mirror of
				https://gitlab.freedesktop.org/wayland/wayland.git
				synced 2025-10-29 05:40:16 -04:00 
			
		
		
		
	 0d314c4a04
			
		
	
	
		0d314c4a04
		
	
	
	
	
		
			
			Currently libwayland assumes GNU extensions will be available, but doesn't define the C standard to use. Instead, let's unconditionally enable POSIX extensions, and enable GNU extensions on a case-by-case basis as needed. Signed-off-by: Simon Ser <contact@emersion.fr>
		
			
				
	
	
		
			555 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			555 lines
		
	
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright © 2012 Intel Corporation
 | |
|  * Copyright © 2012 Jason Ekstrand
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining
 | |
|  * a copy of this software and associated documentation files (the
 | |
|  * "Software"), to deal in the Software without restriction, including
 | |
|  * without limitation the rights to use, copy, modify, merge, publish,
 | |
|  * distribute, sublicense, and/or sell copies of the Software, and to
 | |
|  * permit persons to whom the Software is furnished to do so, subject to
 | |
|  * the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the
 | |
|  * next paragraph) shall be included in all copies or substantial
 | |
|  * portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT.  IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #define _GNU_SOURCE
 | |
| #include <stdlib.h>
 | |
| #include <stdint.h>
 | |
| #include <assert.h>
 | |
| #include <unistd.h>
 | |
| #include <signal.h>
 | |
| #include <string.h>
 | |
| #include <sys/time.h>
 | |
| 
 | |
| #include "wayland-private.h"
 | |
| #include "wayland-server.h"
 | |
| #include "test-runner.h"
 | |
| 
 | |
| static int
 | |
| fd_dispatch(int fd, uint32_t mask, void *data)
 | |
| {
 | |
| 	int *p = data;
 | |
| 
 | |
| 	assert(mask == 0);
 | |
| 	++(*p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_post_dispatch_check)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct wl_event_source *source;
 | |
| 	int dispatch_ran = 0;
 | |
| 	int p[2];
 | |
| 
 | |
| 	assert(loop);
 | |
| 	assert(pipe(p) == 0);
 | |
| 
 | |
| 	source = wl_event_loop_add_fd(loop, p[0], WL_EVENT_READABLE,
 | |
| 				      fd_dispatch, &dispatch_ran);
 | |
| 	assert(source);
 | |
| 	wl_event_source_check(source);
 | |
| 
 | |
| 	wl_event_loop_dispatch(loop, 0);
 | |
| 	assert(dispatch_ran == 1);
 | |
| 
 | |
| 	assert(close(p[0]) == 0);
 | |
| 	assert(close(p[1]) == 0);
 | |
| 	wl_event_source_remove(source);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| struct free_source_context {
 | |
| 	struct wl_event_source *source1, *source2;
 | |
| 	int p1[2], p2[2];
 | |
| 	int count;
 | |
| };
 | |
| 
 | |
| static int
 | |
| free_source_callback(int fd, uint32_t mask, void *data)
 | |
| {
 | |
| 	struct free_source_context *context = data;
 | |
| 
 | |
| 	context->count++;
 | |
| 
 | |
| 	/* Remove other source */
 | |
| 	if (fd == context->p1[0]) {
 | |
| 		wl_event_source_remove(context->source2);
 | |
| 		context->source2 = NULL;
 | |
| 	} else if (fd == context->p2[0]) {
 | |
| 		wl_event_source_remove(context->source1);
 | |
| 		context->source1 = NULL;
 | |
| 	} else {
 | |
| 		assert(0);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_free_source_with_data)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct free_source_context context;
 | |
| 	int data;
 | |
| 
 | |
| 	/* This test is a little tricky to get right, since we don't
 | |
| 	 * have any guarantee from the event loop (ie epoll) on the
 | |
| 	 * order of which it reports events.  We want to have one
 | |
| 	 * source free the other, but we don't know which one is going
 | |
| 	 * to run first.  So we add two fd sources with a callback
 | |
