pulseaudio/src/tests/cpu-test.c

754 lines
24 KiB
C

/***
This file is part of PulseAudio.
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <check.h>
#include <unistd.h>
#include <math.h>
#include <pulse/rtclock.h>
#include <pulsecore/cpu-x86.h>
#include <pulsecore/cpu-orc.h>
#include <pulsecore/random.h>
#include <pulsecore/macro.h>
#include <pulsecore/endianmacros.h>
#include <pulsecore/sconv.h>
#include <pulsecore/remap.h>
#include <pulsecore/sample-util.h>
#define PA_CPU_TEST_RUN_START(l, t1, t2) \
{ \
int _j, _k; \
int _times = (t1), _times2 = (t2); \
pa_usec_t _start, _stop; \
pa_usec_t _min = INT_MAX, _max = 0; \
double _s1 = 0, _s2 = 0; \
const char *_label = (l); \
\
for (_k = 0; _k < _times2; _k++) { \
_start = pa_rtclock_now(); \
for (_j = 0; _j < _times; _j++)
#define PA_CPU_TEST_RUN_STOP \
_stop = pa_rtclock_now(); \
\
if (_min > (_stop - _start)) _min = _stop - _start; \
if (_max < (_stop - _start)) _max = _stop - _start; \
_s1 += _stop - _start; \
_s2 += (_stop - _start) * (_stop - _start); \
} \
pa_log_debug("%s: %llu usec (avg: %g, min = %llu, max = %llu, stddev = %g).", _label, \
(long long unsigned int)_s1, \
((double)_s1 / _times2), \
(long long unsigned int)_min, \
(long long unsigned int)_max, \
sqrt(_times2 * _s2 - _s1 * _s1) / _times2); \
}
/* Common defines for svolume tests */
#define SAMPLES 1028
#define TIMES 1000
#define TIMES2 100
#define PADDING 16
static void run_volume_test(
pa_do_volume_func_t func,
pa_do_volume_func_t orig_func,
int align,
int channels,
pa_bool_t correct,
pa_bool_t perf) {
PA_DECLARE_ALIGNED(8, int16_t, s[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, s_ref[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, s_orig[SAMPLES]) = { 0 };
int32_t volumes[channels + PADDING];
int16_t *samples, *samples_ref, *samples_orig;
int i, padding, nsamples, size;
/* Force sample alignment as requested */
samples = s + (8 - align);
samples_ref = s_ref + (8 - align);
samples_orig = s_orig + (8 - align);
nsamples = SAMPLES - (8 - align);
if (nsamples % channels)
nsamples -= nsamples % channels;
size = nsamples * sizeof(int16_t);
pa_random(samples, size);
memcpy(samples_ref, samples, size);
memcpy(samples_orig, samples, size);
for (i = 0; i < channels; i++)
volumes[i] = PA_CLAMP_VOLUME((pa_volume_t)(rand() >> 15));
for (padding = 0; padding < PADDING; padding++, i++)
volumes[i] = volumes[padding];
if (correct) {
orig_func(samples_ref, volumes, channels, size);
func(samples, volumes, channels, size);
for (i = 0; i < nsamples; i++) {
if (samples[i] != samples_ref[i]) {
pa_log_debug("Correctness test failed: align=%d, channels=%d", align, channels);
pa_log_debug("%d: %04x != %04x (%04x * %08x)\n", i, samples[i], samples_ref[i],
samples_orig[i], volumes[i % channels]);
fail();
}
}
}
if (perf) {
pa_log_debug("Testing svolume %dch performance with %d sample alignment", channels, align);
PA_CPU_TEST_RUN_START("func", TIMES, TIMES2) {
memcpy(samples, samples_orig, size);
func(samples, volumes, channels, size);
} PA_CPU_TEST_RUN_STOP
PA_CPU_TEST_RUN_START("orig", TIMES, TIMES2) {
memcpy(samples_ref, samples_orig, size);
orig_func(samples_ref, volumes, channels, size);
} PA_CPU_TEST_RUN_STOP
fail_unless(memcmp(samples_ref, samples, size) == 0);
}
}
#if defined (__i386__) || defined (__amd64__)
START_TEST (svolume_mmx_test) {
pa_do_volume_func_t orig_func, mmx_func;
