mirror of
				https://gitlab.freedesktop.org/wlroots/wlroots.git
				synced 2025-10-29 05:40:12 -04:00 
			
		
		
		
	 ac1232e576
			
		
	
	
		ac1232e576
		
	
	
	
	
		
			
			Suggested-by: Alexander Bakker <ab@alexbakker.me> Suggested-by: Simon Ser <contact@emersion.fr>
		
			
				
	
	
		
			1074 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1074 lines
		
	
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <assert.h>
 | |
| #include <getopt.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <time.h>
 | |
| #include <unistd.h>
 | |
| #include <wayland-server-core.h>
 | |
| #include <wlr/backend.h>
 | |
| #include <wlr/render/allocator.h>
 | |
| #include <wlr/render/wlr_renderer.h>
 | |
| #include <wlr/types/wlr_cursor.h>
 | |
| #include <wlr/types/wlr_compositor.h>
 | |
| #include <wlr/types/wlr_data_device.h>
 | |
| #include <wlr/types/wlr_input_device.h>
 | |
| #include <wlr/types/wlr_keyboard.h>
 | |
| #include <wlr/types/wlr_output.h>
 | |
| #include <wlr/types/wlr_output_layout.h>
 | |
| #include <wlr/types/wlr_pointer.h>
 | |
| #include <wlr/types/wlr_scene.h>
 | |
| #include <wlr/types/wlr_seat.h>
 | |
| #include <wlr/types/wlr_subcompositor.h>
 | |
| #include <wlr/types/wlr_xcursor_manager.h>
 | |
| #include <wlr/types/wlr_xdg_shell.h>
 | |
| #include <wlr/util/log.h>
 | |
| #include <xkbcommon/xkbcommon.h>
 | |
| 
 | |
| /* For brevity's sake, struct members are annotated where they are used. */
 | |
| enum tinywl_cursor_mode {
 | |
| 	TINYWL_CURSOR_PASSTHROUGH,
 | |
| 	TINYWL_CURSOR_MOVE,
 | |
| 	TINYWL_CURSOR_RESIZE,
 | |
| };
 | |
| 
 | |
| struct tinywl_server {
 | |
| 	struct wl_display *wl_display;
 | |
| 	struct wlr_backend *backend;
 | |
| 	struct wlr_renderer *renderer;
 | |
| 	struct wlr_allocator *allocator;
 | |
| 	struct wlr_scene *scene;
 | |
| 	struct wlr_scene_output_layout *scene_layout;
 | |
| 
 | |
| 	struct wlr_xdg_shell *xdg_shell;
 | |
| 	struct wl_listener new_xdg_toplevel;
 | |
| 	struct wl_listener new_xdg_popup;
 | |
| 	struct wl_list toplevels;
 | |
| 
 | |
| 	struct wlr_cursor *cursor;
 | |
| 	struct wlr_xcursor_manager *cursor_mgr;
 | |
| 	struct wl_listener cursor_motion;
 | |
| 	struct wl_listener cursor_motion_absolute;
 | |
| 	struct wl_listener cursor_button;
 | |
| 	struct wl_listener cursor_axis;
 | |
| 	struct wl_listener cursor_frame;
 | |
| 
 | |
| 	struct wlr_seat *seat;
 | |
| 	struct wl_listener new_input;
 | |
| 	struct wl_listener request_cursor;
 | |
| 	struct wl_listener request_set_selection;
 | |
| 	struct wl_list keyboards;
 | |
| 	enum tinywl_cursor_mode cursor_mode;
 | |
| 	struct tinywl_toplevel *grabbed_toplevel;
 | |
| 	double grab_x, grab_y;
 | |
| 	struct wlr_box grab_geobox;
 | |
| 	uint32_t resize_edges;
 | |
| 
 | |
| 	struct wlr_output_layout *output_layout;
 | |
| 	struct wl_list outputs;
 | |
| 	struct wl_listener new_output;
 | |
| };
 | |
| 
 | |
| struct tinywl_output {
 | |
| 	struct wl_list link;
 | |
| 	struct tinywl_server *server;
 | |
| 	struct wlr_output *wlr_output;
 | |
| 	struct wl_listener frame;
 | |
| 	struct wl_listener request_state;
 | |
| 	struct wl_listener destroy;
 | |
| };
 | |
| 
 | |
| struct tinywl_toplevel {
 | |
| 	struct wl_list link;
 | |
| 	struct tinywl_server *server;
 | |
| 	struct wlr_xdg_toplevel *xdg_toplevel;
 | |
| 	struct wlr_scene_tree *scene_tree;
 | |
| 	struct wl_listener map;
 | |
| 	struct wl_listener unmap;
 | |
| 	struct wl_listener commit;
 | |
| 	struct wl_listener destroy;
 | |
| 	struct wl_listener request_move;
 | |
| 	struct wl_listener request_resize;
 | |
| 	struct wl_listener request_maximize;
 | |
| 	struct wl_listener request_fullscreen;
 | |
| };
 | |
| 
 | |
| struct tinywl_popup {
 | |
| 	struct wlr_xdg_popup *xdg_popup;
 | |
| 	struct wl_listener commit;
 | |
| 	struct wl_listener destroy;
 | |
| };
 | |
| 
 | |
| struct tinywl_keyboard {
 | |
| 	struct wl_list link;
 | |
| 	struct tinywl_server *server;
 | |
| 	struct wlr_keyboard *wlr_keyboard;
 | |
| 
 | |
| 	struct wl_listener modifiers;
 | |
| 	struct wl_listener key;
 | |
| 	struct wl_listener destroy;
 | |
| };
 | |
| 
 | |
| static void focus_toplevel(struct tinywl_toplevel *toplevel, struct wlr_surface *surface) {
 | |
| 	/* Note: this function only deals with keyboard focus. */
 | |
| 	if (toplevel == NULL) {
 | |
| 		return;
 | |
| 	}
 | |
| 	struct tinywl_server *server = toplevel->server;
 | |
| 	struct wlr_seat *seat = server->seat;
 | |
| 	struct wlr_surface *prev_surface = seat->keyboard_state.focused_surface;
 | |
| 	if (prev_surface == surface) {
 | |
| 		/* Don't re-focus an already focused surface. */
 | |
| 		return;
 | |
| 	}
 | |
| 	if (prev_surface) {
 | |
| 		/*
 | |
| 		 * Deactivate the previously focused surface. This lets the client know
 | |
| 		 * it no longer has focus and the client will repaint accordingly, e.g.
 | |
| 		 * stop displaying a caret.
 | |
| 		 */
 | |
| 		struct wlr_xdg_toplevel *prev_toplevel =
 | |
| 			wlr_xdg_toplevel_try_from_wlr_surface(prev_surface);
 | |
| 		if (prev_toplevel != NULL) {
 | |
| 			wlr_xdg_toplevel_set_activated(prev_toplevel, false);
 | |
| 		}
 | |
| 	}
 | |
| 	struct wlr_keyboard *keyboard = wlr_seat_get_keyboard(seat);
 | |
| 	/* Move the toplevel to the front */
 | |
| 	wlr_scene_node_raise_to_top(&toplevel->scene_tree->node);
 | |
| 	wl_list_remove(&toplevel->link);
 | |
| 	wl_list_insert(&server->toplevels, &toplevel->link);
 | |
| 	/* Activate the new surface */
 | |
| 	wlr_xdg_toplevel_set_activated(toplevel->xdg_toplevel, true);
 | |
| 	/*
 | |
| 	 * Tell the seat to have the keyboard enter this surface. wlroots will keep
 | |
| 	 * track of this and automatically send key events to the appropriate
 | |
| 	 * clients without additional work on your part.
