len(struct resample *r, uint32_t out_len)
struct native_data *data = r->data;
uint32_t in_len;
in_len = (data->phase + out_len * data->frac) / data->out_rate;
in_len = (uint32_t)((data->phase + out_len * data->frac) / data->out_rate);
in_len += out_len * data->inc + (data->n_taps - data->hist);
spa_log_trace_fp(r->log, "native %p: hist:%d %d->%d", r, data->hist, out_len, in_len);
@ -194,7 +194,7 @@ static uint32_t impl_native_out_len(struct resample *r, uint32_t in_len)
uint32_t out_len;
in_len = in_len - SPA_MIN(in_len, (data->n_taps - data->hist) + 1);
out_len = in_len * data->out_rate - data->phase;
out_len = (uint32_t)(in_len * data->out_rate - data->phase);
out_len = (out_len + data->in_rate - 1) / data->in_rate;
spa_log_trace_fp(r->log, "native %p: hist:%d %d->%d", r, data->hist, in_len, out_len);

View file

@ -18,14 +18,14 @@ static uint32_t cpu_flags;
SPA_LOG_IMPL(logger);
#define MATRIX(...) (float[]) { __VA_ARGS__ }
#define MATRIX(...) (double[]) { __VA_ARGS__ }
#include "test-helper.h"
#include "channelmix-ops.c"
#define CLOSE_ENOUGH(a,b) (fabs((a)-(b)) < 0.000001f)
static void dump_matrix(struct channelmix *mix, float *coeff)
static void dump_matrix(struct channelmix *mix, double *coeff)
{
uint32_t i, j;
@ -33,13 +33,13 @@ static void dump_matrix(struct channelmix *mix, float *coeff)
for (j = 0; j < mix->src_chan; j++) {
float v = mix->matrix[i][j];
spa_log_debug(mix->log, "%d %d: %f <-> %f", i, j, v, *coeff);
spa_assert_se(CLOSE_ENOUGH(v, *coeff));
spa_assert_se(CLOSE_ENOUGH(v, (float)*coeff));
coeff++;
}
}
}
static void test_mix(uint32_t src_chan, uint32_t src_mask, uint32_t dst_chan, uint32_t dst_mask, uint32_t options, float *coeff)
static void test_mix(uint32_t src_chan, uint32_t src_mask, uint32_t dst_chan, uint32_t dst_mask, uint32_t options, double *coeff)
{
struct channelmix mix;
@ -336,7 +336,7 @@ static void test_n_m_impl(void)
for (i = 0; i < 16; i++) {
for (j = 0; j < N_SAMPLES; j++)
src_data[i][j] = (drand48() - 0.5f) * 2.5f;
src_data[i][j] = (float)((drand48() - 0.5f) * 2.5f);
src[i] = src_data[i];
}
@ -360,7 +360,7 @@ static void test_n_m_impl(void)
/* random matrix */
for (i = 0; i < mix.dst_chan; i++) {
for (j = 0; j < mix.src_chan; j++) {
mix.matrix_orig[i][j] = drand48() - 0.5f;
mix.matrix_orig[i][j] = (float)(drand48() - 0.5f);
}
}
channelmix_set_volume(&mix, 1.0f, false, 0, NULL);

View file

@ -321,7 +321,7 @@ static void test_f32_s32(void)
static void test_s32_f32(void)
{
static const int32_t in[] = { 0, 0x7fffff00, 0x80000000, 0x40000000, 0xc0000000 };
static const float out[] = { 0.0f, 0.999999880791, -1.0f, 0.5, -0.5, };
static const float out[] = { 0.0f, 0.999999880791f, -1.0f, 0.5, -0.5, };
run_test("test_s32_f32d", in, sizeof(in[0]), out, sizeof(out[0]), SPA_N_ELEMENTS(out),
true, false, conv_s32_to_f32d_c);

