mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
1430 lines
41 KiB
C
1430 lines
41 KiB
C
/* Spa */
|
|
/* SPDX-FileCopyrightText: Copyright © 2018 Wim Taymans */
|
|
/* SPDX-License-Identifier: MIT */
|
|
|
|
#include "fmt-ops.h"
|
|
|
|
#include <emmintrin.h>
|
|
|
|
#define _MM_CLAMP_PS(r,min,max) \
|
|
_mm_min_ps(_mm_max_ps(r, min), max)
|
|
|
|
#define _MM_CLAMP_SS(r,min,max) \
|
|
_mm_min_ss(_mm_max_ss(r, min), max)
|
|
|
|
static void
|
|
conv_s16_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in = _mm_setzero_si128();
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (SPA_LIKELY(SPA_IS_ALIGNED(d0, 16)))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_insert_epi16(in, s[0*n_channels], 1);
|
|
in = _mm_insert_epi16(in, s[1*n_channels], 3);
|
|
in = _mm_insert_epi16(in, s[2*n_channels], 5);
|
|
in = _mm_insert_epi16(in, s[3*n_channels], 7);
|
|
in = _mm_srai_epi32(in, 16);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, s[0]);
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s16_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i < n_channels; i++)
|
|
conv_s16_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
void
|
|
conv_s16_to_f32d_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int16_t *s = src[0];
|
|
float *d0 = dst[0], *d1 = dst[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in[2], t[4];
|
|
__m128 out[4], factor = _mm_set1_ps(1.0f / S16_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16) &&
|
|
SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_load_si128((__m128i*)(s + 0));
|
|
in[1] = _mm_load_si128((__m128i*)(s + 8));
|
|
|
|
t[0] = _mm_slli_epi32(in[0], 16);
|
|
t[0] = _mm_srai_epi32(t[0], 16);
|
|
out[0] = _mm_cvtepi32_ps(t[0]);
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
|
|
t[1] = _mm_srai_epi32(in[0], 16);
|
|
out[1] = _mm_cvtepi32_ps(t[1]);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
t[2] = _mm_slli_epi32(in[1], 16);
|
|
t[2] = _mm_srai_epi32(t[2], 16);
|
|
out[2] = _mm_cvtepi32_ps(t[2]);
|
|
out[2] = _mm_mul_ps(out[2], factor);
|
|
|
|
t[3] = _mm_srai_epi32(in[1], 16);
|
|
out[3] = _mm_cvtepi32_ps(t[3]);
|
|
out[3] = _mm_mul_ps(out[3], factor);
|
|
|
|
_mm_store_ps(&d0[n + 0], out[0]);
|
|
_mm_store_ps(&d1[n + 0], out[1]);
|
|
_mm_store_ps(&d0[n + 4], out[2]);
|
|
_mm_store_ps(&d1[n + 4], out[3]);
|
|
|
|
s += 16;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, s[0]);
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_cvtsi32_ss(factor, s[1]);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += 2;
|
|
}
|
|
}
|
|
|
|
#define spa_read_unaligned(ptr, type) \
|
|
__extension__ ({ \
|
|
__typeof__(type) _val; \
|
|
memcpy(&_val, (ptr), sizeof(_val)); \
|
|
_val; \
|
|
})
|
|
|
|
#define spa_write_unaligned(ptr, type, val) \
|
|
__extension__ ({ \
|
|
__typeof__(type) _val = (val); \
|
|
memcpy((ptr), &_val, sizeof(_val)); \
|
|
})
|
|
void
|
|
conv_s24_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int24_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) && n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[0 * n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 * n_channels], uint32_t),
|
|
spa_read_unaligned(&s[2 * n_channels], uint32_t),
|
|
spa_read_unaligned(&s[3 * n_channels], uint32_t));
|
|
in = _mm_slli_epi32(in, 8);
|
|
in = _mm_srai_epi32(in, 8);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_s24_to_f32d_2s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int24_t *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1];
|
|
uint32_t n, unrolled;
