mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-10-29 05:40:23 -04:00
This removes the symdef header generation m4 magic in favour of a simpler macro method, allowing us to skip one unnecessary build step while moving to meson, and removing an 11 year old todo!
790 lines
25 KiB
C
790 lines
25 KiB
C
|
||
/***
|
||
This file is part of PulseAudio.
|
||
|
||
Copyright 2006 Lennart Poettering
|
||
|
||
PulseAudio is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation; either version 2.1 of the License,
|
||
or (at your option) any later version.
|
||
|
||
PulseAudio is distributed in the hope that it will be useful, but
|
||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public License
|
||
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
|
||
***/
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
#include <config.h>
|
||
#endif
|
||
|
||
#include <stdio.h>
|
||
#include <sys/socket.h>
|
||
#include <netinet/in.h>
|
||
#include <errno.h>
|
||
#include <string.h>
|
||
#include <unistd.h>
|
||
#include <math.h>
|
||
|
||
#include <pulse/rtclock.h>
|
||
#include <pulse/timeval.h>
|
||
#include <pulse/xmalloc.h>
|
||
|
||
#include <pulsecore/core-error.h>
|
||
#include <pulsecore/module.h>
|
||
#include <pulsecore/llist.h>
|
||
#include <pulsecore/sink.h>
|
||
#include <pulsecore/sink-input.h>
|
||
#include <pulsecore/memblockq.h>
|
||
#include <pulsecore/log.h>
|
||
#include <pulsecore/core-rtclock.h>
|
||
#include <pulsecore/core-util.h>
|
||
#include <pulsecore/modargs.h>
|
||
#include <pulsecore/namereg.h>
|
||
#include <pulsecore/sample-util.h>
|
||
#include <pulsecore/macro.h>
|
||
#include <pulsecore/socket-util.h>
|
||
#include <pulsecore/atomic.h>
|
||
#include <pulsecore/once.h>
|
||
#include <pulsecore/poll.h>
|
||
#include <pulsecore/arpa-inet.h>
|
||
|
||
#include "rtp.h"
|
||
#include "sdp.h"
|
||
#include "sap.h"
|
||
|
||
PA_MODULE_AUTHOR("Lennart Poettering");
|
||
PA_MODULE_DESCRIPTION("Receive data from a network via RTP/SAP/SDP");
|
||
PA_MODULE_VERSION(PACKAGE_VERSION);
|
||
PA_MODULE_LOAD_ONCE(false);
|
||
PA_MODULE_USAGE(
|
||
"sink=<name of the sink> "
|
||
"sap_address=<multicast address to listen on> "
|
||
"latency_msec=<latency in ms> "
|
||
);
|
||
|
||
#define SAP_PORT 9875
|
||
#define DEFAULT_SAP_ADDRESS "224.0.0.56"
|
||
#define DEFAULT_LATENCY_MSEC 500
|
||
#define MEMBLOCKQ_MAXLENGTH (1024*1024*40)
|
||
#define MAX_SESSIONS 16
|
||
#define DEATH_TIMEOUT 20
|
||
#define RATE_UPDATE_INTERVAL (5*PA_USEC_PER_SEC)
|
||
|
||
static const char* const valid_modargs[] = {
|
||
"sink",
|
||
"sap_address",
|
||
"latency_msec",
|
||
NULL
|
||
};
|
||
|
||
struct session {
|
||
struct userdata *userdata;
|
||
PA_LLIST_FIELDS(struct session);
|
||
|
||
pa_sink_input *sink_input;
|
||
pa_memblockq *memblockq;
|
||
|
||
bool first_packet;
|
||
uint32_t ssrc;
|
||
uint32_t offset;
|
||
|
||
struct pa_sdp_info sdp_info;
|
||
|
||
pa_rtp_context rtp_context;
|
||
|
||
pa_rtpoll_item *rtpoll_item;
|
||
|
||
pa_atomic_t timestamp;
|
||
|
||
pa_usec_t intended_latency;
|
||
pa_usec_t sink_latency;
|
||
|
||
unsigned int base_rate;
|
||
pa_usec_t last_rate_update;
|
||
pa_usec_t last_latency;
|
||
double estimated_rate;
|
||
double avg_estimated_rate;
|
||
};
|
||
|
||
struct userdata {
|
||
pa_module *module;
|
||
pa_core *core;
|
||
|
||
