mirror of
https://gitlab.freedesktop.org/pipewire/pipewire.git
synced 2025-10-29 05:40:27 -04:00
doc: add DSP filter tutorial
Add CLAUDE generated tutorial7 based on the audio-dsp-filter example.
This commit is contained in:
parent
6bc451cf6d
commit
0267a5906e
5 changed files with 399 additions and 3 deletions
|
|
@ -9,12 +9,12 @@ PipeWire API step-by-step with simple short examples.
|
|||
- \subpage page_tutorial4
|
||||
- \subpage page_tutorial5
|
||||
- \subpage page_tutorial6
|
||||
- \subpage page_tutorial7
|
||||
|
||||
|
||||
# More Example Programs
|
||||
|
||||
- \ref audio-src.c "": \snippet{doc} audio-src.c title
|
||||
- \ref audio-dsp-filter.c "": \snippet{doc} audio-dsp-filter.c title
|
||||
- \ref video-play.c "": \snippet{doc} video-play.c title
|
||||
- \subpage page_examples
|
||||
|
||||
|
|
|
|||
|
|
@ -1,6 +1,6 @@
|
|||
/** \page page_tutorial6 Tutorial - Part 6: Binding Objects
|
||||
|
||||
\ref page_tutorial5 | \ref page_tutorial "Index"
|
||||
\ref page_tutorial5 | \ref page_tutorial "Index" | \ref page_tutorial7
|
||||
|
||||
In this tutorial we show how to bind to an object so that we can
|
||||
receive events and call methods on the object.
|
||||
|
|
@ -64,6 +64,6 @@ you created. Otherwise, they will be leaked:
|
|||
}
|
||||
\endcode
|
||||
|
||||
\ref page_tutorial5 | \ref page_tutorial "Index"
|
||||
\ref page_tutorial5 | \ref page_tutorial "Index" | \ref page_tutorial7
|
||||
|
||||
*/
|
||||
|
|
|
|||
242
doc/dox/tutorial/tutorial7.dox
Normal file
242
doc/dox/tutorial/tutorial7.dox
Normal file
|
|
@ -0,0 +1,242 @@
|
|||
/** \page page_tutorial7 Tutorial - Part 7: Creating an Audio DSP Filter
|
||||
|
||||
\ref page_tutorial6 | \ref page_tutorial "Index"
|
||||
|
||||
In this tutorial we show how to use \ref pw_filter "pw_filter" to create
|
||||
a real-time audio processing filter. This is useful for implementing audio
|
||||
effects, equalizers, analyzers, and other DSP applications.
|
||||
|
||||
Let's take a look at the code before we break it down:
|
||||
|
||||
\snippet tutorial7.c code
|
||||
|
||||
Save as tutorial7.c and compile with:
|
||||
|
||||
gcc -Wall tutorial7.c -o tutorial7 -lm $(pkg-config --cflags --libs libpipewire-0.3)
|
||||
|
||||
## Overview
|
||||
|
||||
Unlike \ref pw_stream "pw_stream" which is designed for applications that
|
||||
produce or consume audio data, \ref pw_filter "pw_filter" is designed for
|
||||
applications that process existing audio streams. Filters have both input
|
||||
and output ports and operate in the DSP domain using 32-bit floating point
|
||||
samples.
|
||||
|
||||
## Setting up the Filter
|
||||
|
||||
We start with the usual boilerplate and define our data structure:
|
||||
|
||||
\code{.c}
|
||||
struct data {
|
||||
struct pw_main_loop *loop;
|
||||
struct pw_filter *filter;
|
||||
struct port *in_port;
|
||||
struct port *out_port;
|
||||
};
|
||||
\endcode
|
||||
|
||||
The filter object manages both input and output ports. Each port represents
|
||||
an audio channel that can be connected to other applications.