|
|
__m128i in[2];
|
|
__m128 out[2], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[0 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 3*n_channels], uint32_t));
|
|
in[1] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[1 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 3*n_channels], uint32_t));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
|
|
out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_s24_to_f32d_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int24_t *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128i in[4];
|
|
__m128 out[4], factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16) &&
|
|
n_samples > 0) {
|
|
unrolled = n_samples & ~3;
|
|
if ((n_samples & 3) == 0)
|
|
unrolled -= 4;
|
|
}
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[0 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[0 + 3*n_channels], uint32_t));
|
|
in[1] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[1 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[1 + 3*n_channels], uint32_t));
|
|
in[2] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[2 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[2 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[2 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[2 + 3*n_channels], uint32_t));
|
|
in[3] = _mm_setr_epi32(
|
|
spa_read_unaligned(&s[3 + 0*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[3 + 1*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[3 + 2*n_channels], uint32_t),
|
|
spa_read_unaligned(&s[3 + 3*n_channels], uint32_t));
|
|
|
|
in[0] = _mm_slli_epi32(in[0], 8);
|
|
in[1] = _mm_slli_epi32(in[1], 8);
|
|
in[2] = _mm_slli_epi32(in[2], 8);
|
|
in[3] = _mm_slli_epi32(in[3], 8);
|
|
|
|
in[0] = _mm_srai_epi32(in[0], 8);
|
|
in[1] = _mm_srai_epi32(in[1], 8);
|
|
in[2] = _mm_srai_epi32(in[2], 8);
|
|
in[3] = _mm_srai_epi32(in[3], 8);
|
|
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[1] = _mm_cvtepi32_ps(in[1]);
|
|
out[2] = _mm_cvtepi32_ps(in[2]);
|
|
out[3] = _mm_cvtepi32_ps(in[3]);
|
|
|
|
out[0] = _mm_mul_ps(out[0], factor);
|
|
out[1] = _mm_mul_ps(out[1], factor);
|
|
out[2] = _mm_mul_ps(out[2], factor);
|
|
out[3] = _mm_mul_ps(out[3], factor);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_cvtsi32_ss(factor, s24_to_s32(*s));
|
|
out[1] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+1)));
|
|
out[2] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+2)));
|
|
out[3] = _mm_cvtsi32_ss(factor, s24_to_s32(*(s+3)));
|
|
out[0] = _mm_mul_ss(out[0], factor);
|
|
out[1] = _mm_mul_ss(out[1], factor);
|
|
out[2] = _mm_mul_ss(out[2], factor);
|
|
out[3] = _mm_mul_ss(out[3], factor);
|
|
_mm_store_ss(&d0[n], out[0]);
|
|
_mm_store_ss(&d1[n], out[1]);
|
|
_mm_store_ss(&d2[n], out[2]);
|
|
_mm_store_ss(&d3[n], out[3]);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s24_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int8_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_s24_to_f32d_4s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_s24_to_f32d_2s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_s24_to_f32d_1s_sse2(conv, &dst[i], &s[3*i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_s32_to_f32d_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128i in;
|
|
__m128 out, factor = _mm_set1_ps(1.0f / S24_SCALE);
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in = _mm_setr_epi32(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
in = _mm_srai_epi32(in, 8);
|
|
out = _mm_cvtepi32_ps(in);
|
|