pa_sap_context sap_context;
|
||
pa_io_event* sap_event;
|
||
|
||
pa_time_event *check_death_event;
|
||
|
||
char *sink_name;
|
||
|
||
PA_LLIST_HEAD(struct session, sessions);
|
||
pa_hashmap *by_origin;
|
||
int n_sessions;
|
||
|
||
pa_usec_t latency;
|
||
};
|
||
|
||
static void session_free(struct session *s);
|
||
|
||
/* Called from I/O thread context */
|
||
static int sink_input_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
|
||
struct session *s = PA_SINK_INPUT(o)->userdata;
|
||
|
||
switch (code) {
|
||
case PA_SINK_INPUT_MESSAGE_GET_LATENCY:
|
||
*((pa_usec_t*) data) = pa_bytes_to_usec(pa_memblockq_get_length(s->memblockq), &s->sink_input->sample_spec);
|
||
|
||
/* Fall through, the default handler will add in the extra
|
||
* latency added by the resampler */
|
||
break;
|
||
}
|
||
|
||
return pa_sink_input_process_msg(o, code, data, offset, chunk);
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static int sink_input_pop_cb(pa_sink_input *i, size_t length, pa_memchunk *chunk) {
|
||
struct session *s;
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
if (pa_memblockq_peek(s->memblockq, chunk) < 0)
|
||
return -1;
|
||
|
||
pa_memblockq_drop(s->memblockq, chunk->length);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
||
struct session *s;
|
||
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
pa_memblockq_rewind(s->memblockq, nbytes);
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
||
struct session *s;
|
||
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
pa_memblockq_set_maxrewind(s->memblockq, nbytes);
|
||
}
|
||
|
||
/* Called from main context */
|
||
static void sink_input_kill(pa_sink_input* i) {
|
||
struct session *s;
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
pa_hashmap_remove_and_free(s->userdata->by_origin, s->sdp_info.origin);
|
||
}
|
||
|
||
/* Called from IO context */
|
||
static void sink_input_suspend_within_thread(pa_sink_input* i, bool b) {
|
||
struct session *s;
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
if (b)
|
||
pa_memblockq_flush_read(s->memblockq);
|
||
else
|
||
s->first_packet = false;
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static int rtpoll_work_cb(pa_rtpoll_item *i) {
|
||
pa_memchunk chunk;
|
||
int64_t k, j, delta;
|
||
struct timeval now = { 0, 0 };
|
||
struct session *s;
|
||
struct pollfd *p;
|
||
|
||
pa_assert_se(s = pa_rtpoll_item_get_userdata(i));
|
||
|
||
p = pa_rtpoll_item_get_pollfd(i, NULL);
|
||
|
||
if (p->revents & (POLLERR|POLLNVAL|POLLHUP|POLLOUT)) {
|
||
pa_log("poll() signalled bad revents.");
|
||
return -1;
|
||
}
|
||
|
||
if ((p->revents & POLLIN) == 0)
|
||
return 0;
|
||
|
||
p->revents = 0;
|
||
|
||
if (pa_rtp_recv(&s->rtp_context, &chunk, s->userdata->module->core->mempool, &now) < 0)
|
||
return 0;
|
||
|
||
if (s->sdp_info.payload != s->rtp_context.payload ||
|
||
!PA_SINK_IS_OPENED(s->sink_input->sink->thread_info.state)) {
|
||
pa_memblock_unref(chunk.memblock);
|
||
return 0;
|
||
}
|
||
|
||
if (!s->first_packet) {
|
||
s->first_packet = true;
|
||
|
||
s->ssrc = s->rtp_context.ssrc;
|
||
s->offset = s->rtp_context.timestamp;
|
||
|
||
if (s->ssrc == s->userdata->module->core->cookie)
|
||
pa_log_warn("Detected RTP packet loop!");
|
||
} else {
|
||
if (s->ssrc != s->rtp_context.ssrc) {
|
||
