Updated for wlroots 0.13.0

This commit is contained in:
Keith Bowes 2021-04-07 19:27:58 -04:00
parent 6a6966b8d6
commit 309ccd2faf
7 changed files with 200 additions and 40 deletions

View file

@ -23,7 +23,7 @@ cc = meson.get_compiler('c')
# Adding include directory
inc_dir = include_directories('include')
wlroots = dependency('wlroots', version: ['>=0.9.0', '<0.13.0'])
wlroots = dependency('wlroots', version: '>=0.13.0')
wayland_server = dependency('wayland-server', version: '>=1.15')
wayland_protos = dependency('wayland-protocols', version: '>=1.17')
xkbcommon = dependency('xkbcommon')

View file

@ -110,7 +110,7 @@
- The output doesn't support gamma tables
- Setting the gamma tables failed
- Another client already has exclusive gamma control for this output
- The compositor has transfered gamma control to another client
- The compositor has transferred gamma control to another client
Upon receiving this event, the client should destroy this object.
</description>

View file

@ -25,7 +25,7 @@
THIS SOFTWARE.
</copyright>
<interface name="zwlr_layer_shell_v1" version="1">
<interface name="zwlr_layer_shell_v1" version="4">
<description summary="create surfaces that are layers of the desktop">
Clients can use this interface to assign the surface_layer role to
wl_surfaces. Such surfaces are assigned to a "layer" of the output and
@ -47,6 +47,12 @@
or manipulate a buffer prior to the first layer_surface.configure call
must also be treated as errors.
After creating a layer_surface object and setting it up, the client
must perform an initial commit without any buffer attached.
The compositor will reply with a layer_surface.configure event.
The client must acknowledge it and is then allowed to attach a buffer
to map the surface.
You may pass NULL for output to allow the compositor to decide which
output to use. Generally this will be the one that the user most
recently interacted with.
@ -82,17 +88,35 @@
<entry name="top" value="2"/>
<entry name="overlay" value="3"/>
</enum>
<!-- Version 3 additions -->
<request name="destroy" type="destructor" since="3">
<description summary="destroy the layer_shell object">
This request indicates that the client will not use the layer_shell
object any more. Objects that have been created through this instance
are not affected.
</description>
</request>
</interface>
<interface name="zwlr_layer_surface_v1" version="1">
<interface name="zwlr_layer_surface_v1" version="4">
<description summary="layer metadata interface">
An interface that may be implemented by a wl_surface, for surfaces that
are designed to be rendered as a layer of a stacked desktop-like
environment.
Layer surface state (size, anchor, exclusive zone, margin, interactivity)
is double-buffered, and will be applied at the time wl_surface.commit of
the corresponding wl_surface is called.
Layer surface state (layer, size, anchor, exclusive zone,
margin, interactivity) is double-buffered, and will be applied at the
time wl_surface.commit of the corresponding wl_surface is called.
Attaching a null buffer to a layer surface unmaps it.
Unmapping a layer_surface means that the surface cannot be shown by the
compositor until it is explicitly mapped again. The layer_surface
returns to the state it had right after layer_shell.get_layer_surface.
The client can re-map the surface by performing a commit without any
buffer attached, waiting for a configure event and handling it as usual.
</description>
<request name="set_size">
@ -115,7 +139,7 @@
<request name="set_anchor">
<description summary="configures the anchor point of the surface">
Requests that the compositor anchor the surface to the specified edges
and corners. If two orthoginal edges are specified (e.g. 'top' and
and corners. If two orthogonal edges are specified (e.g. 'top' and
'left'), then the anchor point will be the intersection of the edges
(e.g. the top left corner of the output); otherwise the anchor point
will be centered on that edge, or in the center if none is specified.
@ -127,19 +151,24 @@
<request name="set_exclusive_zone">
<description summary="configures the exclusive geometry of this surface">
Requests that the compositor avoids occluding an area of the surface
with other surfaces. The compositor's use of this information is
Requests that the compositor avoids occluding an area with other
surfaces. The compositor's use of this information is
implementation-dependent - do not assume that this region will not
actually be occluded.
A positive value is only meaningful if the surface is anchored to an
edge, rather than a corner. The zone is the number of surface-local
coordinates from the edge that are considered exclusive.
A positive value is only meaningful if the surface is anchored to one
edge or an edge and both perpendicular edges. If the surface is not
anchored, anchored to only two perpendicular edges (a corner), anchored
to only two parallel edges or anchored to all edges, a positive value
will be treated the same as zero.
A positive zone is the distance from the edge in surface-local
coordinates to consider exclusive.
Surfaces that do not wish to have an exclusive zone may instead specify
how they should interact with surfaces that do. If set to zero, the