| 	 * that frees the other source and check that only one of them
 | |
| 	 * run (and that we don't crash, of course).
 | |
| 	 */
 | |
| 
 | |
| 	assert(loop);
 | |
| 
 | |
| 	context.count = 0;
 | |
| 	assert(pipe(context.p1) == 0);
 | |
| 	assert(pipe(context.p2) == 0);
 | |
| 	context.source1 =
 | |
| 		wl_event_loop_add_fd(loop, context.p1[0], WL_EVENT_READABLE,
 | |
| 				     free_source_callback, &context);
 | |
| 	assert(context.source1);
 | |
| 	context.source2 =
 | |
| 		wl_event_loop_add_fd(loop, context.p2[0], WL_EVENT_READABLE,
 | |
| 				     free_source_callback, &context);
 | |
| 	assert(context.source2);
 | |
| 
 | |
| 	data = 5;
 | |
| 	assert(write(context.p1[1], &data, sizeof data) == sizeof data);
 | |
| 	assert(write(context.p2[1], &data, sizeof data) == sizeof data);
 | |
| 
 | |
| 	wl_event_loop_dispatch(loop, 0);
 | |
| 
 | |
| 	assert(context.count == 1);
 | |
| 
 | |
| 	if (context.source1)
 | |
| 		wl_event_source_remove(context.source1);
 | |
| 	if (context.source2)
 | |
| 		wl_event_source_remove(context.source2);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| 
 | |
| 	assert(close(context.p1[0]) == 0);
 | |
| 	assert(close(context.p1[1]) == 0);
 | |
| 	assert(close(context.p2[0]) == 0);
 | |
| 	assert(close(context.p2[1]) == 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| signal_callback(int signal_number, void *data)
 | |
| {
 | |
| 	int *got_it = data;
 | |
| 
 | |
| 	assert(signal_number == SIGUSR1);
 | |
| 	++(*got_it);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_signal)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct wl_event_source *source;
 | |
| 	int got_it = 0;
 | |
| 
 | |
| 	source = wl_event_loop_add_signal(loop, SIGUSR1,
 | |
| 					  signal_callback, &got_it);
 | |
| 	assert(source);
 | |
| 
 | |
| 	assert(wl_event_loop_dispatch(loop, 0) == 0);
 | |
| 	assert(!got_it);
 | |
| 	assert(kill(getpid(), SIGUSR1) == 0);
 | |
| 	/*
 | |
| 	 * On Linux the signal will be immediately visible in the epoll_wait()
 | |
| 	 * call. However, on FreeBSD we may need a small delay between kill()
 | |
| 	 * call and the signal being visible to the kevent() call. This
 | |
| 	 * sometimes happens when the signal processing and kevent processing
 | |
| 	 * runs on different CPUs, so becomes more likely when the system is
 | |
| 	 * under load (e.g. running all tests in parallel).
 | |
| 	 * See https://github.com/jiixyj/epoll-shim/pull/32
 | |
| 	 * Passing 1ms as the timeout appears to avoid this race condition in
 | |
| 	 * all cases tested so far, but to be safe we use 1000ms which should
 | |
| 	 * be enough time even on a really slow (or emulated) system.
 | |
| 	 */
 | |
| 	assert(wl_event_loop_dispatch(loop, 1000) == 0);
 | |
| 	assert(got_it == 1);
 | |
| 
 | |
| 	wl_event_source_remove(source);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| TEST(event_loop_multiple_same_signals)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct wl_event_source *s1, *s2;
 | |
| 	int calls_no = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	s1 = wl_event_loop_add_signal(loop, SIGUSR1,
 | |
| 				      signal_callback, &calls_no);
 | |
| 	assert(s1);
 | |
| 
 | |
| 	s2 = wl_event_loop_add_signal(loop, SIGUSR1,
 | |
| 				      signal_callback, &calls_no);
 | |
| 	assert(s2);
 | |
| 
 | |
| 	assert(wl_event_loop_dispatch(loop, 0) == 0);
 | |
| 	assert(!calls_no);
 | |
| 
 | |
| 	/* Try it more times */
 | |
| 	for (i = 0; i < 5; ++i) {
 | |
| 		calls_no = 0;
 | |
| 		assert(kill(getpid(), SIGUSR1) == 0);
 | |
| 		/*
 | |
| 		 * We need a non-zero timeout here to allow the test to pass
 | |
| 		 * on non-Linux systems (see comment in event_loop_signal).
 | |
| 		 */
 | |
| 		assert(wl_event_loop_dispatch(loop, 1000) == 0);
 | |
| 		assert(calls_no == 2);
 | |
| 	}
 | |