pa_memblock_unref(chunk.memblock);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Check whether there was a timestamp overflow */
|
||
k = (int64_t) s->rtp_context.timestamp - (int64_t) s->offset;
|
||
j = (int64_t) 0x100000000LL - (int64_t) s->offset + (int64_t) s->rtp_context.timestamp;
|
||
|
||
if ((k < 0 ? -k : k) < (j < 0 ? -j : j))
|
||
delta = k;
|
||
else
|
||
delta = j;
|
||
|
||
pa_memblockq_seek(s->memblockq, delta * (int64_t) s->rtp_context.frame_size, PA_SEEK_RELATIVE, true);
|
||
|
||
if (now.tv_sec == 0) {
|
||
PA_ONCE_BEGIN {
|
||
pa_log_warn("Using artificial time instead of timestamp");
|
||
} PA_ONCE_END;
|
||
pa_rtclock_get(&now);
|
||
} else
|
||
pa_rtclock_from_wallclock(&now);
|
||
|
||
if (pa_memblockq_push(s->memblockq, &chunk) < 0) {
|
||
pa_log_warn("Queue overrun");
|
||
pa_memblockq_seek(s->memblockq, (int64_t) chunk.length, PA_SEEK_RELATIVE, true);
|
||
}
|
||
|
||
/* pa_log("blocks in q: %u", pa_memblockq_get_nblocks(s->memblockq)); */
|
||
|
||
pa_memblock_unref(chunk.memblock);
|
||
|
||
/* The next timestamp we expect */
|
||
s->offset = s->rtp_context.timestamp + (uint32_t) (chunk.length / s->rtp_context.frame_size);
|
||
|
||
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
|
||
|
||
if (s->last_rate_update + RATE_UPDATE_INTERVAL < pa_timeval_load(&now)) {
|
||
pa_usec_t wi, ri, render_delay, sink_delay = 0, latency;
|
||
uint32_t current_rate = s->sink_input->sample_spec.rate;
|
||
uint32_t new_rate;
|
||
double estimated_rate, alpha = 0.02;
|
||
|
||
pa_log_debug("Updating sample rate");
|
||
|
||
wi = pa_bytes_to_usec((uint64_t) pa_memblockq_get_write_index(s->memblockq), &s->sink_input->sample_spec);
|
||
ri = pa_bytes_to_usec((uint64_t) pa_memblockq_get_read_index(s->memblockq), &s->sink_input->sample_spec);
|
||
|
||
pa_log_debug("wi=%lu ri=%lu", (unsigned long) wi, (unsigned long) ri);
|
||
|
||
sink_delay = pa_sink_get_latency_within_thread(s->sink_input->sink, false);
|
||
render_delay = pa_bytes_to_usec(pa_memblockq_get_length(s->sink_input->thread_info.render_memblockq), &s->sink_input->sink->sample_spec);
|
||
|
||
if (ri > render_delay+sink_delay)
|
||
ri -= render_delay+sink_delay;
|
||
else
|
||
ri = 0;
|
||
|
||
if (wi < ri)
|
||
latency = 0;
|
||
else
|
||
latency = wi - ri;
|
||
|
||
pa_log_debug("Write index deviates by %0.2f ms, expected %0.2f ms", (double) latency/PA_USEC_PER_MSEC, (double) s->intended_latency/PA_USEC_PER_MSEC);
|
||
|
||
/* The buffer is filling with some unknown rate R̂ samples/second. If the rate of reading in
|
||
* the last T seconds was Rⁿ, then the increase in buffer latency ΔLⁿ = Lⁿ - Lⁿ⁻ⁱ in that
|
||
* same period is ΔLⁿ = (TR̂ - TRⁿ) / R̂, giving the estimated target rate
|
||
* T
|
||
* R̂ = ─────────────── Rⁿ . (1)
|
||
* T - (Lⁿ - Lⁿ⁻ⁱ)
|
||
*
|
||
* Setting the sample rate to R̂ results in the latency being constant (if the estimate of R̂
|
||
* is correct). But there is also the requirement to keep the buffer at a predefined target
|
||
* latency L̂. So instead of setting Rⁿ⁺ⁱ to R̂ immediately, the strategy will be to reduce R
|
||
* from Rⁿ⁺ⁱ to R̂ in a steps of T seconds, where Rⁿ⁺ⁱ is chosen such that in the total time
|
||
* aT the latency is reduced from Lⁿ to L̂. This strategy translates to the requirements
|
||
* ₐ R̂ - Rⁿ⁺ʲ a-j+1 j-1
|
||
* Σ T ────────── = L̂ - Lⁿ with Rⁿ⁺ʲ = ───── Rⁿ⁺ⁱ + ───── R̂ .