surface indicates that it would like to be moved to avoid occluding
surfaces with a positive excluzive zone. If set to -1, the surface
surfaces with a positive exclusive zone. If set to -1, the surface
indicates that it would not like to be moved to accommodate for other
surfaces, and the compositor should extend it all the way to the edges
it is anchored to.
@ -174,21 +203,85 @@
<arg name="left" type="int"/>
</request>
<enum name="keyboard_interactivity">
<description summary="types of keyboard interaction possible for a layer shell surface">
Types of keyboard interaction possible for layer shell surfaces. The
rationale for this is twofold: (1) some applications are not interested
in keyboard events and not allowing them to be focused can improve the
desktop experience; (2) some applications will want to take exclusive
keyboard focus.
</description>
<entry name="none" value="0">
<description summary="no keyboard focus is possible">
This value indicates that this surface is not interested in keyboard
events and the compositor should never assign it the keyboard focus.
This is the default value, set for newly created layer shell surfaces.
This is useful for e.g. desktop widgets that display information or
only have interaction with non-keyboard input devices.
</description>
</entry>
<entry name="exclusive" value="1">
<description summary="request exclusive keyboard focus">
Request exclusive keyboard focus if this surface is above the shell surface layer.
For the top and overlay layers, the seat will always give
exclusive keyboard focus to the top-most layer which has keyboard
interactivity set to exclusive. If this layer contains multiple
surfaces with keyboard interactivity set to exclusive, the compositor
determines the one receiving keyboard events in an implementation-
defined manner. In this case, no guarantee is made when this surface
will receive keyboard focus (if ever).
For the bottom and background layers, the compositor is allowed to use
normal focus semantics.
This setting is mainly intended for applications that need to ensure
they receive all keyboard events, such as a lock screen or a password
prompt.
</description>
</entry>
<entry name="on_demand" value="2" since="4">
<description summary="request regular keyboard focus semantics">
This requests the compositor to allow this surface to be focused and
unfocused by the user in an implementation-defined manner. The user
should be able to unfocus this surface even regardless of the layer
it is on.
Typically, the compositor will want to use its normal mechanism to
manage keyboard focus between layer shell surfaces with this setting
and regular toplevels on the desktop layer (e.g. click to focus).
Nevertheless, it is possible for a compositor to require a special
interaction to focus or unfocus layer shell surfaces (e.g. requiring
a click even if focus follows the mouse normally, or providing a
keybinding to switch focus between layers).
This setting is mainly intended for desktop shell components (e.g.
panels) that allow keyboard interaction. Using this option can allow
implementing a desktop shell that can be fully usable without the
mouse.
</description>
</entry>
</enum>
<request name="set_keyboard_interactivity">
<description summary="requests keyboard events">
Set to 1 to request that the seat send keyboard events to this layer
surface. For layers below the shell surface layer, the seat will use
normal focus semantics. For layers above the shell surface layers, the
seat will always give exclusive keyboard focus to the top-most layer
which has keyboard interactivity set to true.
Set how keyboard events are delivered to this surface. By default,
layer shell surfaces do not receive keyboard events; this request can
be used to change this.
This setting is inherited by child surfaces set by the get_popup
request.
Layer surfaces receive pointer, touch, and tablet events normally. If
you do not want to receive them, set the input region on your surface
to an empty region.
Events is double-buffered, see wl_surface.commit.
Keyboard interactivity is double-buffered, see wl_surface.commit.
</description>
<arg name="keyboard_interactivity" type="uint"/>
<arg name="keyboard_interactivity" type="uint" enum="keyboard_interactivity"/>
</request>
<request name="get_popup">
@ -273,6 +366,7 @@
<entry name="invalid_surface_state" value="0" summary="provided surface state is invalid"/>
<entry name="invalid_size" value="1" summary="size is invalid"/>
<entry name="invalid_anchor" value="2" summary="anchor bitfield is invalid"/>
<entry name="invalid_keyboard_interactivity" value="3" summary="keyboard interactivity is invalid"/>
</enum>
<enum name="anchor" bitfield="true">
@ -281,5 +375,16 @@
<entry name="left" value="4" summary="the left edge of the anchor rectangle"/>
<entry name="right" value="8" summary="the right edge of the anchor rectangle"/>
</enum>
<!-- Version 2 additions -->
<request name="set_layer" since="2">
<description summary="change the layer of the surface">
Change the layer that the surface is rendered on.
Layer is double-buffered, see wl_surface.commit.
</description>
<arg name="layer" type="uint" enum="zwlr_layer_shell_v1.layer" summary="layer to move this surface to"/>
</request>
</interface>
</protocol>