out = _mm_mul_ps(out, factor);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out = _mm_cvtsi32_ss(factor, s[0]>>8);
|
|
out = _mm_mul_ss(out, factor);
|
|
_mm_store_ss(&d0[n], out);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_s32_to_f32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const int32_t *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i < n_channels; i++)
|
|
conv_s32_to_f32d_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[1];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S24_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S24_MIN);
|
|
__m128 int_max = _mm_set1_ps(S24_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[0] = _mm_mul_ss(in[0], scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
*d = _mm_cvtss_si32(in[0]) << 8;
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2], t[2];
|
|
__m128 scale = _mm_set1_ps(S24_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S24_MIN);
|
|
__m128 int_max = _mm_set1_ps(S24_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
in[1] = _MM_CLAMP_PS(in[1], int_min, int_max);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
out[1] = _mm_slli_epi32(out[1], 8);
|
|
|
|
t[0] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
t[1] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)t[0]);
|
|
_mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)t[0]);
|
|
_mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)t[1]);
|
|
_mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)t[1]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
_mm_storel_epi64((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S24_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S24_MIN);
|
|
__m128 int_max = _mm_set1_ps(S24_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), scale);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), scale);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), scale);
|
|
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
in[1] = _MM_CLAMP_PS(in[1], int_min, int_max);
|
|
in[2] = _MM_CLAMP_PS(in[2], int_min, int_max);
|
|
in[3] = _MM_CLAMP_PS(in[3], int_min, int_max);
|
|
|
|
_MM_TRANSPOSE4_PS(in[0], in[1], in[2], in[3]);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[2] = _mm_cvtps_epi32(in[2]);
|
|
out[3] = _mm_cvtps_epi32(in[3]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
out[1] = _mm_slli_epi32(out[1], 8);
|
|
out[2] = _mm_slli_epi32(out[2], 8);
|
|
out[3] = _mm_slli_epi32(out[3], 8);
|
|
|
|
_mm_storeu_si128((__m128i*)(d + 0*n_channels), out[0]);
|
|
_mm_storeu_si128((__m128i*)(d + 1*n_channels), out[1]);
|
|
_mm_storeu_si128((__m128i*)(d + 2*n_channels), out[2]);
|
|
_mm_storeu_si128((__m128i*)(d + 3*n_channels), out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s0[n]);
|
|
in[1] = _mm_load_ss(&s1[n]);
|
|
in[2] = _mm_load_ss(&s2[n]);
|
|
in[3] = _mm_load_ss(&s3[n]);
|
|
|
|
in[0] = _mm_unpacklo_ps(in[0], in[2]);
|
|
in[1] = _mm_unpacklo_ps(in[1], in[3]);
|
|
in[0] = _mm_unpacklo_ps(in[0], in[1]);
|
|
|
|
in[0] = _mm_mul_ps(in[0], scale);
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
_mm_storeu_si128((__m128i*)d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s32_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
/* 32 bit xorshift PRNG, see https://en.wikipedia.org/wiki/Xorshift */
|
|
#define _MM_XORSHIFT_EPI32(r) \
|
|
({ \
|
|
__m128i i, t; \
|
|
i = _mm_load_si128((__m128i*)r); \
|
|
t = _mm_slli_epi32(i, 13); \
|
|
i = _mm_xor_si128(i, t); \
|
|
t = _mm_srli_epi32(i, 17); \
|
|
i = _mm_xor_si128(i, t); \
|
|
t = _mm_slli_epi32(i, 5); \