|
||
* ʲ⁼ⁱ R̂ a a
|
||
* Solving for Rⁿ⁺ⁱ gives
|
||
* T - ²∕ₐ₊₁(L̂ - Lⁿ)
|
||
* Rⁿ⁺ⁱ = ───────────────── R̂ . (2)
|
||
* T
|
||
* In the code below a = 7 is used.
|
||
*
|
||
* Equation (1) is not directly used in (2), but instead an exponentially weighted average
|
||
* of the estimated rate R̂ is used. This average R̅ is defined as
|
||
* R̅ⁿ = α R̂ⁿ + (1-α) R̅ⁿ⁻ⁱ .
|
||
* Because it is difficult to find a fixed value for the coefficient α such that the
|
||
* averaging is without significant lag but oscillations are filtered out, a heuristic is
|
||
* used. When the successive estimates R̂ⁿ do not change much then α→1, but when there is a
|
||
* sudden spike in the estimated rate α→0, such that the deviation is given little weight.
|
||
*/
|
||
estimated_rate = (double) current_rate * (double) RATE_UPDATE_INTERVAL / (double) (RATE_UPDATE_INTERVAL + s->last_latency - latency);
|
||
if (fabs(s->estimated_rate - s->avg_estimated_rate) > 1) {
|
||
double ratio = (estimated_rate + s->estimated_rate - 2*s->avg_estimated_rate) / (s->estimated_rate - s->avg_estimated_rate);
|
||
alpha = PA_CLAMP(2 * (ratio + fabs(ratio)) / (4 + ratio*ratio), 0.02, 0.8);
|
||
}
|
||
s->avg_estimated_rate = alpha * estimated_rate + (1-alpha) * s->avg_estimated_rate;
|
||
s->estimated_rate = estimated_rate;
|
||
pa_log_debug("Estimated target rate: %.0f Hz, using average of %.0f Hz (α=%.3f)", estimated_rate, s->avg_estimated_rate, alpha);
|
||
new_rate = (uint32_t) ((double) (RATE_UPDATE_INTERVAL + latency/4 - s->intended_latency/4) / (double) RATE_UPDATE_INTERVAL * s->avg_estimated_rate);
|
||
s->last_latency = latency;
|
||
|
||
if (new_rate < (uint32_t) (s->base_rate*0.8) || new_rate > (uint32_t) (s->base_rate*1.25)) {
|
||
pa_log_warn("Sample rates too different, not adjusting (%u vs. %u).", s->base_rate, new_rate);
|
||
new_rate = s->base_rate;
|
||
} else {
|
||
if (s->base_rate < new_rate + 20 && new_rate < s->base_rate + 20)
|
||
new_rate = s->base_rate;
|
||
/* Do the adjustment in small steps; 2‰ can be considered inaudible */
|
||
if (new_rate < (uint32_t) (current_rate*0.998) || new_rate > (uint32_t) (current_rate*1.002)) {
|
||
pa_log_info("New rate of %u Hz not within 2‰ of %u Hz, forcing smaller adjustment", new_rate, current_rate);
|
||
new_rate = PA_CLAMP(new_rate, (uint32_t) (current_rate*0.998), (uint32_t) (current_rate*1.002));
|
||
}
|
||
}
|
||
s->sink_input->sample_spec.rate = new_rate;
|
||
|
||
pa_assert(pa_sample_spec_valid(&s->sink_input->sample_spec));
|
||
|
||
pa_resampler_set_input_rate(s->sink_input->thread_info.resampler, s->sink_input->sample_spec.rate);
|
||
|
||
pa_log_debug("Updated sampling rate to %lu Hz.", (unsigned long) s->sink_input->sample_spec.rate);
|
||
|
||
s->last_rate_update = pa_timeval_load(&now);
|
||
}
|
||
|
||
if (pa_memblockq_is_readable(s->memblockq) &&
|
||
s->sink_input->thread_info.underrun_for > 0) {
|
||
pa_log_debug("Requesting rewind due to end of underrun");
|
||
pa_sink_input_request_rewind(s->sink_input,
|
||