pa_cpu_x86_flag_t flags = 0;
int i, j;
pa_cpu_get_x86_flags(&flags);
if (!((flags & PA_CPU_X86_MMX) && (flags & PA_CPU_X86_CMOV))) {
pa_log_info("MMX/CMOV not supported. Skipping");
return;
}
orig_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_volume_func_init_mmx(flags);
mmx_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_log_debug("Checking MMX svolume");
for (i = 1; i <= 3; i++) {
for (j = 0; j < 7; j++)
run_volume_test(mmx_func, orig_func, j, i, TRUE, FALSE);
}
run_volume_test(mmx_func, orig_func, 7, 1, TRUE, TRUE);
run_volume_test(mmx_func, orig_func, 7, 2, TRUE, TRUE);
run_volume_test(mmx_func, orig_func, 7, 3, TRUE, TRUE);
}
END_TEST
START_TEST (svolume_sse_test) {
pa_do_volume_func_t orig_func, sse_func;
pa_cpu_x86_flag_t flags = 0;
int i, j;
pa_cpu_get_x86_flags(&flags);
if (!(flags & PA_CPU_X86_SSE2)) {
pa_log_info("SSE2 not supported. Skipping");
return;
}
orig_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_volume_func_init_sse(flags);
sse_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_log_debug("Checking SSE2 svolume");
for (i = 1; i <= 3; i++) {
for (j = 0; j < 7; j++)
run_volume_test(sse_func, orig_func, j, i, TRUE, FALSE);
}
run_volume_test(sse_func, orig_func, 7, 1, TRUE, TRUE);
run_volume_test(sse_func, orig_func, 7, 2, TRUE, TRUE);
run_volume_test(sse_func, orig_func, 7, 3, TRUE, TRUE);
}
END_TEST
#endif /* defined (__i386__) || defined (__amd64__) */
#if defined (__arm__) && defined (__linux__)
START_TEST (svolume_arm_test) {
pa_do_volume_func_t orig_func, arm_func;
pa_cpu_arm_flag_t flags = 0;
int i, j;
pa_cpu_get_arm_flags(&flags);
if (!(flags & PA_CPU_ARM_V6)) {
pa_log_info("ARMv6 instructions not supported. Skipping");
return;
}
orig_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_volume_func_init_arm(flags);
arm_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_log_debug("Checking ARM svolume");
for (i = 1; i <= 3; i++) {
for (j = 0; j < 7; j++)
run_volume_test(arm_func, orig_func, j, i, TRUE, FALSE);
}
run_volume_test(arm_func, orig_func, 7, 1, TRUE, TRUE);
run_volume_test(arm_func, orig_func, 7, 2, TRUE, TRUE);
run_volume_test(arm_func, orig_func, 7, 3, TRUE, TRUE);
}
END_TEST
#endif /* defined (__arm__) && defined (__linux__) */
START_TEST (svolume_orc_test) {
pa_do_volume_func_t orig_func, orc_func;
pa_cpu_info cpu_info;
int i, j;
#if defined (__i386__) || defined (__amd64__)
pa_zero(cpu_info);
cpu_info.cpu_type = PA_CPU_X86;
pa_cpu_get_x86_flags(&cpu_info.flags.x86);
#endif
orig_func = pa_get_volume_func(PA_SAMPLE_S16NE);
if (!pa_cpu_init_orc(cpu_info)) {
pa_log_info("Orc not supported. Skipping");
return;
}
orc_func = pa_get_volume_func(PA_SAMPLE_S16NE);
pa_log_debug("Checking Orc svolume");
for (i = 1; i <= 2; i++) {
for (j = 0; j < 7; j++)
run_volume_test(orc_func, orig_func, j, i, TRUE, FALSE);
}
run_volume_test(orc_func, orig_func, 7, 1, TRUE, TRUE);
run_volume_test(orc_func, orig_func, 7, 2, TRUE, TRUE);
}
END_TEST
#undef SAMPLES
#undef TIMES
#undef TIMES2
#undef PADDING
/* End svolume tests */
/* Start conversion tests */
#define SAMPLES 1028
#define TIMES 1000
#define TIMES2 100
static void run_conv_test_float_to_s16(
pa_convert_func_t func,
pa_convert_func_t orig_func,
int align,
pa_bool_t correct,
pa_bool_t perf) {
PA_DECLARE_ALIGNED(8, int16_t, s[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, s_ref[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, float, f[SAMPLES]);