| 
 | |
| 	wl_event_source_remove(s1);
 | |
| 
 | |
| 	/* Try it again  with one source */
 | |
| 	calls_no = 0;
 | |
| 	assert(kill(getpid(), SIGUSR1) == 0);
 | |
| 	/*
 | |
| 	 * We need a non-zero timeout here to allow the test to pass
 | |
| 	 * on non-Linux systems (see comment in event_loop_signal).
 | |
| 	 */
 | |
| 	assert(wl_event_loop_dispatch(loop, 1000) == 0);
 | |
| 	assert(calls_no == 1);
 | |
| 
 | |
| 	wl_event_source_remove(s2);
 | |
| 
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| static int
 | |
| timer_callback(void *data)
 | |
| {
 | |
| 	int *got_it = data;
 | |
| 
 | |
| 	++(*got_it);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_timer)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct wl_event_source *source1, *source2;
 | |
| 	int got_it = 0;
 | |
| 
 | |
| 	source1 = wl_event_loop_add_timer(loop, timer_callback, &got_it);
 | |
| 	assert(source1);
 | |
| 	wl_event_source_timer_update(source1, 20);
 | |
| 
 | |
| 	source2 = wl_event_loop_add_timer(loop, timer_callback, &got_it);
 | |
| 	assert(source2);
 | |
| 	wl_event_source_timer_update(source2, 100);
 | |
| 
 | |
| 	/* Check that the timer marked for 20 msec from now fires within 30
 | |
| 	 * msec, and that the timer marked for 100 msec is expected to fire
 | |
| 	 * within an additional 90 msec. (Some extra wait time is provided to
 | |
| 	 * account for reasonable code execution / thread preemption delays.) */
 | |
| 
 | |
| 	wl_event_loop_dispatch(loop, 0);
 | |
| 	assert(got_it == 0);
 | |
| 	wl_event_loop_dispatch(loop, 30);
 | |
| 	assert(got_it == 1);
 | |
| 	wl_event_loop_dispatch(loop, 0);
 | |
| 	assert(got_it == 1);
 | |
| 	wl_event_loop_dispatch(loop, 90);
 | |
| 	assert(got_it == 2);
 | |
| 
 | |
| 	wl_event_source_remove(source1);
 | |
| 	wl_event_source_remove(source2);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| #define MSEC_TO_USEC(msec) ((msec) * 1000)
 | |
| 
 | |
| struct timer_update_context {
 | |
| 	struct wl_event_source *source1, *source2;
 | |
| 	int count;
 | |
| };
 | |
| 
 | |
| static int
 | |
| timer_update_callback_1(void *data)
 | |
| {
 | |
| 	struct timer_update_context *context = data;
 | |
| 
 | |
| 	context->count++;
 | |
| 	wl_event_source_timer_update(context->source2, 1000);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| timer_update_callback_2(void *data)
 | |
| {
 | |
| 	struct timer_update_context *context = data;
 | |
| 
 | |
| 	context->count++;
 | |
| 	wl_event_source_timer_update(context->source1, 1000);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_timer_updates)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct timer_update_context context;
 | |
| 	struct timeval start_time, end_time, interval;
 | |
| 
 | |
| 	/* Create two timers that should expire at the same time (after 10ms).
 | |
| 	 * The first timer to receive its expiry callback updates the other timer
 | |
| 	 * with a much larger timeout (1s). This highlights a bug where
 | |
| 	 * wl_event_source_timer_dispatch would block for this larger timeout
 | |
| 	 * when reading from the timer fd, before calling the second timer's
 | |
| 	 * callback.
 | |
| 	 */
 | |
| 
 | |
| 	context.source1 = wl_event_loop_add_timer(loop, timer_update_callback_1,
 | |
| 						  &context);
 | |
| 	assert(context.source1);
 | |
| 	assert(wl_event_source_timer_update(context.source1, 10) == 0);
 | |
| 
 | |
| 	context.source2 = wl_event_loop_add_timer(loop, timer_update_callback_2,
 | |
| 						  &context);
 | |
| 	assert(context.source2);
 | |
| 	assert(wl_event_source_timer_update(context.source2, 10) == 0);
 | |
| 
 | |
| 	context.count = 0;
 | |
| 
 | |
| 	/* Since calling the functions between source2's update and
 | |
| 	 * wl_event_loop_dispatch() takes some time, it may happen