|
||||
|
||||
## Creating the Filter
|
||||
|
||||
\code{.c}
|
||||
data.filter = pw_filter_new_simple(
|
||||
pw_main_loop_get_loop(data.loop),
|
||||
"audio-filter",
|
||||
pw_properties_new(
|
||||
PW_KEY_MEDIA_TYPE, "Audio",
|
||||
PW_KEY_MEDIA_CATEGORY, "Filter",
|
||||
PW_KEY_MEDIA_ROLE, "DSP",
|
||||
NULL),
|
||||
&filter_events,
|
||||
&data);
|
||||
\endcode
|
||||
|
||||
We use `pw_filter_new_simple()` which automatically manages the core connection
|
||||
for us. The properties are important:
|
||||
|
||||
- `PW_KEY_MEDIA_TYPE`: "Audio" indicates this is an audio filter
|
||||
- `PW_KEY_MEDIA_CATEGORY`: "Filter" tells the session manager this processes audio
|
||||
- `PW_KEY_MEDIA_ROLE`: "DSP" indicates this is for audio processing
|
||||
|
||||
## Adding Ports
|
||||
|
||||
Next we add input and output ports:
|
||||
|
||||
\code{.c}
|
||||
data.in_port = pw_filter_add_port(data.filter,
|
||||
PW_DIRECTION_INPUT,
|
||||
PW_FILTER_PORT_FLAG_MAP_BUFFERS,
|
||||
sizeof(struct port),
|
||||
pw_properties_new(
|
||||
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
|
||||
PW_KEY_PORT_NAME, "input",
|
||||
NULL),
|
||||
NULL, 0);
|
||||
|
||||
data.out_port = pw_filter_add_port(data.filter,
|
||||
PW_DIRECTION_OUTPUT,
|
||||
PW_FILTER_PORT_FLAG_MAP_BUFFERS,
|
||||
sizeof(struct port),
|
||||
pw_properties_new(
|
||||
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
|
||||
PW_KEY_PORT_NAME, "output",
|
||||
NULL),
|
||||
NULL, 0);
|
||||
\endcode
|
||||
|
||||
Key points about filter ports:
|
||||
|
||||
- `PW_DIRECTION_INPUT` and `PW_DIRECTION_OUTPUT` specify the port direction
|
||||
- `PW_FILTER_PORT_FLAG_MAP_BUFFERS` allows direct memory access to buffers
|
||||
- `PW_KEY_FORMAT_DSP` indicates this uses 32-bit float DSP format
|
||||
- DSP ports work with normalized floating-point samples (typically -1.0 to 1.0)
|
||||
|
||||
## Setting Process Latency
|
||||
|
||||
\code{.c}
|
||||
params[n_params++] = spa_process_latency_build(&b,
|
||||
SPA_PARAM_ProcessLatency,
|
||||
&SPA_PROCESS_LATENCY_INFO_INIT(
|
||||
.ns = 10 * SPA_NSEC_PER_MSEC
|
||||
));
|
||||
\endcode
|
||||
|
||||
This tells PipeWire that our filter adds 10 milliseconds of processing latency.
|
||||
This information helps the audio system maintain proper timing and latency
|
||||
compensation throughout the audio graph.
|
||||
|
||||
## Connecting the Filter
|
||||
|
||||
\code{.c}
|
||||
if (pw_filter_connect(data.filter,
|
||||
PW_FILTER_FLAG_RT_PROCESS,
|
||||
params, n_params) < 0) {
|
||||
fprintf(stderr, "can't connect\n");
|
||||
return -1;
|
||||
}
|
||||
\endcode
|
||||
|
||||
The `PW_FILTER_FLAG_RT_PROCESS` flag ensures our process callback runs in the
|
||||
real-time audio thread. This is crucial for low-latency audio processing but
|
||||
means our process function must be real-time safe (no allocations, file I/O,
|
||||
or blocking operations).
