pulseaudio/src/modules/module-waveout.c
Colin Guthrie ded07a5898 devices: Use wrapper functions to set the *_volume and *_mute callbacks.
This is not currently useful but future commits will make further
changes concerning automatic setting of flags and event delivery
that makes this structure necessary.
2011-07-19 19:50:43 +01:00

771 lines
22 KiB
C

/***
This file is part of PulseAudio.
Copyright 2006 Lennart Poettering
Copyright 2006-2007 Pierre Ossman <ossman@cendio.se> for Cendio AB
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <windows.h>
#include <mmsystem.h>
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulsecore/sink.h>
#include <pulsecore/source.h>
#include <pulsecore/module.h>
#include <pulsecore/modargs.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/core-util.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include "module-waveout-symdef.h"
PA_MODULE_AUTHOR("Pierre Ossman");
PA_MODULE_DESCRIPTION("Windows waveOut Sink/Source");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"source_name=<name for the source> "
"device=<device number> "
"device_name=<name of the device> "
"record=<enable source?> "
"playback=<enable sink?> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"fragments=<number of fragments> "
"fragment_size=<fragment size>");
#define DEFAULT_SINK_NAME "wave_output"
#define DEFAULT_SOURCE_NAME "wave_input"
#define WAVEOUT_MAX_VOLUME 0xFFFF
struct userdata {
pa_sink *sink;
pa_source *source;
pa_core *core;
pa_usec_t poll_timeout;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
uint32_t fragments, fragment_size;
uint32_t free_ofrags, free_ifrags;
DWORD written_bytes;
int sink_underflow;
int cur_ohdr, cur_ihdr;
WAVEHDR *ohdrs, *ihdrs;
HWAVEOUT hwo;
HWAVEIN hwi;
pa_module *module;
CRITICAL_SECTION crit;
};
static const char* const valid_modargs[] = {
"sink_name",
"source_name",
"device",
"device_name",
"record",
"playback",
"fragments",
"fragment_size",
"format",
"rate",
"channels",
"channel_map",
NULL
};
static void do_write(struct userdata *u) {
uint32_t free_frags;
pa_memchunk memchunk;
WAVEHDR *hdr;
MMRESULT res;
void *p;
if (!u->sink)
return;
if (!PA_SINK_IS_LINKED(u->sink->state))
return;
EnterCriticalSection(&u->crit);
free_frags = u->free_ofrags;
LeaveCriticalSection(&u->crit);
if (!u->sink_underflow && (free_frags == u->fragments))
pa_log_debug("WaveOut underflow!");
while (free_frags) {
hdr = &u->ohdrs[u->cur_ohdr];
if (hdr->dwFlags & WHDR_PREPARED)
waveOutUnprepareHeader(u->hwo, hdr, sizeof(WAVEHDR));
hdr->dwBufferLength = 0;
while (hdr->dwBufferLength < u->fragment_size) {
size_t len;
len = u->fragment_size - hdr->dwBufferLength;
pa_sink_render(u->sink, len, &memchunk);
pa_assert(memchunk.memblock);
pa_assert(memchunk.length);
if (memchunk.length < len)
len = memchunk.length;
p = pa_memblock_acquire(memchunk.memblock);
memcpy(hdr->lpData + hdr->dwBufferLength, (char*) p + memchunk.index, len);
pa_memblock_release(memchunk.memblock);
hdr->dwBufferLength += len;
pa_memblock_unref(memchunk.memblock);
memchunk.memblock = NULL;
}
/* Underflow detection */
if (hdr->dwBufferLength == 0) {
u->sink_underflow = 1;
break;
}
u->sink_underflow = 0;
res = waveOutPrepareHeader(u->hwo, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR)
pa_log_error("Unable to prepare waveOut block: %d", res);
res = waveOutWrite(u->hwo, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR)
pa_log_error("Unable to write waveOut block: %d", res);
u->written_bytes += hdr->dwBufferLength;
