mirror of
				https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
				synced 2025-11-03 09:01:50 -05:00 
			
		
		
		
	* implement inner loops using liboil * drop "typeid" stuff * add support for channel maps * add support for seperate volumes per channel * add support for hardware mixer settings (only module-oss implements this for now) * fix a lot of types for _t suffix git-svn-id: file:///home/lennart/svn/public/pulseaudio/trunk@463 fefdeb5f-60dc-0310-8127-8f9354f1896f
		
			
				
	
	
		
			614 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			614 lines
		
	
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* $Id$ */
 | 
						|
 | 
						|
/***
 | 
						|
  This file is part of polypaudio.
 | 
						|
 
 | 
						|
  polypaudio is free software; you can redistribute it and/or modify
 | 
						|
  it under the terms of the GNU Lesser General Public License as published
 | 
						|
  by the Free Software Foundation; either version 2 of the License,
 | 
						|
  or (at your option) any later version.
 | 
						|
 
 | 
						|
  polypaudio is distributed in the hope that it will be useful, but
 | 
						|
  WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 | 
						|
  General Public License for more details.
 | 
						|
 
 | 
						|
  You should have received a copy of the GNU Lesser General Public License
 | 
						|
  along with polypaudio; if not, write to the Free Software
 | 
						|
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
 | 
						|
  USA.
 | 
						|
***/
 | 
						|
 | 
						|
#ifdef HAVE_CONFIG_H
 | 
						|
#include <config.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <assert.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#include <samplerate.h>
 | 
						|
#include <liboil/liboilfuncs.h>
 | 
						|
#include <liboil/liboil.h>
 | 
						|
 | 
						|
#include "resampler.h"
 | 
						|
#include "sconv.h"
 | 
						|
#include "xmalloc.h"
 | 
						|
#include "log.h"
 | 
						|
 | 
						|
struct pa_resampler {
 | 
						|
    pa_resample_method_t resample_method;
 | 
						|
    pa_sample_spec i_ss, o_ss;
 | 
						|
    pa_channel_map i_cm, o_cm;
 | 
						|
    size_t i_fz, o_fz;
 | 
						|
    pa_memblock_stat *memblock_stat;
 | 
						|
 | 
						|
    void (*impl_free)(pa_resampler *r);
 | 
						|
    void (*impl_update_input_rate)(pa_resampler *r, uint32_t rate);
 | 
						|
    void (*impl_run)(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out);
 | 
						|
    void *impl_data;
 | 
						|
};
 | 
						|
 | 
						|
struct impl_libsamplerate {
 | 
						|
    float* buf1, *buf2, *buf3, *buf4;
 | 
						|
    unsigned buf1_samples, buf2_samples, buf3_samples, buf4_samples;
 | 
						|
    
 | 
						|
    pa_convert_to_float32ne_func_t to_float32ne_func;
 | 
						|
    pa_convert_from_float32ne_func_t from_float32ne_func;
 | 
						|
    SRC_STATE *src_state;
 | 
						|
 | 
						|
    int map_table[PA_CHANNELS_MAX][PA_CHANNELS_MAX];
 | 
						|
    int map_required;
 | 
						|
};
 | 
						|
 | 
						|
struct impl_trivial {
 | 
						|
    unsigned o_counter;
 | 
						|
    unsigned i_counter;
 | 
						|
};
 | 
						|
 | 
						|
static int libsamplerate_init(pa_resampler*r);
 | 
						|
static int trivial_init(pa_resampler*r);
 | 
						|
 | 
						|
pa_resampler* pa_resampler_new(
 | 
						|
    const pa_sample_spec *a,
 | 
						|
    const pa_channel_map *am,
 | 
						|
    const pa_sample_spec *b,
 | 
						|
    const pa_channel_map *bm,
 | 
						|
    pa_memblock_stat *s,
 | 
						|
    pa_resample_method_t resample_method) {
 | 
						|
    