 | |
| 	 */
 | |
| 	if (keyboard != NULL) {
 | |
| 		wlr_seat_keyboard_notify_enter(seat, toplevel->xdg_toplevel->base->surface,
 | |
| 			keyboard->keycodes, keyboard->num_keycodes, &keyboard->modifiers);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void keyboard_handle_modifiers(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a modifier key, such as shift or alt, is
 | |
| 	 * pressed. We simply communicate this to the client. */
 | |
| 	struct tinywl_keyboard *keyboard =
 | |
| 		wl_container_of(listener, keyboard, modifiers);
 | |
| 	/*
 | |
| 	 * A seat can only have one keyboard, but this is a limitation of the
 | |
| 	 * Wayland protocol - not wlroots. We assign all connected keyboards to the
 | |
| 	 * same seat. You can swap out the underlying wlr_keyboard like this and
 | |
| 	 * wlr_seat handles this transparently.
 | |
| 	 */
 | |
| 	wlr_seat_set_keyboard(keyboard->server->seat, keyboard->wlr_keyboard);
 | |
| 	/* Send modifiers to the client. */
 | |
| 	wlr_seat_keyboard_notify_modifiers(keyboard->server->seat,
 | |
| 		&keyboard->wlr_keyboard->modifiers);
 | |
| }
 | |
| 
 | |
| static bool handle_keybinding(struct tinywl_server *server, xkb_keysym_t sym) {
 | |
| 	/*
 | |
| 	 * Here we handle compositor keybindings. This is when the compositor is
 | |
| 	 * processing keys, rather than passing them on to the client for its own
 | |
| 	 * processing.
 | |
| 	 *
 | |
| 	 * This function assumes Alt is held down.
 | |
| 	 */
 | |
| 	switch (sym) {
 | |
| 	case XKB_KEY_Escape:
 | |
| 		wl_display_terminate(server->wl_display);
 | |
| 		break;
 | |
| 	case XKB_KEY_F1:
 | |
| 		/* Cycle to the next toplevel */
 | |
| 		if (wl_list_length(&server->toplevels) < 2) {
 | |
| 			break;
 | |
| 		}
 | |
| 		struct tinywl_toplevel *next_toplevel =
 | |
| 			wl_container_of(server->toplevels.prev, next_toplevel, link);
 | |
| 		focus_toplevel(next_toplevel, next_toplevel->xdg_toplevel->base->surface);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void keyboard_handle_key(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a key is pressed or released. */
 | |
| 	struct tinywl_keyboard *keyboard =
 | |
| 		wl_container_of(listener, keyboard, key);
 | |
| 	struct tinywl_server *server = keyboard->server;
 | |
| 	struct wlr_keyboard_key_event *event = data;
 | |
| 	struct wlr_seat *seat = server->seat;
 | |
| 
 | |
| 	/* Translate libinput keycode -> xkbcommon */
 | |
| 	uint32_t keycode = event->keycode + 8;
 | |
| 	/* Get a list of keysyms based on the keymap for this keyboard */
 | |
| 	const xkb_keysym_t *syms;
 | |
| 	int nsyms = xkb_state_key_get_syms(
 | |
| 			keyboard->wlr_keyboard->xkb_state, keycode, &syms);
 | |
| 
 | |
| 	bool handled = false;
 | |
| 	uint32_t modifiers = wlr_keyboard_get_modifiers(keyboard->wlr_keyboard);
 | |
| 	if ((modifiers & WLR_MODIFIER_ALT) &&
 | |
| 			event->state == WL_KEYBOARD_KEY_STATE_PRESSED) {
 | |
| 		/* If alt is held down and this button was _pressed_, we attempt to
 | |
| 		 * process it as a compositor keybinding. */
 | |
| 		for (int i = 0; i < nsyms; i++) {
 | |
| 			handled = handle_keybinding(server, syms[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!handled) {
 | |
| 		/* Otherwise, we pass it along to the client. */
 | |
| 		wlr_seat_set_keyboard(seat, keyboard->wlr_keyboard);
 | |
| 		wlr_seat_keyboard_notify_key(seat, event->time_msec,
 | |
| 			event->keycode, event->state);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void keyboard_handle_destroy(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised by the keyboard base wlr_input_device to signal
 | |
| 	 * the destruction of the wlr_keyboard. It will no longer receive events
 | |
| 	 * and should be destroyed.
 | |
| 	 */
 | |
| 	struct tinywl_keyboard *keyboard =
 | |
| 		wl_container_of(listener, keyboard, destroy);
 | |
| 	wl_list_remove(&keyboard->modifiers.link);
 | |
| 	wl_list_remove(&keyboard->key.link);
 | |
| 	wl_list_remove(&keyboard->destroy.link);
 | |
| 	wl_list_remove(&keyboard->link);
 | |
| 	free(keyboard);
 | |
| }
 | |
| 
 | |
| static void server_new_keyboard(struct tinywl_server *server,
 | |
| 		struct wlr_input_device *device) {
 | |
| 	struct wlr_keyboard *wlr_keyboard = wlr_keyboard_from_input_device(device);
 | |
| 
 | |
| 	struct tinywl_keyboard *keyboard = calloc(1, sizeof(*keyboard));
 | |
| 	keyboard->server = server;
 | |
| 	keyboard->wlr_keyboard = wlr_keyboard;
 | |
| 
 | |
| 	/* We need to prepare an XKB keymap and assign it to the keyboard. This
 | |
| 	 * assumes the defaults (e.g. layout = "us"). */
 | |
| 	struct xkb_context *context = xkb_context_new(XKB_CONTEXT_NO_FLAGS);
 | |
| 	struct xkb_keymap *keymap = xkb_keymap_new_from_names(context, NULL,
 | |
| 		XKB_KEYMAP_COMPILE_NO_FLAGS);
 | |
| 
 | |
| 	wlr_keyboard_set_keymap(wlr_keyboard, keymap);
 | |
| 	xkb_keymap_unref(keymap);
 | |
| 	xkb_context_unref(context);
 | |
| 	wlr_keyboard_set_repeat_info(wlr_keyboard, 25, 600);
 | |
| 
 | |
| 	/* Here we set up listeners for keyboard events. */
 | |
| 	keyboard->modifiers.notify = keyboard_handle_modifiers;
 | |
| 	wl_signal_add(&wlr_keyboard->events.modifiers, &keyboard->modifiers);
 | |
| 	keyboard->key.notify = keyboard_handle_key;
 | |
| 	wl_signal_add(&wlr_keyboard->events.key, &keyboard->key);
 | |
| 	keyboard->destroy.notify = keyboard_handle_destroy;
 | |
| 	wl_signal_add(&device->events.destroy, &keyboard->destroy);
 | |
| 
 | |
| 	wlr_seat_set_keyboard(server->seat, keyboard->wlr_keyboard);
 | |
| 
 | |
| 	/* And add the keyboard to our list of keyboards */
 | |
| 	wl_list_insert(&server->keyboards, &keyboard->link);
 | |
| }
 | |
| 
 | |