(size_t) (s->sink_input->thread_info.underrun_for == (uint64_t) -1 ? 0 : s->sink_input->thread_info.underrun_for),
|
||
false, true, false);
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static void sink_input_attach(pa_sink_input *i) {
|
||
struct session *s;
|
||
struct pollfd *p;
|
||
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
pa_assert(!s->rtpoll_item);
|
||
s->rtpoll_item = pa_rtpoll_item_new(i->sink->thread_info.rtpoll, PA_RTPOLL_LATE, 1);
|
||
|
||
p = pa_rtpoll_item_get_pollfd(s->rtpoll_item, NULL);
|
||
p->fd = s->rtp_context.fd;
|
||
p->events = POLLIN;
|
||
p->revents = 0;
|
||
|
||
pa_rtpoll_item_set_work_callback(s->rtpoll_item, rtpoll_work_cb);
|
||
pa_rtpoll_item_set_userdata(s->rtpoll_item, s);
|
||
}
|
||
|
||
/* Called from I/O thread context */
|
||
static void sink_input_detach(pa_sink_input *i) {
|
||
struct session *s;
|
||
pa_sink_input_assert_ref(i);
|
||
pa_assert_se(s = i->userdata);
|
||
|
||
pa_assert(s->rtpoll_item);
|
||
pa_rtpoll_item_free(s->rtpoll_item);
|
||
s->rtpoll_item = NULL;
|
||
}
|
||
|
||
static int mcast_socket(const struct sockaddr* sa, socklen_t salen) {
|
||
int af, fd = -1, r, one;
|
||
|
||
pa_assert(sa);
|
||
pa_assert(salen > 0);
|
||
|
||
af = sa->sa_family;
|
||
if ((fd = pa_socket_cloexec(af, SOCK_DGRAM, 0)) < 0) {
|
||
pa_log("Failed to create socket: %s", pa_cstrerror(errno));
|
||
goto fail;
|
||
}
|
||
|
||
pa_make_udp_socket_low_delay(fd);
|
||
|
||
#ifdef SO_TIMESTAMP
|
||
one = 1;
|
||
if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP, &one, sizeof(one)) < 0) {
|
||
pa_log("SO_TIMESTAMP failed: %s", pa_cstrerror(errno));
|
||
goto fail;
|
||
}
|
||
#else
|
||
pa_log("SO_TIMESTAMP unsupported on this platform");
|
||
goto fail;
|
||
#endif
|
||
|
||
one = 1;
|
||
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0) {
|
||
pa_log("SO_REUSEADDR failed: %s", pa_cstrerror(errno));
|
||
goto fail;
|
||
}
|
||
|
||
r = 0;
|
||
if (af == AF_INET) {
|
||
/* IPv4 multicast addresses are in the 224.0.0.0-239.255.255.255 range */
|
||
static const uint32_t ipv4_mcast_mask = 0xe0000000;
|
||
|
||
if ((ntohl(((const struct sockaddr_in*) sa)->sin_addr.s_addr) & ipv4_mcast_mask) == ipv4_mcast_mask) {
|
||
struct ip_mreq mr4;
|
||
memset(&mr4, 0, sizeof(mr4));
|
||
mr4.imr_multiaddr = ((const struct sockaddr_in*) sa)->sin_addr;
|
||
r = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mr4, sizeof(mr4));
|
||
}
|
||
#ifdef HAVE_IPV6
|
||
} else if (af == AF_INET6) {
|
||
/* IPv6 multicast addresses have 255 as the most significant byte */
|
||
if (((const struct sockaddr_in6*) sa)->sin6_addr.s6_addr[0] == 0xff) {
|
||
struct ipv6_mreq mr6;
|
||
memset(&mr6, 0, sizeof(mr6));
|
||
mr6.ipv6mr_multiaddr = ((const struct sockaddr_in6*) sa)->sin6_addr;
|
||
r = setsockopt(fd, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mr6, sizeof(mr6));
|
||
}
|
||
#endif
|
||
} else
|
||
pa_assert_not_reached();
|
||
|
||
if (r < 0) {
|
||
pa_log_info("Joining mcast group failed: %s", pa_cstrerror(errno));
|
||
goto fail;
|
||
}
|
||
|
||
if (bind(fd, sa, salen) < 0) {