 | 
						|
    pa_resampler *r = NULL;
 | 
						|
 | 
						|
    assert(a);
 | 
						|
    assert(b);
 | 
						|
    assert(pa_sample_spec_valid(a));
 | 
						|
    assert(pa_sample_spec_valid(b));
 | 
						|
    assert(resample_method != PA_RESAMPLER_INVALID);
 | 
						|
 | 
						|
    r = pa_xnew(pa_resampler, 1);
 | 
						|
    r->impl_data = NULL;
 | 
						|
    r->memblock_stat = s;
 | 
						|
    r->resample_method = resample_method;
 | 
						|
 | 
						|
    r->impl_free = NULL;
 | 
						|
    r->impl_update_input_rate = NULL;
 | 
						|
    r->impl_run = NULL;
 | 
						|
 | 
						|
    /* Fill sample specs */
 | 
						|
    r->i_ss = *a;
 | 
						|
    r->o_ss = *b;
 | 
						|
 | 
						|
    if (am)
 | 
						|
        r->i_cm = *am;
 | 
						|
    else
 | 
						|
        pa_channel_map_init_auto(&r->i_cm, r->i_ss.channels);
 | 
						|
 | 
						|
    if (bm)
 | 
						|
        r->o_cm = *bm;
 | 
						|
    else
 | 
						|
        pa_channel_map_init_auto(&r->o_cm, r->o_ss.channels);
 | 
						|
    
 | 
						|
    r->i_fz = pa_frame_size(a);
 | 
						|
    r->o_fz = pa_frame_size(b);
 | 
						|
 | 
						|
    /* Choose implementation */
 | 
						|
    if (a->channels != b->channels ||
 | 
						|
        a->format != b->format ||
 | 
						|
        !pa_channel_map_equal(&r->i_cm, &r->o_cm) ||
 | 
						|
        resample_method != PA_RESAMPLER_TRIVIAL) {
 | 
						|
 | 
						|
        /* Use the libsamplerate based resampler for the complicated cases */
 | 
						|
        if (resample_method == PA_RESAMPLER_TRIVIAL)
 | 
						|
            r->resample_method = PA_RESAMPLER_SRC_ZERO_ORDER_HOLD;
 | 
						|
 | 
						|
        if (libsamplerate_init(r) < 0)
 | 
						|
            goto fail;
 | 
						|
        
 | 
						|
    } else {
 | 
						|
        /* Use our own simple non-fp resampler for the trivial cases and when the user selects it */
 | 
						|
        if (trivial_init(r) < 0)
 | 
						|
            goto fail;
 | 
						|
    }
 | 
						|
    
 | 
						|
    return r;
 | 
						|
    
 | 
						|
fail:
 | 
						|
    if (r)
 | 
						|
        pa_xfree(r);
 | 
						|
    
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
void pa_resampler_free(pa_resampler *r) {
 | 
						|
    assert(r);
 | 
						|
 | 
						|
    if (r->impl_free)
 | 
						|
        r->impl_free(r);
 | 
						|
    
 | 
						|
    pa_xfree(r);
 | 
						|
}
 | 
						|
 | 
						|
void pa_resampler_set_input_rate(pa_resampler *r, uint32_t rate) {
 | 
						|
    assert(r);
 | 
						|
    assert(rate > 0);
 | 
						|
 | 
						|
    if (r->i_ss.rate == rate)
 | 
						|
        return;
 | 
						|
    