|
|
i = _mm_xor_si128(i, t); \
|
|
_mm_store_si128((__m128i*)r, i); \
|
|
i; \
|
|
})
|
|
|
|
void conv_noise_rect_sse2(struct convert *conv, float *noise, uint32_t n_samples)
|
|
{
|
|
uint32_t n;
|
|
const uint32_t *r = conv->random;
|
|
__m128 scale = _mm_set1_ps(conv->scale);
|
|
__m128i in[1];
|
|
__m128 out[1];
|
|
|
|
for (n = 0; n < n_samples; n += 4) {
|
|
in[0] = _MM_XORSHIFT_EPI32(r);
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[0] = _mm_mul_ps(out[0], scale);
|
|
_mm_store_ps(&noise[n], out[0]);
|
|
}
|
|
}
|
|
|
|
void conv_noise_tri_sse2(struct convert *conv, float *noise, uint32_t n_samples)
|
|
{
|
|
uint32_t n;
|
|
const uint32_t *r = conv->random;
|
|
__m128 scale = _mm_set1_ps(conv->scale);
|
|
__m128i in[1];
|
|
__m128 out[1];
|
|
|
|
for (n = 0; n < n_samples; n += 4) {
|
|
in[0] = _mm_sub_epi32( _MM_XORSHIFT_EPI32(r), _MM_XORSHIFT_EPI32(r));
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[0] = _mm_mul_ps(out[0], scale);
|
|
_mm_store_ps(&noise[n], out[0]);
|
|
}
|
|
}
|
|
|
|
void conv_noise_tri_hf_sse2(struct convert *conv, float *noise, uint32_t n_samples)
|
|
{
|
|
uint32_t n;
|
|
int32_t *p = conv->prev;
|
|
const uint32_t *r = conv->random;
|
|
__m128 scale = _mm_set1_ps(conv->scale);
|
|
__m128i in[1], old[1], new[1];
|
|
__m128 out[1];
|
|
|
|
old[0] = _mm_load_si128((__m128i*)p);
|
|
for (n = 0; n < n_samples; n += 4) {
|
|
new[0] = _MM_XORSHIFT_EPI32(r);
|
|
in[0] = _mm_sub_epi32(old[0], new[0]);
|
|
old[0] = new[0];
|
|
out[0] = _mm_cvtepi32_ps(in[0]);
|
|
out[0] = _mm_mul_ps(out[0], scale);
|
|
_mm_store_ps(&noise[n], out[0]);
|
|
}
|
|
_mm_store_si128((__m128i*)p, old[0]);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s32_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
float *noise, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[1];
|
|
__m128i out[4];
|
|
__m128 scale = _mm_set1_ps(S24_SCALE);
|
|
__m128 int_min = _mm_set1_ps(S24_MIN);
|
|
__m128 int_max = _mm_set1_ps(S24_MAX);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), scale);
|
|
in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
|
|
in[0] = _MM_CLAMP_PS(in[0], int_min, int_max);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[0] = _mm_slli_epi32(out[0], 8);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_load_ss(&s[n]);
|
|
in[0] = _mm_mul_ss(in[0], scale);
|
|
in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
*d = _mm_cvtss_si32(in[0]) << 8;
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s32_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i, k, chunk, n_channels = conv->n_channels;
|
|
float *noise = conv->noise;
|
|
|
|
convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
|
|
|
|
for(i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
for(k = 0; k < n_samples; k += chunk) {
|
|
chunk = SPA_MIN(n_samples - k, conv->noise_size);
|
|
conv_f32d_to_s32_1s_noise_sse2(conv, &d[i + k*n_channels],
|
|
&s[k], noise, n_channels, chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_interleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128i out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_si128((__m128i*)&s0[n]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
*d = s0[n];
|
|
d += n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_interleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
float *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_ps(&s0[n]);
|
|
out[1] = _mm_load_ps(&s1[n]);
|
|
out[2] = _mm_load_ps(&s2[n]);
|
|
out[3] = _mm_load_ps(&s3[n]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