EnterCriticalSection(&u->crit);
u->free_ofrags--;
LeaveCriticalSection(&u->crit);
free_frags--;
u->cur_ohdr++;
u->cur_ohdr %= u->fragments;
}
}
static void do_read(struct userdata *u) {
uint32_t free_frags;
pa_memchunk memchunk;
WAVEHDR *hdr;
MMRESULT res;
void *p;
if (!u->source)
return;
if (!PA_SOURCE_IS_LINKED(u->source->state))
return;
EnterCriticalSection(&u->crit);
free_frags = u->free_ifrags;
u->free_ifrags = 0;
LeaveCriticalSection(&u->crit);
if (free_frags == u->fragments)
pa_log_debug("WaveIn overflow!");
while (free_frags) {
hdr = &u->ihdrs[u->cur_ihdr];
if (hdr->dwFlags & WHDR_PREPARED)
waveInUnprepareHeader(u->hwi, hdr, sizeof(WAVEHDR));
if (hdr->dwBytesRecorded) {
memchunk.memblock = pa_memblock_new(u->core->mempool, hdr->dwBytesRecorded);
pa_assert(memchunk.memblock);
p = pa_memblock_acquire(memchunk.memblock);
memcpy((char*) p, hdr->lpData, hdr->dwBytesRecorded);
pa_memblock_release(memchunk.memblock);
memchunk.length = hdr->dwBytesRecorded;
memchunk.index = 0;
pa_source_post(u->source, &memchunk);
pa_memblock_unref(memchunk.memblock);
}
res = waveInPrepareHeader(u->hwi, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR)
pa_log_error("Unable to prepare waveIn block: %d", res);
res = waveInAddBuffer(u->hwi, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR)
pa_log_error("Unable to add waveIn block: %d", res);
free_frags--;
u->cur_ihdr++;
u->cur_ihdr %= u->fragments;
}
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_assert(u->sink || u->source);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_make_realtime(u->core->realtime_priority);
pa_thread_mq_install(&u->thread_mq);
for (;;) {
int ret;
pa_bool_t need_timer = FALSE;
if (u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
if (u->sink->thread_info.rewind_requested)
pa_sink_process_rewind(u->sink, 0);
do_write(u);
need_timer = TRUE;
}
if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) {
do_read(u);
need_timer = TRUE;
}
if (need_timer)
pa_rtpoll_set_timer_relative(u->rtpoll, u->poll_timeout);
else
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
goto fail;
if (ret == 0)
goto finish;
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static void CALLBACK chunk_done_cb(HWAVEOUT hwo, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) {
struct userdata *u = (struct userdata*) inst;
if (msg == WOM_OPEN)
pa_log_debug("WaveOut subsystem opened.");
if (msg == WOM_CLOSE)
pa_log_debug("WaveOut subsystem closed.");
if (msg != WOM_DONE)
return;
EnterCriticalSection(&u->crit);
u->free_ofrags++;
pa_assert(u->free_ofrags <= u->fragments);
LeaveCriticalSection(&u->crit);
}
static void CALLBACK chunk_ready_cb(HWAVEIN hwi, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) {
struct userdata *u = (struct userdata*) inst;
if (msg == WIM_OPEN)
pa_log_debug("WaveIn subsystem opened.");
if (msg == WIM_CLOSE)
pa_log_debug("WaveIn subsystem closed.");
if (msg != WIM_DATA)
return;
EnterCriticalSection(&u->crit);
u->free_ifrags++;
pa_assert(u->free_ifrags <= u->fragments);
LeaveCriticalSection(&u->crit);
}
static pa_usec_t sink_get_latency(struct userdata *u) {
uint32_t free_frags;
MMTIME mmt;
pa_assert(u);
pa_assert(u->sink);
memset(&mmt, 0, sizeof(mmt));
mmt.wType = TIME_BYTES;
if (waveOutGetPosition(u->hwo, &mmt, sizeof(mmt)) == MMSYSERR_NOERROR)
return pa_bytes_to_usec(u->written_bytes - mmt.u.cb, &u->sink->sample_spec);
else {
EnterCriticalSection(&u->crit);
free_frags = u->free_ofrags;
LeaveCriticalSection(&u->crit);