|
||||
|
||||
## The Process Callback
|
||||
|
||||
The heart of the filter is the process callback:
|
||||
|
||||
\snippet tutorial7.c on_process
|
||||
|
||||
The process function is called for each audio buffer and works as follows:
|
||||
|
||||
1. Get the number of samples to process from `position->clock.duration`
|
||||
2. Get input and output buffer pointers using `pw_filter_get_dsp_buffer()`
|
||||
3. Process the audio data (here we just copy input to output)
|
||||
4. The framework handles queueing the processed buffers
|
||||
|
||||
### Key Points about DSP Processing:
|
||||
|
||||
- **Float Format**: DSP buffers use 32-bit float samples, typically normalized to [-1.0, 1.0]
|
||||
- **Real-time Safe**: The process function runs in the audio thread and must be real-time safe
|
||||
- **Buffer Management**: `pw_filter_get_dsp_buffer()` handles the buffer lifecycle automatically
|
||||
- **Sample-accurate**: Processing happens at the audio sample rate with precise timing
|
||||
|
||||
## Advanced Usage
|
||||
|
||||
This example shows a simple passthrough, but you can implement any audio processing:
|
||||
|
||||
\code{.c}
|
||||
/* Example: Simple volume control */
|
||||
for (uint32_t i = 0; i < n_samples; i++) {
|
||||
out[i] = in[i] * 0.5f; // Reduce volume by half
|
||||
}
|
||||
|
||||
/* Example: Simple high-pass filter */
|
||||
static float last_sample = 0.0f;
|
||||
float alpha = 0.99f;
|
||||
for (uint32_t i = 0; i < n_samples; i++) {
|
||||
out[i] = alpha * (out[i] + in[i] - last_sample);
|
||||
last_sample = in[i];
|
||||
}
|
||||
\endcode
|
||||
|
||||
## Comparison with pw_stream
|
||||
|
||||
| Feature | pw_stream | pw_filter |
|
||||
|---------|-----------|-----------|
|
||||
| **Use case** | Audio playback/recording | Audio processing/effects |
|
||||
| **Data format** | Various (S16, S32, etc.) | 32-bit float DSP |
|
||||
| **Ports** | Single direction | Input and output |
|
||||
| **Buffer management** | Manual queue/dequeue | Automatic via get_dsp_buffer |
|
||||
| **Typical apps** | Media players, recorders | Equalizers, effects, analyzers |
|
||||
|
||||
## Connecting and Linking the Filter
|
||||
|
||||
### Manual Linking Options
|
||||
|
||||
Filters require manual connection by design. You can connect them using:
|
||||
|
||||
#### Using pw-link command line:
|
||||
\code{.sh}
|
||||
# List output ports (sources)
|
||||
pw-link -o
|
||||
|
||||
# List input ports (sinks)
|
||||
pw-link -i
|
||||
|
||||
# List existing connections
|
||||
pw-link -l
|
||||
|
||||
# Connect a source to filter input
|
||||
pw-link "source_app:output_FL" "audio-filter:input"
|
||||
|
||||
# Connect filter output to sink
|
||||
pw-link "audio-filter:output" "sink_app:input_FL"
|
||||
\endcode
|
||||
|
||||
|
||||
### Understanding Filter Auto-Connection Behavior
|
||||
|
||||
**Important**: Unlike audio sources and sinks, filters are **not automatically connected** by WirePlumber. This is by design because filters are meant to be explicitly inserted into audio chains where needed.
|
||||
|
||||
**Why filters don't auto-connect**:
|
||||
- Filters process existing audio streams rather than generate/consume them
|
||||
- Auto-connecting filters could create unwanted audio processing
|
||||
- Filters typically require specific placement in the audio graph
|
||||
- Manual connection gives users control over when/where effects are applied
|
||||
|
||||
### Testing the Filter
|
||||
|
||||
The filter requires manual connection to test. Here's the recommended workflow:
|
||||
|
||||
1. **Start an audio source** (e.g., `pw-play music.wav`)
|
||||
2. **Run your filter** (`./tutorial7`)
|
||||
3. **Check available ports**:
|
||||
```sh
|
||||
# List output ports
|
||||
pw-link -o | grep -E "(pw-play|audio-filter)"
|
||||
# List input ports
|
||||
pw-link -i | grep -E "(audio-filter|playback)"
|
||||
```
|
||||
4. **Connect the audio chain manually**:
|
||||
```sh
|
||||
# Connect source -> filter -> sink
|
||||
pw-link "pw-play:output_FL" "audio-filter:input"
|
||||
pw-link "audio-filter:output" "alsa_output.pci-0000_00_1f.3.analog-stereo:playback_FL"
|
||||
```
|
||||
|
||||
You should hear the audio pass through your filter. Modify the process function
|
||||
to add effects like volume changes, filtering, or other audio processing.