_mm_storeu_ps((d + 0*n_channels), out[0]);
|
|
_mm_storeu_ps((d + 1*n_channels), out[1]);
|
|
_mm_storeu_ps((d + 2*n_channels), out[2]);
|
|
_mm_storeu_ps((d + 3*n_channels), out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
|
|
_mm_storeu_ps(d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32d_to_32_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_interleave_32_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_interleave_32_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
#define _MM_BSWAP_EPI32(x) \
|
|
({ \
|
|
__m128i a = _mm_or_si128( \
|
|
_mm_slli_epi16(x, 8), \
|
|
_mm_srli_epi16(x, 8)); \
|
|
a = _mm_shufflelo_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
|
|
a = _mm_shufflehi_epi16(a, _MM_SHUFFLE(2, 3, 0, 1)); \
|
|
})
|
|
|
|
static void
|
|
conv_interleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const int32_t *s0 = src[0];
|
|
int32_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128i out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_si128((__m128i*)&s0[n]);
|
|
out[0] = _MM_BSWAP_EPI32(out[0]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
d[0*n_channels] = _mm_cvtsi128_si32(out[0]);
|
|
d[1*n_channels] = _mm_cvtsi128_si32(out[1]);
|
|
d[2*n_channels] = _mm_cvtsi128_si32(out[2]);
|
|
d[3*n_channels] = _mm_cvtsi128_si32(out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
*d = bswap_32(s0[n]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
static void
|
|
conv_interleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
float *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_load_ps(&s0[n]);
|
|
out[1] = _mm_load_ps(&s1[n]);
|
|
out[2] = _mm_load_ps(&s2[n]);
|
|
out[3] = _mm_load_ps(&s3[n]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
|
|
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
|
|
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
|
|
|
|
_mm_storeu_ps(&d[0*n_channels], out[0]);
|
|
_mm_storeu_ps(&d[1*n_channels], out[1]);
|
|
_mm_storeu_ps(&d[2*n_channels], out[2]);
|
|
_mm_storeu_ps(&d[3*n_channels], out[3]);
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
out[0] = _mm_setr_ps(s0[n], s1[n], s2[n], s3[n]);
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
_mm_storeu_ps(d, out[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32d_to_32s_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int32_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_interleave_32s_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_interleave_32s_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 out;
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out = _mm_setr_ps(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = *s;
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_loadu_ps(&s[0 * n_channels]);
|
|
out[1] = _mm_loadu_ps(&s[1 * n_channels]);
|
|
out[2] = _mm_loadu_ps(&s[2 * n_channels]);
|
|
out[3] = _mm_loadu_ps(&s[3 * n_channels]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
d0[n] = s[0];
|
|
d1[n] = s[1];
|
|
d2[n] = s[2];
|
|
d3[n] = s[3];
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_deinterleave_32_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_deinterleave_32_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32s_1s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 out;
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out = _mm_setr_ps(s[0*n_channels],
|
|
s[1*n_channels],
|
|
s[2*n_channels],
|
|
s[3*n_channels]);
|
|
out = (__m128) _MM_BSWAP_EPI32((__m128i)out);
|
|
_mm_store_ps(&d0[n], out);
|
|
s += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
uint32_t *di = (uint32_t*)&d0[n], *si = (uint32_t*)s;
|
|
*di = bswap_32(*si);
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_deinterleave_32s_4s_sse2(void *data, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src,
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
float *d0 = dst[0], *d1 = dst[1], *d2 = dst[2], *d3 = dst[3];
|
|
uint32_t n, unrolled;
|
|
__m128 out[4];
|
|
|
|
if (SPA_IS_ALIGNED(d0, 16) &&
|
|
SPA_IS_ALIGNED(d1, 16) &&
|
|
SPA_IS_ALIGNED(d2, 16) &&
|
|
SPA_IS_ALIGNED(d3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
out[0] = _mm_loadu_ps(&s[0 * n_channels]);
|
|
out[1] = _mm_loadu_ps(&s[1 * n_channels]);
|
|
out[2] = _mm_loadu_ps(&s[2 * n_channels]);
|
|
out[3] = _mm_loadu_ps(&s[3 * n_channels]);
|
|
|
|
_MM_TRANSPOSE4_PS(out[0], out[1], out[2], out[3]);
|
|
|
|
out[0] = (__m128) _MM_BSWAP_EPI32((__m128i)out[0]);
|
|
out[1] = (__m128) _MM_BSWAP_EPI32((__m128i)out[1]);
|
|
out[2] = (__m128) _MM_BSWAP_EPI32((__m128i)out[2]);
|
|
out[3] = (__m128) _MM_BSWAP_EPI32((__m128i)out[3]);
|
|
|
|
_mm_store_ps(&d0[n], out[0]);
|
|
_mm_store_ps(&d1[n], out[1]);
|
|
_mm_store_ps(&d2[n], out[2]);
|
|
_mm_store_ps(&d3[n], out[3]);
|
|
s += 4 * n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
*((uint32_t*)&d0[n]) = bswap_32(*((uint32_t*)&s[0]));
|
|
*((uint32_t*)&d1[n]) = bswap_32(*((uint32_t*)&s[1]));
|
|
*((uint32_t*)&d2[n]) = bswap_32(*((uint32_t*)&s[2]));
|
|
*((uint32_t*)&d3[n]) = bswap_32(*((uint32_t*)&s[3]));
|
|
s += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_32s_to_32d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_deinterleave_32s_4s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_deinterleave_32s_1s_sse2(conv, &dst[i], &s[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s16_1_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
_mm_storeu_si128((__m128i*)(d+0), out[0]);
|
|
d += 8;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
*d++ = _mm_cvtss_si32(in[0]);
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16d_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
uint32_t i, n_channels = conv->n_channels;
|
|
for(i = 0; i < n_channels; i++)
|
|
conv_f32_to_s16_1_sse2(conv, dst[i], src[i], n_samples);
|
|
}
|
|
|
|
void
|
|
conv_f32_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
conv_f32_to_s16_1_sse2(conv, dst[0], src[0], n_samples * conv->n_channels);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_1s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
|
|
d[0*n_channels] = _mm_extract_epi16(out[0], 0);
|
|
d[1*n_channels] = _mm_extract_epi16(out[0], 1);
|
|
d[2*n_channels] = _mm_extract_epi16(out[0], 2);
|
|
d[3*n_channels] = _mm_extract_epi16(out[0], 3);
|
|
d[4*n_channels] = _mm_extract_epi16(out[0], 4);
|
|
d[5*n_channels] = _mm_extract_epi16(out[0], 5);
|
|
d[6*n_channels] = _mm_extract_epi16(out[0], 6);
|
|
d[7*n_channels] = _mm_extract_epi16(out[0], 7);
|
|
d += 8*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_2s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[4], t[2];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[0]);
|
|
t[1] = _mm_packs_epi32(t[1], t[1]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(0, 3, 2, 1));
|
|
out[2] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(1, 0, 3, 2));
|
|
out[3] = _mm_shuffle_epi32(out[0], _MM_SHUFFLE(2, 1, 0, 3));
|
|
|
|
spa_write_unaligned(d + 0*n_channels, uint32_t, _mm_cvtsi128_si32(out[0]));
|
|
spa_write_unaligned(d + 1*n_channels, uint32_t, _mm_cvtsi128_si32(out[1]));