return pa_bytes_to_usec((u->fragments - free_frags) * u->fragment_size, &u->sink->sample_spec);
}
}
static pa_usec_t source_get_latency(struct userdata *u) {
pa_usec_t r = 0;
uint32_t free_frags;
pa_assert(u);
pa_assert(u->source);
EnterCriticalSection(&u->crit);
free_frags = u->free_ifrags;
LeaveCriticalSection(&u->crit);
r += pa_bytes_to_usec((free_frags + 1) * u->fragment_size, &u->source->sample_spec);
return r;
}
static int process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u;
if (pa_sink_isinstance(o)) {
u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
pa_usec_t r = 0;
if (u->hwo)
r = sink_get_latency(u);
*((pa_usec_t*) data) = r;
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
if (pa_source_isinstance(o)) {
u = PA_SOURCE(o)->userdata;
switch (code) {
case PA_SOURCE_MESSAGE_GET_LATENCY: {
pa_usec_t r = 0;
if (u->hwi)
r = source_get_latency(u);
*((pa_usec_t*) data) = r;
return 0;
}
}
return pa_source_process_msg(o, code, data, offset, chunk);
}
return -1;
}
static void sink_get_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
WAVEOUTCAPS caps;
DWORD vol;
pa_volume_t left, right;
if (waveOutGetDevCaps(u->hwo, &caps, sizeof(caps)) != MMSYSERR_NOERROR)
return;
if (!(caps.dwSupport & WAVECAPS_VOLUME))
return;
if (waveOutGetVolume(u->hwo, &vol) != MMSYSERR_NOERROR)
return;
left = PA_CLAMP_VOLUME((vol & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME);
if (caps.dwSupport & WAVECAPS_LRVOLUME)
right = PA_CLAMP_VOLUME(((vol >> 16) & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME);
else
right = left;
/* Windows supports > 2 channels, except for volume control */
if (s->real_volume.channels > 2)
pa_cvolume_set(&s->real_volume, s->real_volume.channels, (left + right)/2);
s->real_volume.values[0] = left;
if (s->real_volume.channels > 1)
s->real_volume.values[1] = right;
}
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
WAVEOUTCAPS caps;
DWORD vol;
if (waveOutGetDevCaps(u->hwo, &caps, sizeof(caps)) != MMSYSERR_NOERROR)
return;
if (!(caps.dwSupport & WAVECAPS_VOLUME))
return;
if (s->real_volume.channels == 2 && caps.dwSupport & WAVECAPS_LRVOLUME) {
vol = (s->real_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM)
| (s->real_volume.values[1] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16;
} else {
vol = (pa_cvolume_avg(&(s->real_volume)) * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM)
| (pa_cvolume_avg(&(s->real_volume)) * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16;
}
if (waveOutSetVolume(u->hwo, vol) != MMSYSERR_NOERROR)
return;
}
static int ss_to_waveformat(pa_sample_spec *ss, LPWAVEFORMATEX wf) {
wf->wFormatTag = WAVE_FORMAT_PCM;
if (ss->channels > 2) {
pa_log_error("More than two channels not supported.");
return -1;
}
wf->nChannels = ss->channels;
wf->nSamplesPerSec = ss->rate;
if (ss->format == PA_SAMPLE_U8)
wf->wBitsPerSample = 8;
else if (ss->format == PA_SAMPLE_S16NE)
wf->wBitsPerSample = 16;
else {
pa_log_error("Unsupported sample format, only u8 and s16 are supported.");
return -1;
}
wf->nBlockAlign = wf->nChannels * wf->wBitsPerSample/8;
wf->nAvgBytesPerSec = wf->nSamplesPerSec * wf->nBlockAlign;
wf->cbSize = 0;
return 0;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert(m->userdata);
u = (struct userdata*) m->userdata;
return (u->sink ? pa_sink_used_by(u->sink) : 0) +
(u->source ? pa_source_used_by(u->source) : 0);
}
int pa__init(pa_module *m) {
struct userdata *u = NULL;
HWAVEOUT hwo = INVALID_HANDLE_VALUE;