 | 
						|
    r->i_ss.rate = rate;
 | 
						|
    
 | 
						|
    if (r->impl_update_input_rate)
 | 
						|
        r->impl_update_input_rate(r, rate);
 | 
						|
}
 | 
						|
 | 
						|
void pa_resampler_run(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out) {
 | 
						|
    assert(r && in && out && r->impl_run);
 | 
						|
 | 
						|
    r->impl_run(r, in, out);
 | 
						|
}
 | 
						|
 | 
						|
size_t pa_resampler_request(pa_resampler *r, size_t out_length) {
 | 
						|
    assert(r && (out_length % r->o_fz) == 0);
 | 
						|
    return (((out_length / r->o_fz)*r->i_ss.rate)/r->o_ss.rate) * r->i_fz;
 | 
						|
}
 | 
						|
 | 
						|
pa_resample_method_t pa_resampler_get_method(pa_resampler *r) {
 | 
						|
    assert(r);
 | 
						|
    return r->resample_method;
 | 
						|
}
 | 
						|
 | 
						|
static const char * const resample_methods[] = {
 | 
						|
    "src-sinc-best-quality",
 | 
						|
    "src-sinc-medium-quality",
 | 
						|
    "src-sinc-fastest",
 | 
						|
    "src-zero-order-hold",
 | 
						|
    "src-linear",
 | 
						|
    "trivial"
 | 
						|
};
 | 
						|
 | 
						|
const char *pa_resample_method_to_string(pa_resample_method_t m) {
 | 
						|
 | 
						|
    if (m < 0 || m >= PA_RESAMPLER_MAX)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    return resample_methods[m];
 | 
						|
}
 | 
						|
 | 
						|
pa_resample_method_t pa_parse_resample_method(const char *string) {
 | 
						|
    pa_resample_method_t m;
 | 
						|
    
 | 
						|
    assert(string);
 | 
						|
 | 
						|
    for (m = 0; m < PA_RESAMPLER_MAX; m++)
 | 
						|
        if (!strcmp(string, resample_methods[m]))
 | 
						|
            return m;
 | 
						|
 | 
						|
    return PA_RESAMPLER_INVALID;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*** libsamplerate based implementation ***/
 | 
						|
 | 
						|
static void libsamplerate_free(pa_resampler *r) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(r->impl_data);
 | 
						|
    
 | 
						|
    u = r->impl_data;
 | 
						|
    
 | 
						|
    if (u->src_state)
 | 
						|
        src_delete(u->src_state);
 | 
						|
 | 
						|
    pa_xfree(u->buf1);
 | 
						|
    pa_xfree(u->buf2);
 | 
						|
    pa_xfree(u->buf3);
 | 
						|
    pa_xfree(u->buf4);
 | 
						|
    pa_xfree(u);
 | 
						|
}
 | 
						|
 | 
						|
static void calc_map_table(pa_resampler *r) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    unsigned oc;
 | 
						|
    assert(r);
 | 
						|
    assert(r->impl_data);
 | 
						|
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    if (!(u->map_required = (!pa_channel_map_equal(&r->i_cm, &r->o_cm) || r->i_ss.channels != r->o_ss.channels)))
 | 
						|
        return;
 | 
						|
 | 
						|
    for (oc = 0; oc < r->o_ss.channels; oc++) {
 | 
						|
        unsigned ic, i = 0;
 | 
						|
 | 
						|
        for (ic = 0; ic < r->i_ss.channels; ic++) {
 | 
						|
            pa_channel_position_t a, b;
 | 
						|
            
 | 
						|
            a = r->i_cm.map[ic];
 | 
						|
            b = r->o_cm.map[oc];
 | 
						|
            
 | 
						|
            if (a == b ||
 | 
						|
                (a == PA_CHANNEL_POSITION_MONO && b == PA_CHANNEL_POSITION_LEFT) ||
 | 
						|
                (a == PA_CHANNEL_POSITION_MONO && b == PA_CHANNEL_POSITION_RIGHT) ||
 | 
						|
                (a == PA_CHANNEL_POSITION_LEFT && b == PA_CHANNEL_POSITION_MONO) ||
 | 
						|
                (a == PA_CHANNEL_POSITION_RIGHT && b == PA_CHANNEL_POSITION_MONO))
 | 
						|
                