int16_t *samples, *samples_ref;
float *floats;
int i, nsamples;
/* Force sample alignment as requested */
samples = s + (8 - align);
samples_ref = s_ref + (8 - align);
floats = f + (8 - align);
nsamples = SAMPLES - (8 - align);
for (i = 0; i < nsamples; i++) {
floats[i] = 2.1f * (rand()/(float) RAND_MAX - 0.5f);
}
if (correct) {
orig_func(nsamples, floats, samples_ref);
func(nsamples, floats, samples);
for (i = 0; i < nsamples; i++) {
if (abs(samples[i] - samples_ref[i]) > 1) {
pa_log_debug("Correctness test failed: align=%d", align);
pa_log_debug("%d: %04x != %04x (%.24f)\n", i, samples[i], samples_ref[i], floats[i]);
fail();
}
}
}
if (perf) {
pa_log_debug("Testing sconv performance with %d sample alignment", align);
PA_CPU_TEST_RUN_START("func", TIMES, TIMES2) {
func(nsamples, floats, samples);
} PA_CPU_TEST_RUN_STOP
PA_CPU_TEST_RUN_START("orig", TIMES, TIMES2) {
orig_func(nsamples, floats, samples_ref);
} PA_CPU_TEST_RUN_STOP
}
}
/* This test is currently only run under NEON */
#if defined (__arm__) && defined (__linux__)
#ifdef HAVE_NEON
static void run_conv_test_s16_to_float(
pa_convert_func_t func,
pa_convert_func_t orig_func,
int align,
pa_bool_t correct,
pa_bool_t perf) {
PA_DECLARE_ALIGNED(8, float, f[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, float, f_ref[SAMPLES]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, s[SAMPLES]);
float *floats, *floats_ref;
int16_t *samples;
int i, nsamples;
/* Force sample alignment as requested */
floats = f + (8 - align);
floats_ref = f_ref + (8 - align);
samples = s + (8 - align);
nsamples = SAMPLES - (8 - align);
pa_random(samples, nsamples * sizeof(int16_t));
if (correct) {
orig_func(nsamples, samples, floats_ref);
func(nsamples, samples, floats);
for (i = 0; i < nsamples; i++) {
if (abs(floats[i] - floats_ref[i]) > 1) {
pa_log_debug("Correctness test failed: align=%d", align);
pa_log_debug("%d: %.24f != %.24f (%d)\n", i, floats[i], floats_ref[i], samples[i]);
fail();
}
}
}
if (perf) {
pa_log_debug("Testing sconv performance with %d sample alignment", align);
PA_CPU_TEST_RUN_START("func", TIMES, TIMES2) {
func(nsamples, samples, floats);
} PA_CPU_TEST_RUN_STOP
PA_CPU_TEST_RUN_START("orig", TIMES, TIMES2) {
orig_func(nsamples, samples, floats_ref);
} PA_CPU_TEST_RUN_STOP
}
}
#endif /* HAVE_NEON */
#endif /* defined (__arm__) && defined (__linux__) */
#if defined (__i386__) || defined (__amd64__)
START_TEST (sconv_sse2_test) {
pa_cpu_x86_flag_t flags = 0;
pa_convert_func_t orig_func, sse2_func;
pa_cpu_get_x86_flags(&flags);
if (!(flags & PA_CPU_X86_SSE2)) {
pa_log_info("SSE2 not supported. Skipping");
return;
}
orig_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
pa_convert_func_init_sse(PA_CPU_X86_SSE2);
sse2_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
pa_log_debug("Checking SSE2 sconv (float -> s16)");
run_conv_test_float_to_s16(sse2_func, orig_func, 0, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 1, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 2, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 3, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 4, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 5, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 6, TRUE, FALSE);
run_conv_test_float_to_s16(sse2_func, orig_func, 7, TRUE, TRUE);
}
END_TEST
