This option controls how we render the cursor when the terminal window
is unfocused.
Possible values are:
* hollow: the default, and how we rendered the cursor before this
patch.
* unchanged: render the cursor exactly the same way as when the window
is focused.
* none: do not render any cursor at all
Closes#1582
Before this patch, we used legacy X11 xcursor names, and didn't really
have any fallback handling in place (we only tried to fallback to
"xterm", regardless of which cursor shape we were trying to load).
This patch changes two things:
1. Improved fallback support. cursor_shape_to_string() now returns a
list of strings. This allows us to have per-shape fallbacks, and any
number of fallbacks.
2. We prefer CSS xcursor names over legacy X11 names.
render_xcursor_update() is called when we've loaded a new xcursor
image, and needs to display it. The reason it's not pushed to the
compositor immediately is to ensure we don't flood the Wayland socket
with xcursor updates.
Normally, it's only called when we *succeed* to load a new xcursor
image. I.e. if we try to load a non-existing xcursor image, we never
schedule an update.
However, we _can_ still end up in render_xcursor_update() without a
valid xcursor image. For example, we have loaded a valid xcursor
image, and scheduled an update. But before the update runs, the user
moves the cursor, and we try to load a new xcursor image. If it fails,
we crash when the previously scheduled update finally runs.
Closes#1624
This adds support for a new OSC escape sequence: OSC 176, that lets
terminal programs tell the terminal the name of the app that is
running. foot then sets the app ID of the toplevel to that ID,
which lets the compositor know which app is running, and typically
sets the appropriate icon, window grouping, ...
See: https://gist.github.com/delthas/d451e2cc1573bb2364839849c7117239
This boolean isn't needed. The idea was probably to not re-program the
timer unnecessarily, or even to prevent it from being moved forward in
time indefinitely.
However, the logic has (probably) gone through some changes, that now
makes it irrelevant.
The timer isn't moved forward indefinitely; it is always set to 8ms
from the last title update. The closer we get to that point in time,
the smaller the timeout we set.
Now, is_armed _did_ prevent the timer from being re-programmed. But
that tiny performance tweak isn't really necessary, as the title
should, in normal cases, not be set that often anyway.
An opaque sixel that isn't a multiple of the cell size will have some
cells partially visible (either the entire last row, the entire last
column, or both).
These must be rendered before blitting the sixel.
f5f2f5a954 introduced a regression,
where all such cells were rendered as if the cursor was there, giving
them the wrong appearance.
Closes#1520
Pass a damage region to render_row()/render_cell() when rendering
partially visible cells underneath a sixel.
This ensures the affected regions are later reported as 'damaged' to
the Wayland compositor.
Closes#1515
Before this patch. Wayland surface damage tracking was done on a
per-row basis. That is, even if just one cell was updated, the entire
row was "damaged".
Now, damage is per cell. This hopefully results in lower latencies in
many use cases, and especially on high DPI monitors.
Rewrite render_osd(), and instead of passing in an y-offset, let
render_osd() itself center the text inside the OSD buffer.
This is done using the same baseline calculation term_font_baseline()
does, except we use the buffer height instead of the line height.
Note that most OSDs are sized based on the line height...
Closes#1430
Before this patch, we didn’t ensure width and height were valid for
the current scaling factor, when fractional scaling _is_
available. That is, we didn’t ensure the width/height values
multiplied back to their original values after dividing with the
scaling factor.
Closes#1446
* Ensure buffer sizes are valid. That is, ensure that
size / scale * scale == size.
* Do size calculation of the window geometry in the same way we
calculate the CSD offsets.
And calculation of compounded offsets/widths/heights, to compensate
for compositor rounding when positioning and scaling/sizing
subsurfaces.
Closes#1441
By how much to increase the luminance when brightening bold
fonts. This was previously hard-coded to a factor of 1.3, which is now
the default value of the new config option.
Closes#1434
render_osd() shouldn't use term_font_baseline().
This is because term_font_baseline() uses the line height to determine
the position, while render_osd() renders to surfaces that aren't sized
like the grid.
This fixes a regression, where the CSD title were sometimes rendered
too high up, and sometimes too low.