|
|
spa_write_unaligned(d + 2*n_channels, uint32_t, _mm_cvtsi128_si32(out[2]));
|
|
spa_write_unaligned(d + 3*n_channels, uint32_t, _mm_cvtsi128_si32(out[3]));
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_4s_sse2(void *data, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src[],
|
|
uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1], *s2 = src[2], *s3 = src[3];
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4], t[4];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16) &&
|
|
SPA_IS_ALIGNED(s2, 16) &&
|
|
SPA_IS_ALIGNED(s3, 16))
|
|
unrolled = n_samples & ~3;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 4) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n]), int_scale);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s2[n]), int_scale);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s3[n]), int_scale);
|
|
|
|
t[0] = _mm_cvtps_epi32(in[0]);
|
|
t[1] = _mm_cvtps_epi32(in[1]);
|
|
t[2] = _mm_cvtps_epi32(in[2]);
|
|
t[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
t[0] = _mm_packs_epi32(t[0], t[2]);
|
|
t[1] = _mm_packs_epi32(t[1], t[3]);
|
|
|
|
out[0] = _mm_unpacklo_epi16(t[0], t[1]);
|
|
out[1] = _mm_unpackhi_epi16(t[0], t[1]);
|
|
out[2] = _mm_unpacklo_epi32(out[0], out[1]);
|
|
out[3] = _mm_unpackhi_epi32(out[0], out[1]);
|
|
|
|
_mm_storel_pi((__m64*)(d + 0*n_channels), (__m128)out[2]);
|
|
_mm_storeh_pi((__m64*)(d + 1*n_channels), (__m128)out[2]);
|
|
_mm_storel_pi((__m64*)(d + 2*n_channels), (__m128)out[3]);
|
|
_mm_storeh_pi((__m64*)(d + 3*n_channels), (__m128)out[3]);
|
|
|
|
d += 4*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
|
|
in[2] = _mm_mul_ss(_mm_load_ss(&s2[n]), int_scale);
|
|
in[3] = _mm_mul_ss(_mm_load_ss(&s3[n]), int_scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
|
|
in[2] = _MM_CLAMP_SS(in[2], int_min, int_max);
|
|
in[3] = _MM_CLAMP_SS(in[3], int_min, int_max);
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d[2] = _mm_cvtss_si32(in[2]);
|
|
d[3] = _mm_cvtss_si32(in[3]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int16_t *d = dst[0];
|
|
uint32_t i = 0, n_channels = conv->n_channels;
|
|
|
|
for(; i + 3 < n_channels; i += 4)
|
|
conv_f32d_to_s16_4s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i + 1 < n_channels; i += 2)
|
|
conv_f32d_to_s16_2s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
for(; i < n_channels; i++)
|
|
conv_f32d_to_s16_1s_sse2(conv, &d[i], &src[i], n_channels, n_samples);
|
|
}
|
|
|
|
static void
|
|
conv_f32d_to_s16_1s_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
const float *noise, uint32_t n_channels, uint32_t n_samples)
|
|
{
|
|
const float *s0 = src;
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
|
|
in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
|
|
in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4]));
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
|
|
d[0*n_channels] = _mm_extract_epi16(out[0], 0);
|
|
d[1*n_channels] = _mm_extract_epi16(out[0], 1);
|
|
d[2*n_channels] = _mm_extract_epi16(out[0], 2);
|
|
d[3*n_channels] = _mm_extract_epi16(out[0], 3);
|
|
d[4*n_channels] = _mm_extract_epi16(out[0], 4);
|
|
d[5*n_channels] = _mm_extract_epi16(out[0], 5);
|
|
d[6*n_channels] = _mm_extract_epi16(out[0], 6);
|
|
d[7*n_channels] = _mm_extract_epi16(out[0], 7);
|
|
d += 8*n_channels;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
|
|
in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
*d = _mm_cvtss_si32(in[0]);
|
|
d += n_channels;
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