| static void server_new_pointer(struct tinywl_server *server,
 | |
| 		struct wlr_input_device *device) {
 | |
| 	/* We don't do anything special with pointers. All of our pointer handling
 | |
| 	 * is proxied through wlr_cursor. On another compositor, you might take this
 | |
| 	 * opportunity to do libinput configuration on the device to set
 | |
| 	 * acceleration, etc. */
 | |
| 	wlr_cursor_attach_input_device(server->cursor, device);
 | |
| }
 | |
| 
 | |
| static void server_new_input(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised by the backend when a new input device becomes
 | |
| 	 * available. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, new_input);
 | |
| 	struct wlr_input_device *device = data;
 | |
| 	switch (device->type) {
 | |
| 	case WLR_INPUT_DEVICE_KEYBOARD:
 | |
| 		server_new_keyboard(server, device);
 | |
| 		break;
 | |
| 	case WLR_INPUT_DEVICE_POINTER:
 | |
| 		server_new_pointer(server, device);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	/* We need to let the wlr_seat know what our capabilities are, which is
 | |
| 	 * communiciated to the client. In TinyWL we always have a cursor, even if
 | |
| 	 * there are no pointer devices, so we always include that capability. */
 | |
| 	uint32_t caps = WL_SEAT_CAPABILITY_POINTER;
 | |
| 	if (!wl_list_empty(&server->keyboards)) {
 | |
| 		caps |= WL_SEAT_CAPABILITY_KEYBOARD;
 | |
| 	}
 | |
| 	wlr_seat_set_capabilities(server->seat, caps);
 | |
| }
 | |
| 
 | |
| static void seat_request_cursor(struct wl_listener *listener, void *data) {
 | |
| 	struct tinywl_server *server = wl_container_of(
 | |
| 			listener, server, request_cursor);
 | |
| 	/* This event is raised by the seat when a client provides a cursor image */
 | |
| 	struct wlr_seat_pointer_request_set_cursor_event *event = data;
 | |
| 	struct wlr_seat_client *focused_client =
 | |
| 		server->seat->pointer_state.focused_client;
 | |
| 	/* This can be sent by any client, so we check to make sure this one is
 | |
| 	 * actually has pointer focus first. */
 | |
| 	if (focused_client == event->seat_client) {
 | |
| 		/* Once we've vetted the client, we can tell the cursor to use the
 | |
| 		 * provided surface as the cursor image. It will set the hardware cursor
 | |
| 		 * on the output that it's currently on and continue to do so as the
 | |
| 		 * cursor moves between outputs. */
 | |
| 		wlr_cursor_set_surface(server->cursor, event->surface,
 | |
| 				event->hotspot_x, event->hotspot_y);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void seat_request_set_selection(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised by the seat when a client wants to set the selection,
 | |
| 	 * usually when the user copies something. wlroots allows compositors to
 | |
| 	 * ignore such requests if they so choose, but in tinywl we always honor
 | |
| 	 */
 | |
| 	struct tinywl_server *server = wl_container_of(
 | |
| 			listener, server, request_set_selection);
 | |
| 	struct wlr_seat_request_set_selection_event *event = data;
 | |
| 	wlr_seat_set_selection(server->seat, event->source, event->serial);
 | |
| }
 | |
| 
 | |
| static struct tinywl_toplevel *desktop_toplevel_at(
 | |
| 		struct tinywl_server *server, double lx, double ly,
 | |
| 		struct wlr_surface **surface, double *sx, double *sy) {
 | |
| 	/* This returns the topmost node in the scene at the given layout coords.
 | |
| 	 * We only care about surface nodes as we are specifically looking for a
 | |
| 	 * surface in the surface tree of a tinywl_toplevel. */
 | |
| 	struct wlr_scene_node *node = wlr_scene_node_at(
 | |
| 		&server->scene->tree.node, lx, ly, sx, sy);
 | |
| 	if (node == NULL || node->type != WLR_SCENE_NODE_BUFFER) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	struct wlr_scene_buffer *scene_buffer = wlr_scene_buffer_from_node(node);
 | |
| 	struct wlr_scene_surface *scene_surface =
 | |
| 		wlr_scene_surface_try_from_buffer(scene_buffer);
 | |
| 	if (!scene_surface) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	*surface = scene_surface->surface;
 | |
| 	/* Find the node corresponding to the tinywl_toplevel at the root of this
 | |
| 	 * surface tree, it is the only one for which we set the data field. */
 | |
| 	struct wlr_scene_tree *tree = node->parent;
 | |
| 	while (tree != NULL && tree->node.data == NULL) {
 | |
| 		tree = tree->node.parent;
 | |
| 	}
 | |
| 	return tree->node.data;
 | |
| }
 | |
| 
 | |
| static void reset_cursor_mode(struct tinywl_server *server) {
 | |
| 	/* Reset the cursor mode to passthrough. */
 | |
| 	server->cursor_mode = TINYWL_CURSOR_PASSTHROUGH;
 | |
| 	server->grabbed_toplevel = NULL;
 | |
| }
 | |
| 
 | |
| static void process_cursor_move(struct tinywl_server *server, uint32_t time) {
 | |
| 	/* Move the grabbed toplevel to the new position. */
 | |
| 	struct tinywl_toplevel *toplevel = server->grabbed_toplevel;
 | |
| 	wlr_scene_node_set_position(&toplevel->scene_tree->node,
 | |
| 		server->cursor->x - server->grab_x,
 | |
| 		server->cursor->y - server->grab_y);
 | |
| }
 | |
| 
 | |
| static void process_cursor_resize(struct tinywl_server *server, uint32_t time) {
 | |
| 	/*
 | |
| 	 * Resizing the grabbed toplevel can be a little bit complicated, because we
 | |
| 	 * could be resizing from any corner or edge. This not only resizes the
 | |
| 	 * toplevel on one or two axes, but can also move the toplevel if you resize
 | |
| 	 * from the top or left edges (or top-left corner).
 | |
| 	 *
 | |
| 	 * Note that some shortcuts are taken here. In a more fleshed-out
 | |
| 	 * compositor, you'd wait for the client to prepare a buffer at the new
 | |
| 	 * size, then commit any movement that was prepared.