 | 
						|
                u->map_table[oc][i++] = ic;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Add an end marker */
 | 
						|
        if (i < PA_CHANNELS_MAX)
 | 
						|
            u->map_table[oc][i] = -1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static float * convert_to_float(pa_resampler *r, float *input, unsigned n_frames) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    unsigned n_samples;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(input);
 | 
						|
    assert(r->impl_data);
 | 
						|
    u = r->impl_data;
 | 
						|
    
 | 
						|
    /* Convert the incoming sample into floats and place them in buf1 */
 | 
						|
 | 
						|
    if (!u->to_float32ne_func)
 | 
						|
        return input;
 | 
						|
    
 | 
						|
    n_samples = n_frames * r->i_ss.channels;
 | 
						|
 | 
						|
    if (u->buf1_samples < n_samples)
 | 
						|
        u->buf1 = pa_xrealloc(u->buf1, sizeof(float) * (u->buf1_samples = n_samples));
 | 
						|
    
 | 
						|
    u->to_float32ne_func(n_samples, input, u->buf1);
 | 
						|
 | 
						|
    return u->buf1;
 | 
						|
}
 | 
						|
 | 
						|
static float *remap_channels(pa_resampler *r, float *input, unsigned n_frames) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    unsigned n_samples;
 | 
						|
    int i_skip, o_skip;
 | 
						|
    unsigned oc;
 | 
						|
    
 | 
						|
    assert(r);
 | 
						|
    assert(input);
 | 
						|
    assert(r->impl_data);
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    /* Remap channels and place the result int buf2 */
 | 
						|
    
 | 
						|
    if (!u->map_required)
 | 
						|
        return input;
 | 
						|
 | 
						|
    n_samples = n_frames * r->o_ss.channels;
 | 
						|
 | 
						|
    if (u->buf2_samples < n_samples)
 | 
						|
        u->buf2 = pa_xrealloc(u->buf2, sizeof(float) * (u->buf2_samples = n_samples));
 | 
						|
 | 
						|
    memset(u->buf2, 0, n_samples * sizeof(float));
 | 
						|
 | 
						|
    o_skip = sizeof(float) * r->o_ss.channels;
 | 
						|
    i_skip = sizeof(float) * r->i_ss.channels;
 | 
						|
    
 | 
						|
    for (oc = 0; oc < r->o_ss.channels; oc++) {
 | 
						|
        unsigned i;
 | 
						|
        static const float one = 1.0;
 | 
						|
 | 
						|
        for (i = 0; i < PA_CHANNELS_MAX && u->map_table[oc][i] >= 0; i++)
 | 
						|
            oil_vectoradd_f32(
 | 
						|
                u->buf2 + oc, o_skip,
 | 
						|
                u->buf2 + oc, o_skip,
 | 
						|
                input + u->map_table[oc][i], i_skip,
 | 
						|
                n_frames,
 | 
						|
                &one, &one);
 | 
						|
    }
 | 
						|
 | 
						|
    return u->buf2;
 | 
						|
}
 | 
						|
 | 
						|
static float *resample(pa_resampler *r, float *input, unsigned *n_frames) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    SRC_DATA data;
 | 
						|
    unsigned out_n_frames, out_n_samples;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(input);
 | 
						|
    assert(n_frames);
 | 
						|
    assert(r->impl_data);
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    /* Resample the data and place the result in buf3 */
 | 
						|
    
 | 
						|
    if (!u->src_state)
 | 
						|
        return input;
 | 
						|
 | 
						|
    out_n_frames = (*n_frames*r->o_ss.rate/r->i_ss.rate)+1024;
 | 
						|
    out_n_samples = out_n_frames * r->o_ss.channels;
 | 
						|
 | 
						|
    if (u->buf3_samples < out_n_samples)
 | 
						|
        u->buf3 = pa_xrealloc(u->buf3, sizeof(float) * (u->buf3_samples = out_n_samples));
 | 
						|
    