START_TEST (sconv_sse_test) {
pa_cpu_x86_flag_t flags = 0;
pa_convert_func_t orig_func, sse_func;
pa_cpu_get_x86_flags(&flags);
if (!(flags & PA_CPU_X86_SSE)) {
pa_log_info("SSE not supported. Skipping");
return;
}
orig_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
pa_convert_func_init_sse(PA_CPU_X86_SSE);
sse_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
pa_log_debug("Checking SSE sconv (float -> s16)");
run_conv_test_float_to_s16(sse_func, orig_func, 0, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 1, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 2, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 3, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 4, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 5, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 6, TRUE, FALSE);
run_conv_test_float_to_s16(sse_func, orig_func, 7, TRUE, TRUE);
}
END_TEST
#endif /* defined (__i386__) || defined (__amd64__) */
#if defined (__arm__) && defined (__linux__)
#ifdef HAVE_NEON
START_TEST (sconv_neon_test) {
pa_cpu_arm_flag_t flags = 0;
pa_convert_func_t orig_from_func, neon_from_func;
pa_convert_func_t orig_to_func, neon_to_func;
pa_cpu_get_arm_flags(&flags);
if (!(flags & PA_CPU_ARM_NEON)) {
pa_log_info("NEON not supported. Skipping");
return;
}
orig_from_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
orig_to_func = pa_get_convert_to_float32ne_function(PA_SAMPLE_S16LE);
pa_convert_func_init_neon(flags);
neon_from_func = pa_get_convert_from_float32ne_function(PA_SAMPLE_S16LE);
neon_to_func = pa_get_convert_to_float32ne_function(PA_SAMPLE_S16LE);
pa_log_debug("Checking NEON sconv (float -> s16)");
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 0, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 1, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 2, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 3, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 4, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 5, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 6, TRUE, FALSE);
run_conv_test_float_to_s16(neon_from_func, orig_from_func, 7, TRUE, TRUE);
pa_log_debug("Checking NEON sconv (s16 -> float)");
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 0, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 1, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 2, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 3, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 4, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 5, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 6, TRUE, FALSE);
run_conv_test_s16_to_float(neon_to_func, orig_to_func, 7, TRUE, TRUE);
}
END_TEST
#endif /* HAVE_NEON */
#endif /* defined (__arm__) && defined (__linux__) */
#undef SAMPLES
#undef TIMES
/* End conversion tests */
/* Start remap tests */
#define SAMPLES 1028
#define TIMES 1000
#define TIMES2 100
static void run_remap_test_mono_stereo_float(
pa_remap_t *remap,
pa_do_remap_func_t func,
pa_do_remap_func_t orig_func,
int align,
pa_bool_t correct,
pa_bool_t perf) {
PA_DECLARE_ALIGNED(8, float, s_ref[SAMPLES*2]) = { 0 };
PA_DECLARE_ALIGNED(8, float, s[SAMPLES*2]) = { 0 };
PA_DECLARE_ALIGNED(8, float, m[SAMPLES]);
float *stereo, *stereo_ref;
float *mono;
int i, nsamples;
/* Force sample alignment as requested */
stereo = s + (8 - align);
stereo_ref = s_ref + (8 - align);