HWAVEIN hwi = INVALID_HANDLE_VALUE;
WAVEFORMATEX wf;
WAVEOUTCAPS pwoc;
MMRESULT result;
int nfrags, frag_size;
pa_bool_t record = TRUE, playback = TRUE;
unsigned int device;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma = NULL;
const char *device_name = NULL;
unsigned int i;
pa_assert(m);
pa_assert(m->core);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) {
pa_log("record= and playback= expect boolean argument.");
goto fail;
}
if (!playback && !record) {
pa_log("neither playback nor record enabled for device.");
goto fail;
}
/* Set the device to be opened. If set device_name is used,
* else device if set and lastly WAVE_MAPPER is the default */
device = WAVE_MAPPER;
if (pa_modargs_get_value_u32(ma, "device", &device) < 0) {
pa_log("failed to parse device argument");
goto fail;
}
if ((device_name = pa_modargs_get_value(ma, "device_name", NULL)) != NULL) {
unsigned int num_devices = waveOutGetNumDevs();
for (i = 0; i < num_devices; i++) {
if (waveOutGetDevCaps(i, &pwoc, sizeof(pwoc)) == MMSYSERR_NOERROR)
if (_stricmp(device_name, pwoc.szPname) == 0)
break;
}
if (i < num_devices)
device = i;
else {
pa_log("device not found: %s", device_name);
goto fail;
}
}
if (waveOutGetDevCaps(device, &pwoc, sizeof(pwoc)) == MMSYSERR_NOERROR)
device_name = pwoc.szPname;
else
device_name = "unknown";
nfrags = 5;
frag_size = 8192;
if (pa_modargs_get_value_s32(ma, "fragments", &nfrags) < 0 || pa_modargs_get_value_s32(ma, "fragment_size", &frag_size) < 0) {
pa_log("failed to parse fragments arguments");
goto fail;
}
ss = m->core->default_sample_spec;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_WAVEEX) < 0) {
pa_log("failed to parse sample specification");
goto fail;
}
if (ss_to_waveformat(&ss, &wf) < 0)
goto fail;
u = pa_xmalloc(sizeof(struct userdata));
if (record) {
result = waveInOpen(&hwi, device, &wf, 0, 0, WAVE_FORMAT_DIRECT | WAVE_FORMAT_QUERY);
if (result != MMSYSERR_NOERROR) {
pa_log_warn("Sample spec not supported by WaveIn, falling back to default sample rate.");
ss.rate = wf.nSamplesPerSec = m->core->default_sample_spec.rate;
}
result = waveInOpen(&hwi, device, &wf, (DWORD_PTR) chunk_ready_cb, (DWORD_PTR) u, CALLBACK_FUNCTION);
if (result != MMSYSERR_NOERROR) {
char errortext[MAXERRORLENGTH];
pa_log("Failed to open WaveIn.");
if (waveInGetErrorText(result, errortext, sizeof(errortext)) == MMSYSERR_NOERROR)
pa_log("Error: %s", errortext);
goto fail;
}
if (waveInStart(hwi) != MMSYSERR_NOERROR) {
pa_log("failed to start waveIn");
goto fail;
}
}
if (playback) {
result = waveOutOpen(&hwo, device, &wf, 0, 0, WAVE_FORMAT_DIRECT | WAVE_FORMAT_QUERY);
if (result != MMSYSERR_NOERROR) {
pa_log_warn("Sample spec not supported by WaveOut, falling back to default sample rate.");
ss.rate = wf.nSamplesPerSec = m->core->default_sample_spec.rate;
}
result = waveOutOpen(&hwo, device, &wf, (DWORD_PTR) chunk_done_cb, (DWORD_PTR) u, CALLBACK_FUNCTION);
if (result != MMSYSERR_NOERROR) {
char errortext[MAXERRORLENGTH];
pa_log("Failed to open WaveOut.");
if (waveOutGetErrorText(result, errortext, sizeof(errortext)) == MMSYSERR_NOERROR)
pa_log("Error: %s", errortext);
goto fail;
}
}
InitializeCriticalSection(&u->crit);
if (hwi != INVALID_HANDLE_VALUE) {
char *description = pa_sprintf_malloc("WaveIn on %s", device_name);
pa_source_new_data data;
pa_source_new_data_init(&data);
data.driver = __FILE__;
data.module = m;
pa_source_new_data_set_sample_spec(&data, &ss);
pa_source_new_data_set_channel_map(&data, &map);