 | |
| 	 * that only one timer expires until we call epoll_wait.
 | |
| 	 * This naturally means that only one source is dispatched
 | |
| 	 * and the test fails. To fix that, sleep 15 ms before
 | |
| 	 * calling wl_event_loop_dispatch(). That should be enough
 | |
| 	 * for the second timer to expire.
 | |
| 	 *
 | |
| 	 * https://bugs.freedesktop.org/show_bug.cgi?id=80594
 | |
| 	 */
 | |
| 	usleep(MSEC_TO_USEC(15));
 | |
| 
 | |
| 	gettimeofday(&start_time, NULL);
 | |
| 	wl_event_loop_dispatch(loop, 20);
 | |
| 	gettimeofday(&end_time, NULL);
 | |
| 
 | |
| 	assert(context.count == 2);
 | |
| 
 | |
| 	/* Dispatching the events should not have taken much more than 20ms,
 | |
| 	 * since this is the timeout passed to wl_event_loop_dispatch. If it
 | |
| 	 * blocked, then it will have taken over 1s.
 | |
| 	 * Of course, it could take over 1s anyway on a very slow or heavily
 | |
| 	 * loaded system, so this test isn't 100% perfect.
 | |
| 	 */
 | |
| 
 | |
| 	timersub(&end_time, &start_time, &interval);
 | |
| 	assert(interval.tv_sec < 1);
 | |
| 
 | |
| 	wl_event_source_remove(context.source1);
 | |
| 	wl_event_source_remove(context.source2);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| struct timer_order_data {
 | |
| 	struct wl_event_source *source;
 | |
| 	int *last_number;
 | |
| 	int number;
 | |
| };
 | |
| 
 | |
| static int
 | |
| timer_order_callback(void *data)
 | |
| {
 | |
| 	struct timer_order_data *tod = data;
 | |
| 
 | |
| 	/* Check that the timers have the correct sequence */
 | |
| 	assert(tod->number == *tod->last_number + 2);
 | |
| 	*tod->last_number = tod->number;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_timer_order)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct timer_order_data order[20];
 | |
| 	int i, j;
 | |
| 	int last = -1;
 | |
| 
 | |
| 	/* Configure a set of timers so that only timers 1, 3, 5, ..., 19
 | |
| 	 * (in that order) will be dispatched when the event loop is run */
 | |
| 
 | |
| 	for (i = 0; i < 20; i++) {
 | |
| 		order[i].number = i;
 | |
| 		order[i].last_number = &last;
 | |
| 		order[i].source =
 | |
| 			wl_event_loop_add_timer(loop, timer_order_callback,
 | |
| 						&order[i]);
 | |
| 		assert(order[i].source);
 | |
| 		assert(wl_event_source_timer_update(order[i].source, 10) == 0);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 20; i++) {
 | |
| 		/* Permute the order in which timers are updated, so as to
 | |
| 		 * more exhaustively test the underlying priority queue code */
 | |
| 		j = ((i + 3) * 17) % 20;
 | |
| 		assert(wl_event_source_timer_update(order[j].source, j) == 0);
 | |
| 	}
 | |
| 	for (i = 0; i < 20; i += 2) {
 | |
| 		assert(wl_event_source_timer_update(order[i].source, 0) == 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Wait until all timers are due */
 | |
| 	usleep(MSEC_TO_USEC(21));
 | |
| 	wl_event_loop_dispatch(loop, 0);
 | |
| 	assert(last == 19);
 | |
| 
 | |
| 	for (i = 0; i < 20; i++) {
 | |
| 		wl_event_source_remove(order[i].source);
 | |
| 	}
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| struct timer_cancel_context {
 | |
| 	struct wl_event_source *timers[4];
 | |
| 	struct timer_cancel_context *back_refs[4];
 | |
| 	int order[4];
 | |
| 	int called, first;
 | |
| };
 | |
| 
 | |
| static int
 | |
| timer_cancel_callback(void *data) {
 | |
| 	struct timer_cancel_context **context_ref = data;
 | |
| 	struct timer_cancel_context *context = *context_ref;
 | |
| 	int i = (int)(context_ref - context->back_refs);
 | |
| 
 | |
| 	context->called++;
 | |
| 	context->order[i] = context->called;
 | |
| 
 | |
| 	if (context->called == 1) {
 | |
| 		context->first = i;
 | |
| 		/* Removing a timer always prevents its callback from
 | |
| 		 * being called ... */
 | |