 | |
| 	 */
 | |
| 	struct tinywl_toplevel *toplevel = server->grabbed_toplevel;
 | |
| 	double border_x = server->cursor->x - server->grab_x;
 | |
| 	double border_y = server->cursor->y - server->grab_y;
 | |
| 	int new_left = server->grab_geobox.x;
 | |
| 	int new_right = server->grab_geobox.x + server->grab_geobox.width;
 | |
| 	int new_top = server->grab_geobox.y;
 | |
| 	int new_bottom = server->grab_geobox.y + server->grab_geobox.height;
 | |
| 
 | |
| 	if (server->resize_edges & WLR_EDGE_TOP) {
 | |
| 		new_top = border_y;
 | |
| 		if (new_top >= new_bottom) {
 | |
| 			new_top = new_bottom - 1;
 | |
| 		}
 | |
| 	} else if (server->resize_edges & WLR_EDGE_BOTTOM) {
 | |
| 		new_bottom = border_y;
 | |
| 		if (new_bottom <= new_top) {
 | |
| 			new_bottom = new_top + 1;
 | |
| 		}
 | |
| 	}
 | |
| 	if (server->resize_edges & WLR_EDGE_LEFT) {
 | |
| 		new_left = border_x;
 | |
| 		if (new_left >= new_right) {
 | |
| 			new_left = new_right - 1;
 | |
| 		}
 | |
| 	} else if (server->resize_edges & WLR_EDGE_RIGHT) {
 | |
| 		new_right = border_x;
 | |
| 		if (new_right <= new_left) {
 | |
| 			new_right = new_left + 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	struct wlr_box geo_box;
 | |
| 	wlr_xdg_surface_get_geometry(toplevel->xdg_toplevel->base, &geo_box);
 | |
| 	wlr_scene_node_set_position(&toplevel->scene_tree->node,
 | |
| 		new_left - geo_box.x, new_top - geo_box.y);
 | |
| 
 | |
| 	int new_width = new_right - new_left;
 | |
| 	int new_height = new_bottom - new_top;
 | |
| 	wlr_xdg_toplevel_set_size(toplevel->xdg_toplevel, new_width, new_height);
 | |
| }
 | |
| 
 | |
| static void process_cursor_motion(struct tinywl_server *server, uint32_t time) {
 | |
| 	/* If the mode is non-passthrough, delegate to those functions. */
 | |
| 	if (server->cursor_mode == TINYWL_CURSOR_MOVE) {
 | |
| 		process_cursor_move(server, time);
 | |
| 		return;
 | |
| 	} else if (server->cursor_mode == TINYWL_CURSOR_RESIZE) {
 | |
| 		process_cursor_resize(server, time);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Otherwise, find the toplevel under the pointer and send the event along. */
 | |
| 	double sx, sy;
 | |
| 	struct wlr_seat *seat = server->seat;
 | |
| 	struct wlr_surface *surface = NULL;
 | |
| 	struct tinywl_toplevel *toplevel = desktop_toplevel_at(server,
 | |
| 			server->cursor->x, server->cursor->y, &surface, &sx, &sy);
 | |
| 	if (!toplevel) {
 | |
| 		/* If there's no toplevel under the cursor, set the cursor image to a
 | |
| 		 * default. This is what makes the cursor image appear when you move it
 | |
| 		 * around the screen, not over any toplevels. */
 | |
| 		wlr_cursor_set_xcursor(server->cursor, server->cursor_mgr, "default");
 | |
| 	}
 | |
| 	if (surface) {
 | |
| 		/*
 | |
| 		 * Send pointer enter and motion events.
 | |
| 		 *
 | |
| 		 * The enter event gives the surface "pointer focus", which is distinct
 | |
| 		 * from keyboard focus. You get pointer focus by moving the pointer over
 | |
| 		 * a window.
 | |
| 		 *
 | |
| 		 * Note that wlroots will avoid sending duplicate enter/motion events if
 | |
| 		 * the surface has already has pointer focus or if the client is already
 | |
| 		 * aware of the coordinates passed.
 | |
| 		 */
 | |
| 		wlr_seat_pointer_notify_enter(seat, surface, sx, sy);
 | |
| 		wlr_seat_pointer_notify_motion(seat, time, sx, sy);
 | |
| 	} else {
 | |
| 		/* Clear pointer focus so future button events and such are not sent to
 | |
| 		 * the last client to have the cursor over it. */
 | |
| 		wlr_seat_pointer_clear_focus(seat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void server_cursor_motion(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is forwarded by the cursor when a pointer emits a _relative_
 | |
| 	 * pointer motion event (i.e. a delta) */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, cursor_motion);
 | |
| 	struct wlr_pointer_motion_event *event = data;
 | |
| 	/* The cursor doesn't move unless we tell it to. The cursor automatically
 | |
| 	 * handles constraining the motion to the output layout, as well as any
 | |
| 	 * special configuration applied for the specific input device which
 | |
| 	 * generated the event. You can pass NULL for the device if you want to move
 | |
| 	 * the cursor around without any input. */
 | |
| 	wlr_cursor_move(server->cursor, &event->pointer->base,
 | |
| 			event->delta_x, event->delta_y);
 | |
| 	process_cursor_motion(server, event->time_msec);
 | |
| }
 | |
| 
 | |
| static void server_cursor_motion_absolute(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is forwarded by the cursor when a pointer emits an _absolute_
 | |
| 	 * motion event, from 0..1 on each axis. This happens, for example, when
 | |
| 	 * wlroots is running under a Wayland window rather than KMS+DRM, and you
 | |
| 	 * move the mouse over the window. You could enter the window from any edge,
 | |
| 	 * so we have to warp the mouse there. There is also some hardware which
 | |
| 	 * emits these events. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, cursor_motion_absolute);
 | |
| 	struct wlr_pointer_motion_absolute_event *event = data;
 | |
| 	wlr_cursor_warp_absolute(server->cursor, &event->pointer->base, event->x,
 | |
| 		event->y);
 | |
| 	process_cursor_motion(server, event->time_msec);
 | |
| }
 | |
| 
 | |
| static void server_cursor_button(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is forwarded by the cursor when a pointer emits a button
 | |
| 	 * event. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, cursor_button);
 | |
| 	struct wlr_pointer_button_event *event = data;
 | |
| 	/* Notify the client with pointer focus that a button press has occurred */
 | |
| 	wlr_seat_pointer_notify_button(server->seat,
 | |
| 			event->time_msec, event->button, event->state);
 | |
| 	double sx, sy;
 | |
| 	struct wlr_surface *surface = NULL;
 | |
| 	struct tinywl_toplevel *toplevel = desktop_toplevel_at(server,
 | |
| 			server->cursor->x, server->cursor->y, &surface, &sx, &sy);
 | |