View file

@ -2,6 +2,7 @@
<protocol name="wlr_screencopy_unstable_v1">
<copyright>
Copyright © 2018 Simon Ser
Copyright © 2019 Andri Yngvason
Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
@ -37,7 +38,7 @@
interface version number is reset.
</description>
<interface name="zwlr_screencopy_manager_v1" version="1">
<interface name="zwlr_screencopy_manager_v1" version="3">
<description summary="manager to inform clients and begin capturing">
This object is a manager which offers requests to start capturing from a
source.
@ -79,13 +80,18 @@
</request>
</interface>
<interface name="zwlr_screencopy_frame_v1" version="1">
<interface name="zwlr_screencopy_frame_v1" version="3">
<description summary="a frame ready for copy">
This object represents a single frame.
When created, a "buffer" event will be sent. The client will then be able
to send a "copy" request. If the capture is successful, the compositor
will send a "flags" followed by a "ready" event.
When created, a series of buffer events will be sent, each representing a
supported buffer type. The "buffer_done" event is sent afterwards to
indicate that all supported buffer types have been enumerated. The client
will then be able to send a "copy" request. If the capture is successful,
the compositor will send a "flags" followed by a "ready" event.
For objects version 2 or lower, wl_shm buffers are always supported, ie.
the "buffer" event is guaranteed to be sent.
If the capture failed, the "failed" event is sent. This can happen anytime
before the "ready" event.
@ -95,14 +101,12 @@
</description>
<event name="buffer">
<description summary="buffer information">
Provides information about the frame's buffer. This event is sent once
as soon as the frame is created.
The client should then create a buffer with the provided attributes, and
send a "copy" request.
<description summary="wl_shm buffer information">
Provides information about wl_shm buffer parameters that need to be
used for this frame. This event is sent once after the frame is created
if wl_shm buffers are supported.
</description>
<arg name="format" type="uint" summary="buffer format"/>
<arg name="format" type="uint" enum="wl_shm.format" summary="buffer format"/>
<arg name="width" type="uint" summary="buffer width"/>
<arg name="height" type="uint" summary="buffer height"/>
<arg name="stride" type="uint" summary="buffer stride"/>
@ -111,8 +115,9 @@
<request name="copy">
<description summary="copy the frame">
Copy the frame to the supplied buffer. The buffer must have a the
correct size, see zwlr_screencopy_frame_v1.buffer. The buffer needs to
have a supported format.
correct size, see zwlr_screencopy_frame_v1.buffer and
zwlr_screencopy_frame_v1.linux_dmabuf. The buffer needs to have a
supported format.
If the frame is successfully copied, a "flags" and a "ready" events are
sent. Otherwise, a "failed" event is sent.
@ -175,5 +180,53 @@
Destroys the frame. This request can be sent at any time by the client.
</description>
</request>
<!-- Version 2 additions -->
<request name="copy_with_damage" since="2">
<description summary="copy the frame when it's damaged">
Same as copy, except it waits until there is damage to copy.
</description>
<arg name="buffer" type="object" interface="wl_buffer"/>
</request>
<event name="damage" since="2">
<description summary="carries the coordinates of the damaged region">
This event is sent right before the ready event when copy_with_damage is
requested. It may be generated multiple times for each copy_with_damage
request.
The arguments describe a box around an area that has changed since the
last copy request that was derived from the current screencopy manager
instance.
The union of all regions received between the call to copy_with_damage
and a ready event is the total damage since the prior ready event.
</description>
<arg name="x" type="uint" summary="damaged x coordinates"/>
<arg name="y" type="uint" summary="damaged y coordinates"/>
<arg name="width" type="uint" summary="current width"/>
<arg name="height" type="uint" summary="current height"/>
</event>
<!-- Version 3 additions -->
<event name="linux_dmabuf" since="3">
<description summary="linux-dmabuf buffer information">
Provides information about linux-dmabuf buffer parameters that need to
be used for this frame. This event is sent once after the frame is
created if linux-dmabuf buffers are supported.
</description>
<arg name="format" type="uint" summary="fourcc pixel format"/>
<arg name="width" type="uint" summary="buffer width"/>
<arg name="height" type="uint" summary="buffer height"/>
</event>
<event name="buffer_done" since="3">
<description summary="all buffer types reported">
This event is sent once after all buffer events have been sent.
The client should proceed to create a buffer of one of the supported
types, and send a "copy" request.
</description>
</event>
</interface>
</protocol>