| 		wl_event_source_remove(context->timers[(i + 1) % 4]);
 | |
| 		/* ... but disarming or rescheduling a timer does not,
 | |
| 		 * (in the case where the modified timers had already expired
 | |
| 		 * as of when `wl_event_loop_dispatch` was called.) */
 | |
| 		assert(wl_event_source_timer_update(context->timers[(i + 2) % 4],
 | |
| 						    0) == 0);
 | |
| 		assert(wl_event_source_timer_update(context->timers[(i + 3) % 4],
 | |
| 						    2000000000) == 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_timer_cancellation)
 | |
| {
 | |
| 	struct wl_event_loop *loop = wl_event_loop_create();
 | |
| 	struct timer_cancel_context context;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(&context, 0, sizeof(context));
 | |
| 
 | |
| 	/* Test that when multiple timers are dispatched in a single call
 | |
| 	 * of `wl_event_loop_dispatch`, that having some timers run code
 | |
| 	 * to modify the other timers only actually prevents the other timers
 | |
| 	 * from running their callbacks when the those timers are removed, not
 | |
| 	 * when they are disarmed or rescheduled. */
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		context.back_refs[i] = &context;
 | |
| 		context.timers[i] =
 | |
| 			wl_event_loop_add_timer(loop, timer_cancel_callback,
 | |
| 						&context.back_refs[i]);
 | |
| 		assert(context.timers[i]);
 | |
| 
 | |
| 		assert(wl_event_source_timer_update(context.timers[i], 1) == 0);
 | |
| 	}
 | |
| 
 | |
| 	usleep(MSEC_TO_USEC(2));
 | |
| 	assert(wl_event_loop_dispatch(loop, 0) == 0);
 | |
| 
 | |
| 	/* Tracking which timer was first makes this test independent of the
 | |
| 	 * actual timer dispatch order, which is not guaranteed by the docs */
 | |
| 	assert(context.order[context.first] == 1);
 | |
| 	assert(context.order[(context.first + 1) % 4] == 0);
 | |
| 	assert(context.order[(context.first + 2) % 4] > 1);
 | |
| 	assert(context.order[(context.first + 3) % 4] > 1);
 | |
| 
 | |
| 	wl_event_source_remove(context.timers[context.first]);
 | |
| 	wl_event_source_remove(context.timers[(context.first + 2) % 4]);
 | |
| 	wl_event_source_remove(context.timers[(context.first + 3) % 4]);
 | |
| 
 | |
| 	wl_event_loop_destroy(loop);
 | |
| }
 | |
| 
 | |
| struct event_loop_destroy_listener {
 | |
| 	struct wl_listener listener;
 | |
| 	int done;
 | |
| };
 | |
| 
 | |
| static void
 | |
| event_loop_destroy_notify(struct wl_listener *l, void *data)
 | |
| {
 | |
| 	struct event_loop_destroy_listener *listener =
 | |
| 		wl_container_of(l, listener, listener);
 | |
| 
 | |
| 	listener->done = 1;
 | |
| }
 | |
| 
 | |
| TEST(event_loop_destroy)
 | |
| {
 | |
| 	struct wl_event_loop *loop;
 | |
| 	struct wl_display * display;
 | |
| 	struct event_loop_destroy_listener a, b;
 | |
| 
 | |
| 	loop = wl_event_loop_create();
 | |
| 	assert(loop);
 | |
| 
 | |
| 	a.listener.notify = &event_loop_destroy_notify;
 | |
| 	a.done = 0;
 | |
| 	wl_event_loop_add_destroy_listener(loop, &a.listener);
 | |
| 
 | |
| 	assert(wl_event_loop_get_destroy_listener(loop,
 | |
| 	       event_loop_destroy_notify) == &a.listener);
 | |
| 
 | |
| 	b.listener.notify = &event_loop_destroy_notify;
 | |
| 	b.done = 0;
 | |
| 	wl_event_loop_add_destroy_listener(loop, &b.listener);
 | |
| 
 | |
| 	wl_list_remove(&a.listener.link);
 | |
| 	wl_event_loop_destroy(loop);
 | |
| 
 | |
| 	assert(!a.done);
 | |
| 	assert(b.done);
 | |
| 
 | |
| 	/* Test to make sure it gets fired on display destruction */
 | |
| 	display = wl_display_create();
 | |
| 	assert(display);
 | |
| 	loop = wl_display_get_event_loop(display);
 | |
| 	assert(loop);
 | |
| 
 | |
| 	a.done = 0;
 | |
| 	wl_event_loop_add_destroy_listener(loop, &a.listener);
 | |
| 
 | |
| 	wl_display_destroy(display);
 | |
| 
 | |
| 	assert(a.done);
 | |
| }
 | |
| 
 |