| 	if (event->state == WL_POINTER_BUTTON_STATE_RELEASED) {
 | |
| 		/* If you released any buttons, we exit interactive move/resize mode. */
 | |
| 		reset_cursor_mode(server);
 | |
| 	} else {
 | |
| 		/* Focus that client if the button was _pressed_ */
 | |
| 		focus_toplevel(toplevel, surface);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void server_cursor_axis(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is forwarded by the cursor when a pointer emits an axis event,
 | |
| 	 * for example when you move the scroll wheel. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, cursor_axis);
 | |
| 	struct wlr_pointer_axis_event *event = data;
 | |
| 	/* Notify the client with pointer focus of the axis event. */
 | |
| 	wlr_seat_pointer_notify_axis(server->seat,
 | |
| 			event->time_msec, event->orientation, event->delta,
 | |
| 			event->delta_discrete, event->source, event->relative_direction);
 | |
| }
 | |
| 
 | |
| static void server_cursor_frame(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is forwarded by the cursor when a pointer emits an frame
 | |
| 	 * event. Frame events are sent after regular pointer events to group
 | |
| 	 * multiple events together. For instance, two axis events may happen at the
 | |
| 	 * same time, in which case a frame event won't be sent in between. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, cursor_frame);
 | |
| 	/* Notify the client with pointer focus of the frame event. */
 | |
| 	wlr_seat_pointer_notify_frame(server->seat);
 | |
| }
 | |
| 
 | |
| static void output_frame(struct wl_listener *listener, void *data) {
 | |
| 	/* This function is called every time an output is ready to display a frame,
 | |
| 	 * generally at the output's refresh rate (e.g. 60Hz). */
 | |
| 	struct tinywl_output *output = wl_container_of(listener, output, frame);
 | |
| 	struct wlr_scene *scene = output->server->scene;
 | |
| 
 | |
| 	struct wlr_scene_output *scene_output = wlr_scene_get_scene_output(
 | |
| 		scene, output->wlr_output);
 | |
| 
 | |
| 	/* Render the scene if needed and commit the output */
 | |
| 	wlr_scene_output_commit(scene_output, NULL);
 | |
| 
 | |
| 	struct timespec now;
 | |
| 	clock_gettime(CLOCK_MONOTONIC, &now);
 | |
| 	wlr_scene_output_send_frame_done(scene_output, &now);
 | |
| }
 | |
| 
 | |
| static void output_request_state(struct wl_listener *listener, void *data) {
 | |
| 	/* This function is called when the backend requests a new state for
 | |
| 	 * the output. For example, Wayland and X11 backends request a new mode
 | |
| 	 * when the output window is resized. */
 | |
| 	struct tinywl_output *output = wl_container_of(listener, output, request_state);
 | |
| 	const struct wlr_output_event_request_state *event = data;
 | |
| 	wlr_output_commit_state(output->wlr_output, event->state);
 | |
| }
 | |
| 
 | |
| static void output_destroy(struct wl_listener *listener, void *data) {
 | |
| 	struct tinywl_output *output = wl_container_of(listener, output, destroy);
 | |
| 
 | |
| 	wl_list_remove(&output->frame.link);
 | |
| 	wl_list_remove(&output->request_state.link);
 | |
| 	wl_list_remove(&output->destroy.link);
 | |
| 	wl_list_remove(&output->link);
 | |
| 	free(output);
 | |
| }
 | |
| 
 | |
| static void server_new_output(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised by the backend when a new output (aka a display or
 | |
| 	 * monitor) becomes available. */
 | |
| 	struct tinywl_server *server =
 | |
| 		wl_container_of(listener, server, new_output);
 | |
| 	struct wlr_output *wlr_output = data;
 | |
| 
 | |
| 	/* Configures the output created by the backend to use our allocator
 | |
| 	 * and our renderer. Must be done once, before commiting the output */
 | |
| 	wlr_output_init_render(wlr_output, server->allocator, server->renderer);
 | |
| 
 | |
| 	/* The output may be disabled, switch it on. */
 | |
| 	struct wlr_output_state state;
 | |
| 	wlr_output_state_init(&state);
 | |
| 	wlr_output_state_set_enabled(&state, true);
 | |
| 
 | |
| 	/* Some backends don't have modes. DRM+KMS does, and we need to set a mode
 | |
| 	 * before we can use the output. The mode is a tuple of (width, height,
 | |
| 	 * refresh rate), and each monitor supports only a specific set of modes. We
 | |
| 	 * just pick the monitor's preferred mode, a more sophisticated compositor
 | |
| 	 * would let the user configure it. */
 | |
| 	struct wlr_output_mode *mode = wlr_output_preferred_mode(wlr_output);
 | |
| 	if (mode != NULL) {
 | |
| 		wlr_output_state_set_mode(&state, mode);
 | |
| 	}
 | |
| 
 | |
| 	/* Atomically applies the new output state. */
 | |
| 	wlr_output_commit_state(wlr_output, &state);
 | |
| 	wlr_output_state_finish(&state);
 | |
| 
 | |
| 	/* Allocates and configures our state for this output */
 | |
| 	struct tinywl_output *output = calloc(1, sizeof(*output));
 | |
| 	output->wlr_output = wlr_output;
 | |
| 	output->server = server;
 | |
| 
 | |
| 	/* Sets up a listener for the frame event. */
 | |
| 	output->frame.notify = output_frame;
 | |
| 	wl_signal_add(&wlr_output->events.frame, &output->frame);
 | |
| 
 | |
| 	/* Sets up a listener for the state request event. */
 | |
| 	output->request_state.notify = output_request_state;
 | |
| 	wl_signal_add(&wlr_output->events.request_state, &output->request_state);
 | |
| 
 | |
| 	/* Sets up a listener for the destroy event. */
 | |
| 	output->destroy.notify = output_destroy;
 | |
| 	wl_signal_add(&wlr_output->events.destroy, &output->destroy);
 | |
| 
 | |
| 	wl_list_insert(&server->outputs, &output->link);
 | |
| 
 | |
| 	/* Adds this to the output layout. The add_auto function arranges outputs
 | |
| 	 * from left-to-right in the order they appear. A more sophisticated
 | |
| 	 * compositor would let the user configure the arrangement of outputs in the
 | |
| 	 * layout.
 | |
| 	 *
 | |
| 	 * The output layout utility automatically adds a wl_output global to the
 | |
| 	 * display, which Wayland clients can see to find out information about the
 | |
| 	 * output (such as DPI, scale factor, manufacturer, etc).