mono = m + (8 - align);
nsamples = SAMPLES - (8 - align);
for (i = 0; i < nsamples; i++)
mono[i] = 2.1f * (rand()/(float) RAND_MAX - 0.5f);
if (correct) {
orig_func(remap, stereo_ref, mono, nsamples);
func(remap, stereo, mono, nsamples);
for (i = 0; i < nsamples * 2; i++) {
if (fabsf(stereo[i] - stereo_ref[i]) > 0.0001) {
pa_log_debug("Correctness test failed: align=%d", align);
pa_log_debug("%d: %.24f != %.24f (%.24f)\n", i, stereo[i], stereo_ref[i], mono[i]);
fail();
}
}
}
if (perf) {
pa_log_debug("Testing remap performance with %d sample alignment", align);
PA_CPU_TEST_RUN_START("func", TIMES, TIMES2) {
func(remap, stereo, mono, nsamples);
} PA_CPU_TEST_RUN_STOP
PA_CPU_TEST_RUN_START("orig", TIMES, TIMES2) {
orig_func(remap, stereo_ref, mono, nsamples);
} PA_CPU_TEST_RUN_STOP
}
}
static void run_remap_test_mono_stereo_s16(
pa_remap_t *remap,
pa_do_remap_func_t func,
pa_do_remap_func_t orig_func,
int align,
pa_bool_t correct,
pa_bool_t perf) {
PA_DECLARE_ALIGNED(8, int16_t, s_ref[SAMPLES*2]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, s[SAMPLES*2]) = { 0 };
PA_DECLARE_ALIGNED(8, int16_t, m[SAMPLES]);
int16_t *stereo, *stereo_ref;
int16_t *mono;
int i, nsamples;
/* Force sample alignment as requested */
stereo = s + (8 - align);
stereo_ref = s_ref + (8 - align);
mono = m + (8 - align);
nsamples = SAMPLES - (8 - align);
pa_random(mono, nsamples * sizeof(int16_t));
if (correct) {
orig_func(remap, stereo_ref, mono, nsamples);
func(remap, stereo, mono, nsamples);
for (i = 0; i < nsamples * 2; i++) {
if (abs(stereo[i] - stereo_ref[i]) > 1) {
pa_log_debug("Correctness test failed: align=%d", align);
pa_log_debug("%d: %d != %d (%d)\n", i, stereo[i], stereo_ref[i], mono[i]);
fail();
}
}
}
if (perf) {
pa_log_debug("Testing remap performance with %d sample alignment", align);
PA_CPU_TEST_RUN_START("func", TIMES, TIMES2) {
func(remap, stereo, mono, nsamples);
} PA_CPU_TEST_RUN_STOP
PA_CPU_TEST_RUN_START("orig", TIMES, TIMES2) {
orig_func(remap, stereo_ref, mono, nsamples);
} PA_CPU_TEST_RUN_STOP
}
}
static void remap_test_mono_stereo_float(
pa_init_remap_func_t init_func,
pa_init_remap_func_t orig_init_func) {
pa_sample_format_t sf;
pa_remap_t remap;
pa_sample_spec iss, oss;
pa_do_remap_func_t orig_func, func;
iss.format = oss.format = sf = PA_SAMPLE_FLOAT32NE;
iss.channels = 1;
oss.channels = 2;
remap.format = &sf;
remap.i_ss = &iss;
remap.o_ss = &oss;
remap.map_table_f[0][0] = 1.0;
remap.map_table_f[1][0] = 1.0;
remap.map_table_i[0][0] = 0x10000;
remap.map_table_i[1][0] = 0x10000;
orig_init_func(&remap);
orig_func = remap.do_remap;
if (!orig_func) {
pa_log_warn("No reference remapping function, abort test");
return;
}
init_func(&remap);
func = remap.do_remap;
if (!func || func == orig_func) {
pa_log_warn("No remapping function, abort test");
return;
}
run_remap_test_mono_stereo_float(&remap, func, orig_func, 0, TRUE, FALSE);
run_remap_test_mono_stereo_float(&remap, func, orig_func, 1, TRUE, FALSE);
run_remap_test_mono_stereo_float(&remap, func, orig_func, 2, TRUE, FALSE);
run_remap_test_mono_stereo_float(&remap, func, orig_func, 3, TRUE, TRUE);
}
static void remap_test_mono_stereo_s16(
pa_init_remap_func_t init_func,
pa_init_remap_func_t orig_init_func) {
pa_sample_format_t sf;
pa_remap_t remap;
pa_sample_spec iss, oss;
pa_do_remap_func_t orig_func, func;
iss.format = oss.format = sf = PA_SAMPLE_S16NE;
iss.channels = 1;