View file

@ -30,7 +30,7 @@ static void test_impl(void)
float min[2] = { 0.0f, 0.0f }, max[2] = { 0.0f, 0.0f }, absmax[2] = { 0.0f, 0.0f };
for (i = 0; i < SPA_N_ELEMENTS(vals); i++)
vals[i] = (drand48() - 0.5f) * 2.5f;
vals[i] = (float)((drand48() - 0.5f) * 2.5f);
peaks_min_max_c(&peaks, &vals[1], SPA_N_ELEMENTS(vals) - 1, &min[0], &max[0]);
printf("c peaks min:%f max:%f\n", min[0], max[0]);

View file

@ -4,7 +4,7 @@
#include <math.h>
#define M_PI_M2 ( M_PI + M_PI )
#define M_PI_M2f ( M_PIf + M_PIf )
#define DEFINE_SINE(type,scale) \
static void \
@ -17,24 +17,24 @@ audio_test_src_create_sine_##type (struct impl *this, type *samples, size_t n_sa
float volume = this->props.volume; \
\
channels = this->port.current_format.info.raw.channels; \
step = M_PI_M2 * freq / this->port.current_format.info.raw.rate; \
step = M_PI_M2f * freq / this->port.current_format.info.raw.rate; \
amp = volume * scale; \
\
for (i = 0; i < n_samples; i++) { \
type val; \
this->port.accumulator += step; \
if (this->port.accumulator >= M_PI_M2) \
this->port.accumulator -= M_PI_M2; \
if (this->port.accumulator >= M_PI_M2f) \
this->port.accumulator -= M_PI_M2f; \
val = (type) (sin (this->port.accumulator) * amp); \
for (c = 0; c < channels; ++c) \
*samples++ = val; \
} \
}
DEFINE_SINE(int16_t, 32767.0);
DEFINE_SINE(int32_t, 2147483647.0);
DEFINE_SINE(float, 1.0);
DEFINE_SINE(double, 1.0);
DEFINE_SINE(int16_t, 32767.0f);
DEFINE_SINE(int32_t, 2147483647.0f);
DEFINE_SINE(float, 1.0f);
DEFINE_SINE(double, 1.0f);
static const render_func_t sine_funcs[] = {
(render_func_t) audio_test_src_create_sine_int16_t,

View file

@ -246,7 +246,7 @@ static int rfcomm_new_transport(struct rfcomm *rfcomm)
t->volumes[i].active = rfcomm->volumes[i].active;
t->volumes[i].hw_volume_max = SPA_BT_VOLUME_HS_MAX;
if (rfcomm->volumes[i].active && rfcomm->volumes[i].hw_volume != SPA_BT_VOLUME_INVALID)
t->volumes[i].volume =
t->volumes[i].volume = (float)
spa_bt_volume_hw_to_linear(rfcomm->volumes[i].hw_volume, t->volumes[i].hw_volume_max);
}
@ -424,7 +424,7 @@ static void rfcomm_emit_volume_changed(struct rfcomm *rfcomm, int id, int hw_vol
for (int i = 0; i < SPA_BT_VOLUME_ID_TERM ; ++i) {
t_volume = &rfcomm->transport->volumes[i];
t_volume->active = rfcomm->volumes[i].active;
t_volume->volume =
t_volume->volume = (float)
spa_bt_volume_hw_to_linear(rfcomm->volumes[i].hw_volume, t_volume->hw_volume_max);
}

View file

@ -3172,7 +3172,7 @@ static void spa_bt_transport_volume_changed(struct spa_bt_transport *transport)
if (t_volume->hw_volume != t_volume->new_hw_volume) {
t_volume->hw_volume = t_volume->new_hw_volume;
t_volume->volume = spa_bt_volume_hw_to_linear(t_volume->hw_volume,
t_volume->volume = (float)spa_bt_volume_hw_to_linear(t_volume->hw_volume,
t_volume->hw_volume_max);
spa_log_debug(monitor->log, "transport %p: volume changed %d(%f) ",
transport, t_volume->new_hw_volume, t_volume->volume);

View file

@ -581,7 +581,7 @@ static void emit_device_set_node(struct impl *this, uint32_t id)
for (i = 0; i < node->n_channels; ++i) {
/* Session manager will override this, so put in some safe number */
node->volumes[i] = node->soft_volumes[i] = 0.064;
node->volumes[i] = node->soft_volumes[i] = 0.064f;
}
/* Produce member info json */