View file

@ -71,7 +71,7 @@ static void keyboard_handle_key(
bool handled = false;
uint32_t modifiers = wlr_keyboard_get_modifiers(keyboard->device->keyboard);
if (event->state == WLR_KEY_PRESSED) {
if (event->state == WL_KEYBOARD_KEY_STATE_PRESSED) {
/* If alt is held down and this button was _pressed_, we attempt to
* process it as a compositor keybinding. */
for (int i = 0; i < nsyms; i++) {

View file

@ -10,7 +10,7 @@ bool wb_create_backend(struct wb_server* server) {
}
// create backend
server->backend = wlr_backend_autocreate(server->wl_display, NULL);
server->backend = wlr_backend_autocreate(server->wl_display);
if (server->backend == NULL) {
return false;
}

View file

@ -1,12 +1,14 @@
#include "waybox/xdg_shell.h"
void focus_view(struct wb_view *view, struct wlr_surface *surface) {
wlr_log(WLR_INFO, "%s: %s", _("Keyboard focus is now on surface"),
wlr_xdg_surface_from_wlr_surface(surface)->toplevel->app_id);
/* Note: this function only deals with keyboard focus. */
if (view == NULL) {
if (view == NULL || surface == NULL) {
return;
}
struct wlr_xdg_surface *xdg_surface = wlr_xdg_surface_from_wlr_surface(surface);
if (xdg_surface)
wlr_log(WLR_INFO, "%s: %s", _("Keyboard focus is now on surface"),
wlr_xdg_surface_from_wlr_surface(surface)->toplevel->app_id);
struct wb_server *server = view->server;
struct wlr_seat *seat = server->seat->seat;
struct wlr_surface *prev_surface = seat->keyboard_state.focused_surface;