|
||
pa_log("bind() failed: %s", pa_cstrerror(errno));
|
||
goto fail;
|
||
}
|
||
|
||
return fd;
|
||
|
||
fail:
|
||
if (fd >= 0)
|
||
close(fd);
|
||
|
||
return -1;
|
||
}
|
||
|
||
static struct session *session_new(struct userdata *u, const pa_sdp_info *sdp_info) {
|
||
struct session *s = NULL;
|
||
pa_sink *sink;
|
||
int fd = -1;
|
||
pa_memchunk silence;
|
||
pa_sink_input_new_data data;
|
||
struct timeval now;
|
||
|
||
pa_assert(u);
|
||
pa_assert(sdp_info);
|
||
|
||
if (u->n_sessions >= MAX_SESSIONS) {
|
||
pa_log("Session limit reached.");
|
||
goto fail;
|
||
}
|
||
|
||
if (!(sink = pa_namereg_get(u->module->core, u->sink_name, PA_NAMEREG_SINK))) {
|
||
pa_log("Sink does not exist.");
|
||
goto fail;
|
||
}
|
||
|
||
pa_rtclock_get(&now);
|
||
|
||
s = pa_xnew0(struct session, 1);
|
||
s->userdata = u;
|
||
s->first_packet = false;
|
||
s->sdp_info = *sdp_info;
|
||
s->rtpoll_item = NULL;
|
||
s->intended_latency = u->latency;
|
||
s->last_rate_update = pa_timeval_load(&now);
|
||
s->last_latency = u->latency;
|
||
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
|
||
|
||
if ((fd = mcast_socket((const struct sockaddr*) &sdp_info->sa, sdp_info->salen)) < 0)
|
||
goto fail;
|
||
|
||
pa_sink_input_new_data_init(&data);
|
||
pa_sink_input_new_data_set_sink(&data, sink, false, true);
|
||
data.driver = __FILE__;
|
||
pa_proplist_sets(data.proplist, PA_PROP_MEDIA_ROLE, "stream");
|
||
pa_proplist_setf(data.proplist, PA_PROP_MEDIA_NAME,
|
||
"RTP Stream%s%s%s",
|
||
sdp_info->session_name ? " (" : "",
|
||
sdp_info->session_name ? sdp_info->session_name : "",
|
||
sdp_info->session_name ? ")" : "");
|
||
|
||
if (sdp_info->session_name)
|
||
pa_proplist_sets(data.proplist, "rtp.session", sdp_info->session_name);
|
||
pa_proplist_sets(data.proplist, "rtp.origin", sdp_info->origin);
|
||
pa_proplist_setf(data.proplist, "rtp.payload", "%u", (unsigned) sdp_info->payload);
|
||
data.module = u->module;
|
||
pa_sink_input_new_data_set_sample_spec(&data, &sdp_info->sample_spec);
|
||
data.flags = PA_SINK_INPUT_VARIABLE_RATE;
|
||
|
||
pa_sink_input_new(&s->sink_input, u->module->core, &data);
|
||
pa_sink_input_new_data_done(&data);
|
||
|
||
if (!s->sink_input) {
|
||
pa_log("Failed to create sink input.");
|
||
goto fail;
|
||
}
|
||
|
||
s->base_rate = (double) s->sink_input->sample_spec.rate;
|
||
s->estimated_rate = (double) s->sink_input->sample_spec.rate;
|
||
s->avg_estimated_rate = (double) s->sink_input->sample_spec.rate;
|
||
|
||
s->sink_input->userdata = s;
|
||
|
||
s->sink_input->parent.process_msg = sink_input_process_msg;
|
||
s->sink_input->pop = sink_input_pop_cb;
|
||
s->sink_input->process_rewind = sink_input_process_rewind_cb;
|
||
s->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
|
||
s->sink_input->kill = sink_input_kill;
|
||
s->sink_input->attach = sink_input_attach;
|
||
s->sink_input->detach = sink_input_detach;
|
||
s->sink_input->suspend_within_thread = sink_input_suspend_within_thread;
|
||
|
||
pa_sink_input_get_silence(s->sink_input, &silence);