* In all calls to wl_subsurface_set_position()
* (wp_viewport_set_destination() already does this)
* Whenever we use the scale to calculate margins (search box,
scrollback indicator etc)
* Since the scaling factor is stored as a float (and not a double),
use roundf() instead of round()
The wayland protocol recommends (or mandates?) that compositors render
a black background behind fullscreened transparent windows. I.e. you
never see what’s _actually_ behind the window.
So, if you have a white, but semi-transparent background in foot,
it’ll be rendered in a shade of gray.
Given this, it’s better to simply disable transparency while we’re
fullscreened. That way, we at least get the "correct" background
color.
Closes#1416
Break out the logic that updates the terminal’s scaling factor value,
from render_resize(), to a new function, term_update_scale(). This
allows us to update the scaling factor without a full grid resize.
We also change how we pick the scaling factor (when fractional scaling
is not in use). Before, we’d use the highest scaling factor from all
monitors we were mapped on. Now, we use the scaling factor from the
monitor we were *last* mapped on.
Then, add a boolean parameter to term_set_fonts(), and when
false, *don’t* call render_resize_force().
Also change term_font_dpi_changed() to only return true if the font
was changed in any way.
Finally, rewrite update_term_for_output_change() to:
* Call term_update_scale() before doing anything else
* Call render_resize{,_force} *last*, and *only* if either the scale
or the fonts were updated.
This fixes several things:
* A bug where we failed to update the fonts when fractional scaling
was in use, and we guessed the initial scale/DPI wrong. The bug
happened because updated the internal "preferred" scale value, and a
later call to render_resize() updated the terminal’s scale value,
but since that code path didn’t call term_font_dpi_changed() (and it
shouldn’t), the fonts weren’t resized properly.
* It ensures we only resize the grid *once* when the scaling factor,
or DPI is changed. Before this, we’d resize it twice. And this
happened when e.g. dragging the window between monitors.
When the user has configured custom cursor colors (cursor.color is set
in foot.ini), don’t invert those colors when the cell is either
selected, or has the ‘reverse’ attribute set.
This aligns foot’s behavior with Alacritty, Kitty and Wezterm. Contour
also behaves similarly, except mouse selections override the cursor
colors (turning the cursor invisible).
Closes#1347
Using a lookup table, try to map the user-provided xcursor string to a
cursor-shape-v1 known shape.
If we succeed, set the user’s custom cursor using server side
cursors (i.e. using cursor-shape-v1).
If not, fallback to trying to load the image ourselves (using
wl_cursor_theme_get_cursor()), and set it using the legacy
wl_pointer_set_cursor().
This implements support for the new cursor-shape-v1 protocol. When
available, we use it, instead of client-side cursor surfaces, to
select the xcursor shape.
Note that we still need to keep client side pointers, for:
* backward compatibility
* to be able to "hide" the cursor
Closes#1379
Before this patch, when the cell dimensions changed (i.e. when the
font size changes), sixel images were either removed (the new cell
dimensions are smaller than the old), or simply kept at their original
size (new cell dimensions are larger).
With this patch, sixels are instead resized. This means a
sixel *always* occupies the same number of rows and columns,
regardless of how much the font size is changed.
This is done by maintaining two sets of image data and pixman images,
as well as their dimensions. These two sets are the new ‘original’ and
‘scaled’ members of the sixel struct.
The "top-level" pixman image pointer, and the ‘width’ and ‘height’
members either point to the "original", or the "scaled" version.
They are invalidated as soon as the cell dimensions change. They, and
the ‘scaled’ image is updated on-demand (when we need to render a
sixel).
Note that the ‘scaled’ image is always NULL when the current cell
dimensions matches the ones used when emitting the sixel (to save
run-time memory).
Closes#1383
Instead of passing a raw wl_surface pointer, pass a wayl_surface
pointer.
This is needed later, when using fractional scaling to scale the
surface (since then we need the surface’s viewport object).
And add a viewport object to accompany the surface (to be used when
scaling the surface).
Also rename the wl_surf_subsurf struct to wayl_sub_surface, and add a
wayl_surface object to it, rather than a plain wl_surface pointer (to
also get the viewport pointer).