|
||||
|
||||
**Alternative: Use a patchbay tool**
|
||||
- **Helvum**: `flatpak install flathub org.pipewire.Helvum`
|
||||
- **qpwgraph**: Available in most Linux distributions
|
||||
- **Carla**: Full-featured audio plugin host
|
||||
|
||||
These tools provide graphical interfaces for connecting PipeWire nodes and are ideal for experimenting with filter placement.
|
||||
|
||||
\ref page_tutorial6 | \ref page_tutorial "Index"
|
||||
|
||||
*/
|
||||
152
doc/examples/tutorial7.c
Normal file
152
doc/examples/tutorial7.c
Normal file
|
|
@ -0,0 +1,152 @@
|
|||
/*
|
||||
[title]
|
||||
\ref page_tutorial7
|
||||
[title]
|
||||
*/
|
||||
/* [code] */
|
||||
#include <stdio.h>
|
||||
#include <errno.h>
|
||||
#include <math.h>
|
||||
#include <signal.h>
|
||||
|
||||
#include <spa/pod/builder.h>
|
||||
#include <spa/param/latency-utils.h>
|
||||
|
||||
#include <pipewire/pipewire.h>
|
||||
#include <pipewire/filter.h>
|
||||
|
||||
struct data;
|
||||
|
||||
struct port {
|
||||
struct data *data;
|
||||
};
|
||||
|
||||
struct data {
|
||||
struct pw_main_loop *loop;
|
||||
struct pw_filter *filter;
|
||||
struct port *in_port;
|
||||
struct port *out_port;
|
||||
};
|
||||
|
||||
/* [on_process] */
|
||||
static void on_process(void *userdata, struct spa_io_position *position)
|
||||
{
|
||||
struct data *data = userdata;
|
||||
float *in, *out;
|
||||
uint32_t n_samples = position->clock.duration;
|
||||
|
||||
pw_log_trace("do process %d", n_samples);
|
||||
|
||||
in = pw_filter_get_dsp_buffer(data->in_port, n_samples);
|
||||
out = pw_filter_get_dsp_buffer(data->out_port, n_samples);
|
||||
|
||||
if (in == NULL || out == NULL)
|
||||
return;
|
||||
|
||||
/* Simple passthrough - copy input to output.
|
||||
* Here you could implement any audio processing:
|
||||
* - Filters (lowpass, highpass, bandpass)
|
||||
* - Effects (reverb, delay, distortion)
|
||||
* - Dynamic processing (compressor, limiter)
|
||||
* - Equalization
|
||||
* - etc.
|
||||
*/
|
||||
memcpy(out, in, n_samples * sizeof(float));
|
||||
}
|
||||
/* [on_process] */
|
||||
|
||||
static const struct pw_filter_events filter_events = {
|
||||
PW_VERSION_FILTER_EVENTS,
|
||||
.process = on_process,
|
||||
};
|
||||
|
||||
static void do_quit(void *userdata, int signal_number)
|
||||
{
|
||||
struct data *data = userdata;
|
||||
pw_main_loop_quit(data->loop);
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
struct data data = { 0, };
|
||||
const struct spa_pod *params[1];
|
||||
uint32_t n_params = 0;
|
||||
uint8_t buffer[1024];
|
||||
struct spa_pod_builder b = SPA_POD_BUILDER_INIT(buffer, sizeof(buffer));
|
||||
|
||||
pw_init(&argc, &argv);
|
||||
|
||||
/* make a main loop. If you already have another main loop, you can add
|
||||
* the fd of this pipewire mainloop to it. */
|
||||
data.loop = pw_main_loop_new(NULL);
|
||||
|
||||
pw_loop_add_signal(pw_main_loop_get_loop(data.loop), SIGINT, do_quit, &data);
|
||||
pw_loop_add_signal(pw_main_loop_get_loop(data.loop), SIGTERM, do_quit, &data);
|
||||
|
||||
/* Create a simple filter, the simple filter manages the core and remote
|
||||
* objects for you if you don't need to deal with them.