 | |
| 	 */
 | |
| 	struct wlr_output_layout_output *l_output = wlr_output_layout_add_auto(server->output_layout,
 | |
| 		wlr_output);
 | |
| 	struct wlr_scene_output *scene_output = wlr_scene_output_create(server->scene, wlr_output);
 | |
| 	wlr_scene_output_layout_add_output(server->scene_layout, l_output, scene_output);
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_map(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when the surface is mapped, or ready to display on-screen. */
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, map);
 | |
| 
 | |
| 	wl_list_insert(&toplevel->server->toplevels, &toplevel->link);
 | |
| 
 | |
| 	focus_toplevel(toplevel, toplevel->xdg_toplevel->base->surface);
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_unmap(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when the surface is unmapped, and should no longer be shown. */
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, unmap);
 | |
| 
 | |
| 	/* Reset the cursor mode if the grabbed toplevel was unmapped. */
 | |
| 	if (toplevel == toplevel->server->grabbed_toplevel) {
 | |
| 		reset_cursor_mode(toplevel->server);
 | |
| 	}
 | |
| 
 | |
| 	wl_list_remove(&toplevel->link);
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_commit(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when a new surface state is committed. */
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, commit);
 | |
| 
 | |
| 	if (toplevel->xdg_toplevel->base->initial_commit) {
 | |
| 		/* When an xdg_surface performs an initial commit, the compositor must
 | |
| 		 * reply with a configure so the client can map the surface. tinywl
 | |
| 		 * configures the xdg_toplevel with 0,0 size to let the client pick the
 | |
| 		 * dimensions itself. */
 | |
| 		wlr_xdg_toplevel_set_size(toplevel->xdg_toplevel, 0, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_destroy(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when the xdg_toplevel is destroyed. */
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, destroy);
 | |
| 
 | |
| 	wl_list_remove(&toplevel->map.link);
 | |
| 	wl_list_remove(&toplevel->unmap.link);
 | |
| 	wl_list_remove(&toplevel->commit.link);
 | |
| 	wl_list_remove(&toplevel->destroy.link);
 | |
| 	wl_list_remove(&toplevel->request_move.link);
 | |
| 	wl_list_remove(&toplevel->request_resize.link);
 | |
| 	wl_list_remove(&toplevel->request_maximize.link);
 | |
| 	wl_list_remove(&toplevel->request_fullscreen.link);
 | |
| 
 | |
| 	free(toplevel);
 | |
| }
 | |
| 
 | |
| static void begin_interactive(struct tinywl_toplevel *toplevel,
 | |
| 		enum tinywl_cursor_mode mode, uint32_t edges) {
 | |
| 	/* This function sets up an interactive move or resize operation, where the
 | |
| 	 * compositor stops propegating pointer events to clients and instead
 | |
| 	 * consumes them itself, to move or resize windows. */
 | |
| 	struct tinywl_server *server = toplevel->server;
 | |
| 	struct wlr_surface *focused_surface =
 | |
| 		server->seat->pointer_state.focused_surface;
 | |
| 	if (toplevel->xdg_toplevel->base->surface !=
 | |
| 			wlr_surface_get_root_surface(focused_surface)) {
 | |
| 		/* Deny move/resize requests from unfocused clients. */
 | |
| 		return;
 | |
| 	}
 | |
| 	server->grabbed_toplevel = toplevel;
 | |
| 	server->cursor_mode = mode;
 | |
| 
 | |
| 	if (mode == TINYWL_CURSOR_MOVE) {
 | |
| 		server->grab_x = server->cursor->x - toplevel->scene_tree->node.x;
 | |
| 		server->grab_y = server->cursor->y - toplevel->scene_tree->node.y;
 | |
| 	} else {
 | |
| 		struct wlr_box geo_box;
 | |
| 		wlr_xdg_surface_get_geometry(toplevel->xdg_toplevel->base, &geo_box);
 | |
| 
 | |
| 		double border_x = (toplevel->scene_tree->node.x + geo_box.x) +
 | |
| 			((edges & WLR_EDGE_RIGHT) ? geo_box.width : 0);
 | |
| 		double border_y = (toplevel->scene_tree->node.y + geo_box.y) +
 | |
| 			((edges & WLR_EDGE_BOTTOM) ? geo_box.height : 0);
 | |
| 		server->grab_x = server->cursor->x - border_x;
 | |
| 		server->grab_y = server->cursor->y - border_y;
 | |
| 
 | |
| 		server->grab_geobox = geo_box;
 | |
| 		server->grab_geobox.x += toplevel->scene_tree->node.x;
 | |
| 		server->grab_geobox.y += toplevel->scene_tree->node.y;
 | |
| 
 | |
| 		server->resize_edges = edges;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_request_move(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a client would like to begin an interactive
 | |
| 	 * move, typically because the user clicked on their client-side
 | |
| 	 * decorations. Note that a more sophisticated compositor should check the
 | |
| 	 * provided serial against a list of button press serials sent to this
 | |
| 	 * client, to prevent the client from requesting this whenever they want. */
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_move);
 | |
| 	begin_interactive(toplevel, TINYWL_CURSOR_MOVE, 0);
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_request_resize(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a client would like to begin an interactive
 | |
| 	 * resize, typically because the user clicked on their client-side
 | |
| 	 * decorations. Note that a more sophisticated compositor should check the
 | |
| 	 * provided serial against a list of button press serials sent to this
 | |
| 	 * client, to prevent the client from requesting this whenever they want. */
 | |
| 	struct wlr_xdg_toplevel_resize_event *event = data;
 | |
| 	struct tinywl_toplevel *toplevel = wl_container_of(listener, toplevel, request_resize);
 | |
| 	begin_interactive(toplevel, TINYWL_CURSOR_RESIZE, event->edges);
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_request_maximize(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a client would like to maximize itself,
 | |
| 	 * typically because the user clicked on the maximize button on client-side
 | |
| 	 * decorations. tinywl doesn't support maximization, but to conform to
 | |
| 	 * xdg-shell protocol we still must send a configure.
 | |
| 	 * wlr_xdg_surface_schedule_configure() is used to send an empty reply.
 | |
| 	 * However, if the request was sent before an initial commit, we don't do
 | |
| 	 * anything and let the client finish the initial surface setup. */
 | |
| 	struct tinywl_toplevel *toplevel =
 | |
| 		wl_container_of(listener, toplevel, request_maximize);
 | |
| 	if (toplevel->xdg_toplevel->base->initialized) {
 | |
| 		wlr_xdg_surface_schedule_configure(toplevel->xdg_toplevel->base);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xdg_toplevel_request_fullscreen(
 | |
| 		struct wl_listener *listener, void *data) {
 | |
| 	/* Just as with request_maximize, we must send a configure here. */
 | |
| 	struct tinywl_toplevel *toplevel =
 | |
| 		wl_container_of(listener, toplevel, request_fullscreen);
 | |
| 	if (toplevel->xdg_toplevel->base->initialized) {
 | |
| 		wlr_xdg_surface_schedule_configure(toplevel->xdg_toplevel->base);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void server_new_xdg_toplevel(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a client creates a new toplevel (application window). */
 | |
| 	struct tinywl_server *server = wl_container_of(listener, server, new_xdg_toplevel);
 | |
| 	struct wlr_xdg_toplevel *xdg_toplevel = data;
 | |
| 
 | |
| 	/* Allocate a tinywl_toplevel for this surface */
 | |
| 	struct tinywl_toplevel *toplevel = calloc(1, sizeof(*toplevel));
 | |
| 	toplevel->server = server;
 | |
| 	toplevel->xdg_toplevel = xdg_toplevel;
 | |
| 	toplevel->scene_tree =
 | |
| 		wlr_scene_xdg_surface_create(&toplevel->server->scene->tree, xdg_toplevel->base);
 | |
| 	toplevel->scene_tree->node.data = toplevel;
 | |
| 	xdg_toplevel->base->data = toplevel->scene_tree;
 | |
| 
 | |
| 	/* Listen to the various events it can emit */
 | |
| 	toplevel->map.notify = xdg_toplevel_map;
 | |
| 	wl_signal_add(&xdg_toplevel->base->surface->events.map, &toplevel->map);
 | |
| 	toplevel->unmap.notify = xdg_toplevel_unmap;
 | |
| 	wl_signal_add(&xdg_toplevel->base->surface->events.unmap, &toplevel->unmap);
 | |
| 	toplevel->commit.notify = xdg_toplevel_commit;
 | |
| 	wl_signal_add(&xdg_toplevel->base->surface->events.commit, &toplevel->commit);
 | |
| 
 | |
| 	toplevel->destroy.notify = xdg_toplevel_destroy;
 | |
| 	wl_signal_add(&xdg_toplevel->events.destroy, &toplevel->destroy);
 | |
| 
 | |
| 	/* cotd */
 | |
| 	toplevel->request_move.notify = xdg_toplevel_request_move;
 | |
| 	wl_signal_add(&xdg_toplevel->events.request_move, &toplevel->request_move);
 | |
| 	toplevel->request_resize.notify = xdg_toplevel_request_resize;
 | |
| 	wl_signal_add(&xdg_toplevel->events.request_resize, &toplevel->request_resize);
 | |
| 	toplevel->request_maximize.notify = xdg_toplevel_request_maximize;
 | |
| 	wl_signal_add(&xdg_toplevel->events.request_maximize, &toplevel->request_maximize);
 | |
| 	toplevel->request_fullscreen.notify = xdg_toplevel_request_fullscreen;
 | |
| 	wl_signal_add(&xdg_toplevel->events.request_fullscreen, &toplevel->request_fullscreen);
 | |
| }
 | |
| 
 | |
| static void xdg_popup_commit(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when a new surface state is committed. */
 | |
| 	struct tinywl_popup *popup = wl_container_of(listener, popup, commit);
 | |
| 
 | |
| 	if (popup->xdg_popup->base->initial_commit) {
 | |
| 		/* When an xdg_surface performs an initial commit, the compositor must
 | |
| 		 * reply with a configure so the client can map the surface.