pa_source_new_data_set_name(&data, pa_modargs_get_value(ma, "source_name", DEFAULT_SOURCE_NAME));
u->source = pa_source_new(m->core, &data, PA_SOURCE_HARDWARE|PA_SOURCE_LATENCY);
pa_source_new_data_done(&data);
pa_assert(u->source);
u->source->userdata = u;
pa_source_set_description(u->source, description);
u->source->parent.process_msg = process_msg;
pa_xfree(description);
} else
u->source = NULL;
if (hwo != INVALID_HANDLE_VALUE) {
char *description = pa_sprintf_malloc("WaveOut on %s", device_name);
pa_sink_new_data data;
pa_sink_new_data_init(&data);
data.driver = __FILE__;
data.module = m;
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_sink_new_data_set_channel_map(&data, &map);
pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME));
u->sink = pa_sink_new(m->core, &data, PA_SINK_HARDWARE|PA_SINK_LATENCY);
pa_sink_new_data_done(&data);
pa_assert(u->sink);
pa_sink_set_get_volume_callback(u->sink, sink_get_volume_cb);
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
u->sink->userdata = u;
pa_sink_set_description(u->sink, description);
u->sink->parent.process_msg = process_msg;
pa_xfree(description);
} else
u->sink = NULL;
pa_assert(u->source || u->sink);
pa_modargs_free(ma);
u->core = m->core;
u->hwi = hwi;
u->hwo = hwo;
u->fragments = nfrags;
u->free_ifrags = u->fragments;
u->free_ofrags = u->fragments;
u->fragment_size = frag_size - (frag_size % pa_frame_size(&ss));
u->written_bytes = 0;
u->sink_underflow = 1;
u->poll_timeout = pa_bytes_to_usec(u->fragments * u->fragment_size / 10, &ss);
pa_log_debug("Poll timeout = %.1f ms", (double) u->poll_timeout / PA_USEC_PER_MSEC);
u->cur_ihdr = 0;
u->cur_ohdr = 0;
u->ihdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments);
pa_assert(u->ihdrs);
u->ohdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments);
pa_assert(u->ohdrs);
for (i = 0; i < u->fragments; i++) {
u->ihdrs[i].dwBufferLength = u->fragment_size;
u->ohdrs[i].dwBufferLength = u->fragment_size;
u->ihdrs[i].lpData = pa_xmalloc(u->fragment_size);
pa_assert(u->ihdrs);
u->ohdrs[i].lpData = pa_xmalloc(u->fragment_size);
pa_assert(u->ohdrs);
}
u->module = m;
m->userdata = u;
/* Read mixer settings */
if (u->sink)
sink_get_volume_cb(u->sink);
u->rtpoll = pa_rtpoll_new();
pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll);
if (u->sink) {
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
}
if (u->source) {
pa_source_set_asyncmsgq(u->source, u->thread_mq.inq);
pa_source_set_rtpoll(u->source, u->rtpoll);
}
if (!(u->thread = pa_thread_new("waveout", thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
if (u->sink)
pa_sink_put(u->sink);
if (u->source)
pa_source_put(u->source);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
void pa__done(pa_module *m) {
struct userdata *u;
unsigned int i;
pa_assert(m);
pa_assert(m->core);
if (!(u = m->userdata))
return;
if (u->sink)
pa_sink_unlink(u->sink);
if (u->source)
pa_source_unlink(u->source);
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
if (u->thread)
pa_thread_free(u->thread);
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->source)
pa_source_unref(u->source);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->hwi != INVALID_HANDLE_VALUE) {
waveInReset(u->hwi);
waveInClose(u->hwi);
}
if (u->hwo != INVALID_HANDLE_VALUE) {
waveOutReset(u->hwo);
waveOutClose(u->hwo);
}
for (i = 0; i < u->fragments; i++) {
pa_xfree(u->ihdrs[i].lpData);
pa_xfree(u->ohdrs[i].lpData);
}
pa_xfree(u->ihdrs);
pa_xfree(u->ohdrs);
DeleteCriticalSection(&u->crit);
pa_xfree(u);
}