|
||||
*
|
||||
* Pass your events and a user_data pointer as the last arguments. This
|
||||
* will inform you about the filter state. The most important event
|
||||
* you need to listen to is the process event where you need to process
|
||||
* the data.
|
||||
*/
|
||||
data.filter = pw_filter_new_simple(
|
||||
pw_main_loop_get_loop(data.loop),
|
||||
"audio-filter",
|
||||
pw_properties_new(
|
||||
PW_KEY_MEDIA_TYPE, "Audio",
|
||||
PW_KEY_MEDIA_CATEGORY, "Filter",
|
||||
PW_KEY_MEDIA_ROLE, "DSP",
|
||||
NULL),
|
||||
&filter_events,
|
||||
&data);
|
||||
|
||||
/* make an audio DSP input port */
|
||||
data.in_port = pw_filter_add_port(data.filter,
|
||||
PW_DIRECTION_INPUT,
|
||||
PW_FILTER_PORT_FLAG_MAP_BUFFERS,
|
||||
sizeof(struct port),
|
||||
pw_properties_new(
|
||||
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
|
||||
PW_KEY_PORT_NAME, "input",
|
||||
NULL),
|
||||
NULL, 0);
|
||||
|
||||
/* make an audio DSP output port */
|
||||
data.out_port = pw_filter_add_port(data.filter,
|
||||
PW_DIRECTION_OUTPUT,
|
||||
PW_FILTER_PORT_FLAG_MAP_BUFFERS,
|
||||
sizeof(struct port),
|
||||
pw_properties_new(
|
||||
PW_KEY_FORMAT_DSP, "32 bit float mono audio",
|
||||
PW_KEY_PORT_NAME, "output",
|
||||
NULL),
|
||||
NULL, 0);
|
||||
|
||||
/* Set processing latency information */
|
||||
params[n_params++] = spa_process_latency_build(&b,
|
||||
SPA_PARAM_ProcessLatency,
|
||||
&SPA_PROCESS_LATENCY_INFO_INIT(
|
||||
.ns = 10 * SPA_NSEC_PER_MSEC
|
||||
));
|
||||
|
||||
/* Now connect this filter. We ask that our process function is
|
||||
* called in a realtime thread. */
|
||||
if (pw_filter_connect(data.filter,
|
||||
PW_FILTER_FLAG_RT_PROCESS,
|
||||
params, n_params) < 0) {
|
||||
fprintf(stderr, "can't connect\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* and wait while we let things run */
|
||||
pw_main_loop_run(data.loop);
|
||||
|
||||
pw_filter_destroy(data.filter);
|
||||
pw_main_loop_destroy(data.loop);
|
||||
pw_deinit();
|
||||
|
||||
return 0;
|
||||
}
|
||||
/* [code] */
|
||||
|
|
@ -79,6 +79,7 @@ extra_docs = [
|
|||
'dox/tutorial/tutorial4.dox',
|
||||
'dox/tutorial/tutorial5.dox',
|
||||
'dox/tutorial/tutorial6.dox',
|
||||
'dox/tutorial/tutorial7.dox',
|
||||
'dox/api/index.dox',
|
||||
'dox/api/spa-index.dox',
|
||||
'dox/api/spa-plugins.dox',
|
||||
|
|
@ -173,6 +174,7 @@ example_files = [
|
|||
'tutorial4.c',
|
||||
'tutorial5.c',
|
||||
'tutorial6.c',
|
||||
'tutorial7.c',
|
||||
]
|
||||
example_dep_files = []
|
||||
foreach h : example_files
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue