This implements gamma-correct blending, which mainly affects font
rendering.
The implementation requires compile-time availability of the new
color-management protocol (available in wayland-protocols >= 1.41),
and run-time support for the same in the compositor (specifically, the
EXT_LINEAR TF function and sRGB primaries).
How it works: all colors are decoded from sRGB to linear (using a
lookup table, generated in the exact same way pixman generates it's
internal conversion tables) before being used by pixman. The resulting
image buffer is thus in decoded/linear format. We use the
color-management protocol to inform the compositor of this, by tagging
the wayland surfaces with the 'ext_linear' image attribute.
Sixes: all colors are sRGB internally, and decoded to linear before
being used in any sixels. Thus, the image buffers will contain linear
colors. This is important, since otherwise there would be a
decode/encode penalty every time a sixel is blended to the grid.
Emojis: we require fcft >= 3.2, which adds support for sRGB decoding
color glyphs. Meaning, the emoji pixman surfaces can be blended
directly to the grid, just like sixels.
Gamma-correct blending is enabled by default *when the compositor
supports it*. There's a new option to explicitly enable/disable it:
gamma-correct-blending=no|yes. If set to 'yes', and the compositor
does not implement the required color-management features, warning
logs are emitted.
There's a loss of precision when storing linear pixels in 8-bit
channels. For this reason, this patch also adds supports for 10-bit
surfaces. For now, this is disabled by default since such surfaces
only have 2 bits for alpha. It can be enabled with
tweak.surface-bit-depth=10-bit.
Perhaps, in the future, we can enable it by default if:
* gamma-correct blending is enabled
* the user has not enabled a transparent background
From the release notes:
system bell - allowing e.g. terminal emulators to hand off system
bell alerts to the compositor for among other things accessibility
purposes
The new protocol is used when the new config option
bell.system=yes (and the compositor implements the protocol,
obviously).
The system bell is rung independent of whether the foot window has
keyboard focus or not (thus relying on compositor configuration to
determine whether anything should be done or not in response to the
bell).
The new option is enabled by default.
When building foot with pgo under gentoo's portage, LLVM tried to
generate profile data files directly under system root, triggering
sandbox violation and causing build to fail. Setting this envvar fixes
the issue by explicitly specifying profiling data location.
Reference: https://clang.llvm.org/docs/UsersManual.html#profiling-with-instrumentation
This adds limited support for OSC-99, kitty desktop notifications[^1]. We
support everything defined by the "protocol", except:
* 'a': action to perform on notification activation. Since we don't
trigger the notification ourselves (over D-Bus), we don't know a)
which ID the notification got, or b) when it is clicked.
* ... and that's it. Everything else is supported
To be explicit, we *do* support:
* Chunked notifications (d=0|1), allowing the application to append
data to a notification in chunks, before it's finally displayed.
* Plain UTF-8, or base64-encoded UTF-8 payload (e=0|1).
* Notification identifier (i=xyz).
* Payload type (p=title|body).
* When to honor the notification (o=always|unfocused|invisible), with
the following quirks:
- we don't know when the window is invisible, thus it's treated as
'unfocused'.
- the foot option 'notify-focus-inhibit' overrides 'always'
* Urgency (u=0|1|2)
[^1]: https://sw.kovidgoyal.net/kitty/desktop-notifications/
When background alpha is changed at runtime (using OSC-11), we (may)
have to update the opaque hint we send to the compositor.
We must also update the subpixel mode used when rendering font
glyphs.
Why?
When the window is fully opaque, we use wl_surface_set_opaque_region()
on the entire surface, to hint to the compositor that it doesn’t have
to blend the window content with whatever is behind the
window. Obviously, if alpha is changed from opaque, to transparent (or
semi-transparent), that hint must be removed.
Sub-pixel mode is harder to explain, but in short, we can’t do
subpixel hinting with a (semi-)transparent background. Thus, similar
to the opaque hint, subpixel antialiasing must be enabled/disabled
when background alpha is changed.
On my system, GCC doesn't output its name when passing the --version
flag:
$ cc --version
cc (Debian 12.2.0-3) 12.2.0
Copyright (C) 2022 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
As the Free Software Foundation is unlikely to write another compiler, I
think that searching for the foundation's name instead of GCC is a good
enough fix (and I'm almost sure we wouldn't be the first ones to do so).
This used to work because we never free:d any of the rows. Now
however, we do free (some of) them when reverse scrolling. This means
we can no longer re-use the rows between the two screens.
Closes#1196
We execute xtgettcap in the parent terminal. Thus we don’t know if it
implements XTGETTCAP, and thus it’s not guaranteed to exit - it may
hang indefinitely waiting for a reply.
Fix by not actually quering anything.
Fixes:
../utils/xtgettcap.c:175:1: error: ‘/home/daniel/src/foot/src/utils/xtgettcap.p/xtgettcap.c.gcda’ profile count data file not found [-Werror=missing-profile]
Key-binding sets are bound to a seat/configuration pair. The conf
reference is done when a new terminal instance is created.
When that same terminal instance is destroyed, the key binding set is
unref:ed.
If the terminal instance is destroyed *before* the key binding set has
been referenced, we’ll still unref it. This creates an imbalance.
In particular, when the there is exactly one other terminal instance
referencing that same key binding set, that terminal instance will
trigger a foot server crash as soon as it receives a key press/release
event. This happens because the next-to-last terminal instance brought
the reference count of the binding set down to 0, causing it to be
free:d.
Thus, we *must* reference the binding set *before* we can error
out (when instantiating a new terminal instance).
At this point, we don’t yet have a valid terminal instance. But,
that’s ok, because all the key_binding_new_for_term() did with the
terminal instance was get the "struct wayland" and "struct config"
pointers. So, rename the function and simply pass these pointers
explicitly.
Similarly, change key_binding_for() to take a "struct config" pointer,
rather than a "struct terminal" pointer.
Also rename key_binding_unref_term() -> key_binding_unref().
This is an application of the xdg activation protocol that will allow
compositors to associate new foot toplevels with the command that
launched them.
footclient receives an activation token from the launcher which the
compositor can use to track application startup. It passes the token
to the foot server, which then activates the new window with the token
to complete the startup sequence.
Grapheme shaping is now enabled by default in foot. However, when
generating the profiling data in PGO builds, this results in skewed
optimizations.
The end result is worse benchmark results regardless of whether
grapheme-shaping is enabled or not (when running the benchmarks).
Without pixman renderer override pgo builds in cage/sway require
access to actual render devices. In Gentoo's case the builds are run
as ordinary user and within a "sandbox" which prevents and logs access
outside of predefined places during build.
So let's default to pixman renderer for the PGO builds. Hopefully that
won't matter for the pgo optimizations to do the right thing within foot.
That locale may not exist. Instead, require the user/build script to
explicitly set an UTF-8 locale.
Document this in INSTALL.md, and in the bundled PKGBUILD.
Appears to work, but cage spams a lot of
00:00:08.026 [types/wlr_output.c:720] Basic output test failed for HEADLESS-1
00:00:08.036 [types/wlr_output.c:720] Basic output test failed for HEADLESS-1