View file

@ -253,7 +253,7 @@ static void spa_bt_decode_buffer_process(struct spa_bt_decode_buffer *this, uint
level = SPA_MAX(level, -max_level);
this->prev_consumed = SPA_MIN(this->prev_consumed, avg_period);
spa_bt_ptp_update(&this->spike, this->ctl.avg - level, this->prev_consumed);
spa_bt_ptp_update(&this->spike, (int32_t)(this->ctl.avg - level), this->prev_consumed);
/* Update target level */
if (this->target)

View file

@ -1045,7 +1045,7 @@ static void media_iso_pull(struct spa_bt_iso_io *iso_io)
max_err = iso_io->duration;
if (iso_io->resync && err >= 0) {
unsigned int req = err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC;
unsigned int req = (unsigned int)(err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
if (req > 0) {
spa_bt_rate_control_init(&port->ratectl, 0);
@ -1053,7 +1053,7 @@ static void media_iso_pull(struct spa_bt_iso_io *iso_io)
}
spa_log_debug(this->log, "%p: ISO sync skip frames:%u", this, req);
} else if (iso_io->resync && -err >= 0) {
unsigned int req = -err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC;
unsigned int req = (unsigned int)(-err * port->current_format.info.raw.rate / SPA_NSEC_PER_SEC);
static const uint8_t empty[8192] = {0};
if (req > 0) {
@ -1172,7 +1172,7 @@ static void media_on_timeout(struct spa_source *source)
setup_matching(this);
this->next_time = now_time + duration * SPA_NSEC_PER_SEC / rate * port->ratectl.corr;
this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / rate * port->ratectl.corr);
if (SPA_LIKELY(this->clock)) {
this->clock->nsec = now_time;

View file

@ -620,7 +620,7 @@ static void media_on_timeout(struct spa_source *source)
setup_matching(this);
this->next_time = now_time + duration * SPA_NSEC_PER_SEC / port->buffer.corr / rate;
this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / port->buffer.corr / rate);
if (SPA_LIKELY(this->clock)) {
this->clock->nsec = now_time;

View file

@ -598,7 +598,7 @@ again:
-SPA_CLAMP(err_nsec, -20*SPA_NSEC_PER_MSEC, 20*SPA_NSEC_PER_MSEC)
* this->rate / SPA_NSEC_PER_SEC);
tcorr = SPA_MIN(device_elapsed, SPA_NSEC_PER_SEC) * (corr - 1);
sync->device_time += tcorr;
sync->device_time += (uint64_t)tcorr;
/* reset if too much off */
if (err_nsec < -50 * SPA_NSEC_PER_MSEC ||

View file

@ -667,7 +667,7 @@ static void sco_on_timeout(struct spa_source *source)
setup_matching(this);
this->next_time = now_time + duration * SPA_NSEC_PER_SEC / port->buffer.corr / rate;
this->next_time = (uint64_t)(now_time + duration * SPA_NSEC_PER_SEC / port->buffer.corr / rate);
if (SPA_LIKELY(this->clock)) {
this->clock->nsec = now_time;

View file

@ -318,7 +318,7 @@ static inline uint64_t scale_u64(uint64_t val, uint32_t num, uint32_t denom)
#if 0
return ((__uint128_t)val * num) / denom;
#else
return (double)val / denom * num;
return (uint64_t)((double)val / denom * num);
#endif
}
@ -390,7 +390,7 @@ static void on_timeout(struct spa_source *source)
}
}
corr = spa_dll_update(&this->dll, err);
this->next_time = nsec + duration / corr * 1e9 / rate;
this->next_time = (uint64_t)(nsec + duration / corr * 1e9 / rate);
} else {
corr = 1.0;
this->next_time = scale_u64(position + duration, SPA_NSEC_PER_SEC, rate);
@ -710,7 +710,7 @@ impl_init(const struct spa_handle_factory *factory,
} else if (spa_streq(k, "freewheel.wait")) {
this->props.freewheel_wait = atoi(s);
} else if (spa_streq(k, "resync.ms")) {
this->props.resync_ms = atof(s);
this->props.resync_ms = (float)atof(s);
}
}
if (this->props.clock_name[0] == '\0') {