 | |
| 		 * tinywl sends an empty configure. A more sophisticated compositor
 | |
| 		 * might change an xdg_popup's geometry to ensure it's not positioned
 | |
| 		 * off-screen, for example. */
 | |
| 		wlr_xdg_surface_schedule_configure(popup->xdg_popup->base);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void xdg_popup_destroy(struct wl_listener *listener, void *data) {
 | |
| 	/* Called when the xdg_popup is destroyed. */
 | |
| 	struct tinywl_popup *popup = wl_container_of(listener, popup, destroy);
 | |
| 
 | |
| 	wl_list_remove(&popup->commit.link);
 | |
| 	wl_list_remove(&popup->destroy.link);
 | |
| 
 | |
| 	free(popup);
 | |
| }
 | |
| 
 | |
| static void server_new_xdg_popup(struct wl_listener *listener, void *data) {
 | |
| 	/* This event is raised when a client creates a new popup. */
 | |
| 	struct wlr_xdg_popup *xdg_popup = data;
 | |
| 
 | |
| 	struct tinywl_popup *popup = calloc(1, sizeof(*popup));
 | |
| 	popup->xdg_popup = xdg_popup;
 | |
| 
 | |
| 	/* We must add xdg popups to the scene graph so they get rendered. The
 | |
| 	 * wlroots scene graph provides a helper for this, but to use it we must
 | |
| 	 * provide the proper parent scene node of the xdg popup. To enable this,
 | |
| 	 * we always set the user data field of xdg_surfaces to the corresponding
 | |
| 	 * scene node. */
 | |
| 	struct wlr_xdg_surface *parent = wlr_xdg_surface_try_from_wlr_surface(xdg_popup->parent);
 | |
| 	assert(parent != NULL);
 | |
| 	struct wlr_scene_tree *parent_tree = parent->data;
 | |
| 	xdg_popup->base->data = wlr_scene_xdg_surface_create(parent_tree, xdg_popup->base);
 | |
| 
 | |
| 	popup->commit.notify = xdg_popup_commit;
 | |
| 	wl_signal_add(&xdg_popup->base->surface->events.commit, &popup->commit);
 | |
| 
 | |
| 	popup->destroy.notify = xdg_popup_destroy;
 | |
| 	wl_signal_add(&xdg_popup->events.destroy, &popup->destroy);
 | |
| }
 | |
| 
 | |
| int main(int argc, char *argv[]) {
 | |
| 	wlr_log_init(WLR_DEBUG, NULL);
 | |
| 	char *startup_cmd = NULL;
 | |
| 
 | |
| 	int c;
 | |
| 	while ((c = getopt(argc, argv, "s:h")) != -1) {
 | |
| 		switch (c) {
 | |
| 		case 's':
 | |
| 			startup_cmd = optarg;
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("Usage: %s [-s startup command]\n", argv[0]);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	if (optind < argc) {
 | |
| 		printf("Usage: %s [-s startup command]\n", argv[0]);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	struct tinywl_server server = {0};
 | |
| 	/* The Wayland display is managed by libwayland. It handles accepting
 | |
| 	 * clients from the Unix socket, manging Wayland globals, and so on. */
 | |
| 	server.wl_display = wl_display_create();
 | |
| 	/* The backend is a wlroots feature which abstracts the underlying input and
 | |
| 	 * output hardware. The autocreate option will choose the most suitable
 | |
| 	 * backend based on the current environment, such as opening an X11 window
 | |
| 	 * if an X11 server is running. */
 | |
| 	server.backend = wlr_backend_autocreate(wl_display_get_event_loop(server.wl_display), NULL);
 | |
| 	if (server.backend == NULL) {
 | |
| 		wlr_log(WLR_ERROR, "failed to create wlr_backend");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Autocreates a renderer, either Pixman, GLES2 or Vulkan for us. The user
 | |
| 	 * can also specify a renderer using the WLR_RENDERER env var.
 | |
| 	 * The renderer is responsible for defining the various pixel formats it
 | |
| 	 * supports for shared memory, this configures that for clients. */
 | |
| 	server.renderer = wlr_renderer_autocreate(server.backend);
 | |
| 	if (server.renderer == NULL) {
 | |
| 		wlr_log(WLR_ERROR, "failed to create wlr_renderer");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	wlr_renderer_init_wl_display(server.renderer, server.wl_display);
 | |
| 
 | |
| 	/* Autocreates an allocator for us.
 | |
| 	 * The allocator is the bridge between the renderer and the backend. It
 | |
| 	 * handles the buffer creation, allowing wlroots to render onto the
 | |
| 	 * screen */
 | |
| 	server.allocator = wlr_allocator_autocreate(server.backend,
 | |
| 		server.renderer);
 | |
| 	if (server.allocator == NULL) {
 | |
| 		wlr_log(WLR_ERROR, "failed to create wlr_allocator");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* This creates some hands-off wlroots interfaces. The compositor is
 | |
| 	 * necessary for clients to allocate surfaces, the subcompositor allows to
 | |
| 	 * assign the role of subsurfaces to surfaces and the data device manager
 | |
| 	 * handles the clipboard. Each of these wlroots interfaces has room for you
 | |
| 	 * to dig your fingers in and play with their behavior if you want. Note that
 | |
| 	 * the clients cannot set the selection directly without compositor approval,
 | |
| 	 * see the handling of the request_set_selection event below.*/
 | |
| 	wlr_compositor_create(server.wl_display, 5, server.renderer);
 | |
| 	wlr_subcompositor_create(server.wl_display);
 | |
| 	wlr_data_device_manager_create(server.wl_display);
 | |
| 
 | |
| 	/* Creates an output layout, which a wlroots utility for working with an
 | |
| 	 * arrangement of screens in a physical layout. */
 | |
| 	server.output_layout = wlr_output_layout_create(server.wl_display);
 | |
| 
 | |
| 	/* Configure a listener to be notified when new outputs are available on the
 | |
| 	 * backend. */
 | |
| 	wl_list_init(&server.outputs);
 | |
| 	server.new_output.notify = server_new_output;
 | |
| 	wl_signal_add(&server.backend->events.new_output, &server.new_output);
 | |
| 
 | |
| 	/* Create a scene graph. This is a wlroots abstraction that handles all
 | |
| 	 * rendering and damage tracking. All the compositor author needs to do
 | |
| 	 * is add things that should be rendered to the scene graph at the proper
 | |
| 	 * positions and then call wlr_scene_output_commit() to render a frame if
 | |
| 	 * necessary.