|
||
|
||
s->sink_latency = pa_sink_input_set_requested_latency(s->sink_input, s->intended_latency/2);
|
||
|
||
if (s->intended_latency < s->sink_latency*2)
|
||
s->intended_latency = s->sink_latency*2;
|
||
|
||
s->memblockq = pa_memblockq_new(
|
||
"module-rtp-recv memblockq",
|
||
0,
|
||
MEMBLOCKQ_MAXLENGTH,
|
||
MEMBLOCKQ_MAXLENGTH,
|
||
&s->sink_input->sample_spec,
|
||
pa_usec_to_bytes(s->intended_latency - s->sink_latency, &s->sink_input->sample_spec),
|
||
0,
|
||
0,
|
||
&silence);
|
||
|
||
pa_memblock_unref(silence.memblock);
|
||
|
||
pa_rtp_context_init_recv(&s->rtp_context, fd, pa_frame_size(&s->sdp_info.sample_spec));
|
||
|
||
pa_hashmap_put(s->userdata->by_origin, s->sdp_info.origin, s);
|
||
u->n_sessions++;
|
||
PA_LLIST_PREPEND(struct session, s->userdata->sessions, s);
|
||
|
||
pa_sink_input_put(s->sink_input);
|
||
|
||
pa_log_info("New session '%s'", s->sdp_info.session_name);
|
||
|
||
return s;
|
||
|
||
fail:
|
||
pa_xfree(s);
|
||
|
||
if (fd >= 0)
|
||
pa_close(fd);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void session_free(struct session *s) {
|
||
pa_assert(s);
|
||
|
||
pa_log_info("Freeing session '%s'", s->sdp_info.session_name);
|
||
|
||
pa_sink_input_unlink(s->sink_input);
|
||
pa_sink_input_unref(s->sink_input);
|
||
|
||
PA_LLIST_REMOVE(struct session, s->userdata->sessions, s);
|
||
pa_assert(s->userdata->n_sessions >= 1);
|
||
s->userdata->n_sessions--;
|
||
|
||
pa_memblockq_free(s->memblockq);
|
||
pa_sdp_info_destroy(&s->sdp_info);
|
||
pa_rtp_context_destroy(&s->rtp_context);
|
||
|
||
pa_xfree(s);
|
||
}
|
||
|
||
static void sap_event_cb(pa_mainloop_api *m, pa_io_event *e, int fd, pa_io_event_flags_t flags, void *userdata) {
|
||
struct userdata *u = userdata;
|
||
bool goodbye = false;
|
||
pa_sdp_info info;
|
||
struct session *s;
|
||
|
||
pa_assert(m);
|
||
pa_assert(e);
|
||
pa_assert(u);
|
||
pa_assert(fd == u->sap_context.fd);
|
||
pa_assert(flags == PA_IO_EVENT_INPUT);
|
||
|
||
if (pa_sap_recv(&u->sap_context, &goodbye) < 0)
|
||
return;
|
||
|
||
if (!pa_sdp_parse(u->sap_context.sdp_data, &info, goodbye))
|
||
return;
|
||
|
||
if (goodbye) {
|
||
pa_hashmap_remove_and_free(u->by_origin, info.origin);
|
||
pa_sdp_info_destroy(&info);
|
||
} else {
|
||
|
||
if (!(s = pa_hashmap_get(u->by_origin, info.origin))) {
|
||
if (!session_new(u, &info))
|
||
pa_sdp_info_destroy(&info);
|
||
|
||
} else {
|
||
struct timeval now;
|
||
pa_rtclock_get(&now);
|
||
pa_atomic_store(&s->timestamp, (int) now.tv_sec);
|
||
|
||
pa_sdp_info_destroy(&info);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void check_death_event_cb(pa_mainloop_api *m, pa_time_event *t, const struct timeval *tv, void *userdata) {
|
||
struct session *s, *n;
|
||
struct userdata *u = userdata;
|
||
struct timeval now;
|
||
|
||
pa_assert(m);
|
||
pa_assert(t);
|
||
pa_assert(u);
|
||
|
||
pa_rtclock_get(&now);
|
||
|
||
pa_log_debug("Checking for dead streams ...");
|
||
|
||
for (s = u->sessions; s; s = n) {
|
||
int k;
|
||
n = s->next;
|
||
|
||
k = pa_atomic_load(&s->timestamp);
|
||
|
||
if (k + DEATH_TIMEOUT < now.tv_sec)
|
||
pa_hashmap_remove_and_free(u->by_origin, s->sdp_info.origin);
|
||
}
|
||
|
||
/* Restart timer */
|
||
pa_core_rttime_restart(u->module->core, t, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC);
|
||
}
|
||
|
||
int pa__init(pa_module*m) {
|
||
struct userdata *u;
|
||
pa_modargs *ma = NULL;
|
||
struct sockaddr_in sa4;
|
||
#ifdef HAVE_IPV6
|
||
struct sockaddr_in6 sa6;
|
||
#endif
|
||
struct sockaddr *sa;
|
||
socklen_t salen;
|
||
const char *sap_address;
|
||
uint32_t latency_msec;
|
||
int fd = -1;
|
||
|
||
pa_assert(m);
|
||
|
||
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
|
||
pa_log("failed to parse module arguments");
|
||
goto fail;
|
||
}
|
||
|
||
sap_address = pa_modargs_get_value(ma, "sap_address", DEFAULT_SAP_ADDRESS);
|
||
|
||
if (inet_pton(AF_INET, sap_address, &sa4.sin_addr) > 0) {
|
||
sa4.sin_family = AF_INET;
|
||
sa4.sin_port = htons(SAP_PORT);
|
||
sa = (struct sockaddr*) &sa4;
|
||
salen = sizeof(sa4);
|
||
#ifdef HAVE_IPV6
|
||
} else if (inet_pton(AF_INET6, sap_address, &sa6.sin6_addr) > 0) {
|
||
sa6.sin6_family = AF_INET6;
|
||
sa6.sin6_port = htons(SAP_PORT);
|
||
sa = (struct sockaddr*) &sa6;
|
||
salen = sizeof(sa6);
|
||
#endif
|
||
} else {
|
||
pa_log("Invalid SAP address '%s'", sap_address);
|
||
goto fail;
|
||
}
|
||
|
||
latency_msec = DEFAULT_LATENCY_MSEC;
|
||
if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 300000) {
|
||
pa_log("Invalid latency specification");
|
||
goto fail;
|
||
}
|
||
|
||
if ((fd = mcast_socket(sa, salen)) < 0)
|
||
goto fail;
|
||
|
||
m->userdata = u = pa_xnew(struct userdata, 1);
|
||
u->module = m;
|
||
u->core = m->core;
|
||
u->sink_name = pa_xstrdup(pa_modargs_get_value(ma, "sink", NULL));
|
||
u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;
|
||
|
||
u->sap_event = m->core->mainloop->io_new(m->core->mainloop, fd, PA_IO_EVENT_INPUT, sap_event_cb, u);
|
||
pa_sap_context_init_recv(&u->sap_context, fd);
|
||
|
||
PA_LLIST_HEAD_INIT(struct session, u->sessions);
|
||
u->n_sessions = 0;
|
||
u->by_origin = pa_hashmap_new_full(pa_idxset_string_hash_func, pa_idxset_string_compare_func, NULL, (pa_free_cb_t) session_free);
|
||
|
||
u->check_death_event = pa_core_rttime_new(m->core, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC, check_death_event_cb, u);
|
||
|
||
pa_modargs_free(ma);
|
||
|
||
return 0;
|
||
|
||
fail:
|
||
if (ma)
|
||
pa_modargs_free(ma);
|
||
|
||
if (fd >= 0)
|
||
pa_close(fd);
|
||
|
||
return -1;
|
||
}
|
||
|
||
void pa__done(pa_module*m) {
|
||
struct userdata *u;
|
||
|
||
pa_assert(m);
|
||
|
||
if (!(u = m->userdata))
|
||
return;
|
||
|
||
if (u->sap_event)
|
||
m->core->mainloop->io_free(u->sap_event);
|
||
|
||
if (u->check_death_event)
|
||
m->core->mainloop->time_free(u->check_death_event);
|
||
|
||
pa_sap_context_destroy(&u->sap_context);
|
||
|
||
if (u->by_origin)
|
||
pa_hashmap_free(u->by_origin);
|
||
|
||
pa_xfree(u->sink_name);
|
||
pa_xfree(u);
|
||
}
|