int16_t *d = dst[0];
|
|
uint32_t i, k, chunk, n_channels = conv->n_channels;
|
|
float *noise = conv->noise;
|
|
|
|
convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
|
|
|
|
for(i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
for(k = 0; k < n_samples; k += chunk) {
|
|
chunk = SPA_MIN(n_samples - k, conv->noise_size);
|
|
conv_f32d_to_s16_1s_noise_sse2(conv, &d[i + k*n_channels],
|
|
&s[k], noise, n_channels, chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
conv_f32_to_s16_1_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst, const void * SPA_RESTRICT src,
|
|
const float *noise, uint32_t n_samples)
|
|
{
|
|
const float *s = src;
|
|
int16_t *d = dst;
|
|
uint32_t n, unrolled;
|
|
__m128 in[2];
|
|
__m128i out[2];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s[n]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s[n+4]), int_scale);
|
|
in[0] = _mm_add_ps(in[0], _mm_load_ps(&noise[n]));
|
|
in[1] = _mm_add_ps(in[1], _mm_load_ps(&noise[n+4]));
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[0] = _mm_packs_epi32(out[0], out[1]);
|
|
_mm_storeu_si128((__m128i*)(&d[n]), out[0]);
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s[n]), int_scale);
|
|
in[0] = _mm_add_ss(in[0], _mm_load_ss(&noise[n]));
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
d[n] = _mm_cvtss_si32(in[0]);
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16d_noise_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
uint32_t i, k, chunk, n_channels = conv->n_channels;
|
|
float *noise = conv->noise;
|
|
|
|
convert_update_noise(conv, noise, SPA_MIN(n_samples, conv->noise_size));
|
|
|
|
for(i = 0; i < n_channels; i++) {
|
|
const float *s = src[i];
|
|
int16_t *d = dst[i];
|
|
for(k = 0; k < n_samples; k += chunk) {
|
|
chunk = SPA_MIN(n_samples - k, conv->noise_size);
|
|
conv_f32_to_s16_1_noise_sse2(conv, &d[k], &s[k], noise, chunk);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
conv_f32d_to_s16_2_sse2(struct convert *conv, void * SPA_RESTRICT dst[], const void * SPA_RESTRICT src[],
|
|
uint32_t n_samples)
|
|
{
|
|
const float *s0 = src[0], *s1 = src[1];
|
|
int16_t *d = dst[0];
|
|
uint32_t n, unrolled;
|
|
__m128 in[4];
|
|
__m128i out[4];
|
|
__m128 int_scale = _mm_set1_ps(S16_SCALE);
|
|
__m128 int_max = _mm_set1_ps(S16_MAX);
|
|
__m128 int_min = _mm_set1_ps(S16_MIN);
|
|
|
|
if (SPA_IS_ALIGNED(s0, 16) &&
|
|
SPA_IS_ALIGNED(s1, 16))
|
|
unrolled = n_samples & ~7;
|
|
else
|
|
unrolled = 0;
|
|
|
|
for(n = 0; n < unrolled; n += 8) {
|
|
in[0] = _mm_mul_ps(_mm_load_ps(&s0[n+0]), int_scale);
|
|
in[1] = _mm_mul_ps(_mm_load_ps(&s1[n+0]), int_scale);
|
|
in[2] = _mm_mul_ps(_mm_load_ps(&s0[n+4]), int_scale);
|
|
in[3] = _mm_mul_ps(_mm_load_ps(&s1[n+4]), int_scale);
|
|
|
|
out[0] = _mm_cvtps_epi32(in[0]);
|
|
out[1] = _mm_cvtps_epi32(in[1]);
|
|
out[2] = _mm_cvtps_epi32(in[2]);
|
|
out[3] = _mm_cvtps_epi32(in[3]);
|
|
|
|
out[0] = _mm_packs_epi32(out[0], out[2]);
|
|
out[1] = _mm_packs_epi32(out[1], out[3]);
|
|
|
|
out[2] = _mm_unpacklo_epi16(out[0], out[1]);
|
|
out[3] = _mm_unpackhi_epi16(out[0], out[1]);
|
|
|
|
_mm_storeu_si128((__m128i*)(d+0), out[2]);
|
|
_mm_storeu_si128((__m128i*)(d+8), out[3]);
|
|
|
|
d += 16;
|
|
}
|
|
for(; n < n_samples; n++) {
|
|
in[0] = _mm_mul_ss(_mm_load_ss(&s0[n]), int_scale);
|
|
in[1] = _mm_mul_ss(_mm_load_ss(&s1[n]), int_scale);
|
|
in[0] = _MM_CLAMP_SS(in[0], int_min, int_max);
|
|
in[1] = _MM_CLAMP_SS(in[1], int_min, int_max);
|
|
d[0] = _mm_cvtss_si32(in[0]);
|
|
d[1] = _mm_cvtss_si32(in[1]);
|
|
d += 2;
|
|
}
|
|
}
|