 | |
| 	 */
 | |
| 	server.scene = wlr_scene_create();
 | |
| 	server.scene_layout = wlr_scene_attach_output_layout(server.scene, server.output_layout);
 | |
| 
 | |
| 	/* Set up xdg-shell version 3. The xdg-shell is a Wayland protocol which is
 | |
| 	 * used for application windows. For more detail on shells, refer to
 | |
| 	 * https://drewdevault.com/2018/07/29/Wayland-shells.html.
 | |
| 	 */
 | |
| 	wl_list_init(&server.toplevels);
 | |
| 	server.xdg_shell = wlr_xdg_shell_create(server.wl_display, 3);
 | |
| 	server.new_xdg_toplevel.notify = server_new_xdg_toplevel;
 | |
| 	wl_signal_add(&server.xdg_shell->events.new_toplevel, &server.new_xdg_toplevel);
 | |
| 	server.new_xdg_popup.notify = server_new_xdg_popup;
 | |
| 	wl_signal_add(&server.xdg_shell->events.new_popup, &server.new_xdg_popup);
 | |
| 
 | |
| 	/*
 | |
| 	 * Creates a cursor, which is a wlroots utility for tracking the cursor
 | |
| 	 * image shown on screen.
 | |
| 	 */
 | |
| 	server.cursor = wlr_cursor_create();
 | |
| 	wlr_cursor_attach_output_layout(server.cursor, server.output_layout);
 | |
| 
 | |
| 	/* Creates an xcursor manager, another wlroots utility which loads up
 | |
| 	 * Xcursor themes to source cursor images from and makes sure that cursor
 | |
| 	 * images are available at all scale factors on the screen (necessary for
 | |
| 	 * HiDPI support). */
 | |
| 	server.cursor_mgr = wlr_xcursor_manager_create(NULL, 24);
 | |
| 
 | |
| 	/*
 | |
| 	 * wlr_cursor *only* displays an image on screen. It does not move around
 | |
| 	 * when the pointer moves. However, we can attach input devices to it, and
 | |
| 	 * it will generate aggregate events for all of them. In these events, we
 | |
| 	 * can choose how we want to process them, forwarding them to clients and
 | |
| 	 * moving the cursor around. More detail on this process is described in
 | |
| 	 * https://drewdevault.com/2018/07/17/Input-handling-in-wlroots.html.
 | |
| 	 *
 | |
| 	 * And more comments are sprinkled throughout the notify functions above.
 | |
| 	 */
 | |
| 	server.cursor_mode = TINYWL_CURSOR_PASSTHROUGH;
 | |
| 	server.cursor_motion.notify = server_cursor_motion;
 | |
| 	wl_signal_add(&server.cursor->events.motion, &server.cursor_motion);
 | |
| 	server.cursor_motion_absolute.notify = server_cursor_motion_absolute;
 | |
| 	wl_signal_add(&server.cursor->events.motion_absolute,
 | |
| 			&server.cursor_motion_absolute);
 | |
| 	server.cursor_button.notify = server_cursor_button;
 | |
| 	wl_signal_add(&server.cursor->events.button, &server.cursor_button);
 | |
| 	server.cursor_axis.notify = server_cursor_axis;
 | |
| 	wl_signal_add(&server.cursor->events.axis, &server.cursor_axis);
 | |
| 	server.cursor_frame.notify = server_cursor_frame;
 | |
| 	wl_signal_add(&server.cursor->events.frame, &server.cursor_frame);
 | |
| 
 | |
| 	/*
 | |
| 	 * Configures a seat, which is a single "seat" at which a user sits and
 | |
| 	 * operates the computer. This conceptually includes up to one keyboard,
 | |
| 	 * pointer, touch, and drawing tablet device. We also rig up a listener to
 | |
| 	 * let us know when new input devices are available on the backend.
 | |
| 	 */
 | |
| 	wl_list_init(&server.keyboards);
 | |
| 	server.new_input.notify = server_new_input;
 | |
| 	wl_signal_add(&server.backend->events.new_input, &server.new_input);
 | |
| 	server.seat = wlr_seat_create(server.wl_display, "seat0");
 | |
| 	server.request_cursor.notify = seat_request_cursor;
 | |
| 	wl_signal_add(&server.seat->events.request_set_cursor,
 | |
| 			&server.request_cursor);
 | |
| 	server.request_set_selection.notify = seat_request_set_selection;
 | |
| 	wl_signal_add(&server.seat->events.request_set_selection,
 | |
| 			&server.request_set_selection);
 | |
| 
 | |
| 	/* Add a Unix socket to the Wayland display. */
 | |
| 	const char *socket = wl_display_add_socket_auto(server.wl_display);
 | |
| 	if (!socket) {
 | |
| 		wlr_backend_destroy(server.backend);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Start the backend. This will enumerate outputs and inputs, become the DRM
 | |
| 	 * master, etc */
 | |
| 	if (!wlr_backend_start(server.backend)) {
 | |
| 		wlr_backend_destroy(server.backend);
 | |
| 		wl_display_destroy(server.wl_display);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Set the WAYLAND_DISPLAY environment variable to our socket and run the
 | |
| 	 * startup command if requested. */
 | |
| 	setenv("WAYLAND_DISPLAY", socket, true);
 | |
| 	if (startup_cmd) {
 | |
| 		if (fork() == 0) {
 | |
| 			execl("/bin/sh", "/bin/sh", "-c", startup_cmd, (void *)NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Run the Wayland event loop. This does not return until you exit the
 | |
| 	 * compositor. Starting the backend rigged up all of the necessary event
 | |
| 	 * loop configuration to listen to libinput events, DRM events, generate
 | |
| 	 * frame events at the refresh rate, and so on. */
 | |
| 	wlr_log(WLR_INFO, "Running Wayland compositor on WAYLAND_DISPLAY=%s",
 | |
| 			socket);
 | |
| 	wl_display_run(server.wl_display);
 | |
| 
 | |
| 	/* Once wl_display_run returns, we destroy all clients then shut down the
 | |
| 	 * server. */
 | |
| 	wl_display_destroy_clients(server.wl_display);
 | |
| 	wlr_scene_node_destroy(&server.scene->tree.node);
 | |
| 	wlr_xcursor_manager_destroy(server.cursor_mgr);
 | |
| 	wlr_cursor_destroy(server.cursor);
 | |
| 	wlr_allocator_destroy(server.allocator);
 | |
| 	wlr_renderer_destroy(server.renderer);
 | |
| 	wlr_backend_destroy(server.backend);
 | |
| 	wl_display_destroy(server.wl_display);
 | |
| 	return 0;
 | |
| }
 |