oss.channels = 2;
remap.format = &sf;
remap.i_ss = &iss;
remap.o_ss = &oss;
remap.map_table_f[0][0] = 1.0;
remap.map_table_f[1][0] = 1.0;
remap.map_table_i[0][0] = 0x10000;
remap.map_table_i[1][0] = 0x10000;
orig_init_func(&remap);
orig_func = remap.do_remap;
if (!orig_func) {
pa_log_warn("No reference remapping function, abort test");
return;
}
init_func(&remap);
func = remap.do_remap;
if (!func || func == orig_func) {
pa_log_warn("No remapping function, abort test");
return;
}
run_remap_test_mono_stereo_s16(&remap, func, orig_func, 0, TRUE, FALSE);
run_remap_test_mono_stereo_s16(&remap, func, orig_func, 1, TRUE, FALSE);
run_remap_test_mono_stereo_s16(&remap, func, orig_func, 2, TRUE, FALSE);
run_remap_test_mono_stereo_s16(&remap, func, orig_func, 3, TRUE, TRUE);
}
#if defined (__i386__) || defined (__amd64__)
START_TEST (remap_mmx_test) {
pa_cpu_x86_flag_t flags = 0;
pa_init_remap_func_t init_func, orig_init_func;
pa_cpu_get_x86_flags(&flags);
if (!(flags & PA_CPU_X86_MMX)) {
pa_log_info("MMX not supported. Skipping");
return;
}
pa_log_debug("Checking MMX remap (float, mono->stereo)");
orig_init_func = pa_get_init_remap_func();
pa_remap_func_init_mmx(flags);
init_func = pa_get_init_remap_func();
remap_test_mono_stereo_float(init_func, orig_init_func);
pa_log_debug("Checking MMX remap (s16, mono->stereo)");
remap_test_mono_stereo_s16(init_func, orig_init_func);
}
END_TEST
START_TEST (remap_sse2_test) {
pa_cpu_x86_flag_t flags = 0;
pa_init_remap_func_t init_func, orig_init_func;
pa_cpu_get_x86_flags(&flags);
if (!(flags & PA_CPU_X86_SSE2)) {
pa_log_info("SSE2 not supported. Skipping");
return;
}
pa_log_debug("Checking SSE2 remap (float, mono->stereo)");
orig_init_func = pa_get_init_remap_func();
pa_remap_func_init_sse(flags);
init_func = pa_get_init_remap_func();
remap_test_mono_stereo_float(init_func, orig_init_func);
pa_log_debug("Checking SSE2 remap (s16, mono->stereo)");
remap_test_mono_stereo_s16(init_func, orig_init_func);
}
END_TEST
#endif /* defined (__i386__) || defined (__amd64__) */
#undef SAMPLES
#undef TIMES
#undef TIMES2
/* End remap tests */
int main(int argc, char *argv[]) {
int failed = 0;
Suite *s;
TCase *tc;
SRunner *sr;
if (!getenv("MAKE_CHECK"))
pa_log_set_level(PA_LOG_DEBUG);
s = suite_create("CPU");
/* Volume tests */
tc = tcase_create("svolume");
#if defined (__i386__) || defined (__amd64__)
tcase_add_test(tc, svolume_mmx_test);
tcase_add_test(tc, svolume_sse_test);
#endif
#if defined (__arm__) && defined (__linux__)
tcase_add_test(tc, svolume_arm_test);
#endif
tcase_add_test(tc, svolume_orc_test);
tcase_set_timeout(tc, 120);
suite_add_tcase(s, tc);
/* Conversion tests */
tc = tcase_create("sconv");
#if defined (__i386__) || defined (__amd64__)
tcase_add_test(tc, sconv_sse2_test);
tcase_add_test(tc, sconv_sse_test);
#endif
#if defined (__arm__) && defined (__linux__)
#if HAVE_NEON
tcase_add_test(tc, sconv_neon_test);
#endif
#endif
tcase_set_timeout(tc, 120);
suite_add_tcase(s, tc);
/* Remap tests */
tc = tcase_create("remap");
#if defined (__i386__) || defined (__amd64__)
tcase_add_test(tc, remap_mmx_test);
tcase_add_test(tc, remap_sse2_test);
#endif
tcase_set_timeout(tc, 120);
suite_add_tcase(s, tc);
sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL);
failed = srunner_ntests_failed(sr);
srunner_free(sr);
return (failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
}