 | 
						|
    data.data_in = input;
 | 
						|
    data.input_frames = *n_frames;
 | 
						|
 | 
						|
    data.data_out = u->buf3;
 | 
						|
    data.output_frames = out_n_frames;
 | 
						|
        
 | 
						|
    data.src_ratio = (double) r->o_ss.rate / r->i_ss.rate;
 | 
						|
    data.end_of_input = 0;
 | 
						|
        
 | 
						|
    ret = src_process(u->src_state, &data);
 | 
						|
    assert(ret == 0);
 | 
						|
    assert((unsigned) data.input_frames_used == *n_frames);
 | 
						|
 | 
						|
    *n_frames = data.output_frames_gen;
 | 
						|
 | 
						|
    return u->buf3;
 | 
						|
}
 | 
						|
 | 
						|
static float *convert_from_float(pa_resampler *r, float *input, unsigned n_frames) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    unsigned n_samples;
 | 
						|
    
 | 
						|
    assert(r);
 | 
						|
    assert(input);
 | 
						|
    assert(r->impl_data);
 | 
						|
    u = r->impl_data;
 | 
						|
    
 | 
						|
    /* Convert the data into the correct sample type and place the result in buf4 */
 | 
						|
 | 
						|
    if (!u->from_float32ne_func)
 | 
						|
        return input;
 | 
						|
    
 | 
						|
    n_samples = n_frames * r->o_ss.channels;
 | 
						|
 | 
						|
    if (u->buf4_samples < n_samples)
 | 
						|
        u->buf4 = pa_xrealloc(u->buf4, sizeof(float) * (u->buf4_samples = n_samples));
 | 
						|
    
 | 
						|
    u->from_float32ne_func(n_samples, input, u->buf4);
 | 
						|
 | 
						|
    return u->buf4;
 | 
						|
}
 | 
						|
 | 
						|
static void libsamplerate_run(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    float *buf, *input;
 | 
						|
    unsigned n_frames;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(in);
 | 
						|
    assert(out);
 | 
						|
    assert(in->length);
 | 
						|
    assert(in->memblock);
 | 
						|
    assert(in->length % r->i_fz == 0);
 | 
						|
    assert(r->impl_data);
 | 
						|
    
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    buf = input = (float*) ((uint8_t*) in->memblock->data + in->index);
 | 
						|
    n_frames = in->length / r->i_fz;
 | 
						|
    assert(n_frames > 0);
 | 
						|
    
 | 
						|
    buf = convert_to_float(r, buf, n_frames);
 | 
						|
    buf = remap_channels(r, buf, n_frames);
 | 
						|
    buf = resample(r, buf, &n_frames);
 | 
						|
 | 
						|
    if (n_frames) {
 | 
						|
        buf = convert_from_float(r, buf, n_frames);
 | 
						|
 | 
						|
        if (buf == input) {
 | 
						|
            /* Mm, no adjustment has been necessary, so let's return the original block */
 | 
						|
            out->memblock = pa_memblock_ref(in->memblock);
 | 
						|
            out->index = in->index;
 | 
						|
            out->length = in->length;
 | 
						|
        } else {
 | 
						|
            float **p = NULL;
 | 
						|
            
 | 
						|
            out->length = n_frames * r->o_fz;
 | 
						|
            out->index = 0;
 | 
						|
 | 
						|
            if (buf == u->buf1) {
 | 
						|
                p = &u->buf1;
 | 
						|
                u->buf1_samples = 0;
 | 
						|
            } else if (buf == u->buf2) {
 | 
						|
                p = &u->buf2;
 | 
						|
                u->buf2_samples = 0;
 | 
						|
            } else if (buf == u->buf3) {
 | 
						|
                p = &u->buf3;
 | 
						|
                u->buf3_samples = 0;
 | 
						|
            } else if (buf == u->buf4) {
 | 
						|
                p = &u->buf4;
 | 
						|
                u->buf4_samples = 0;
 | 
						|
            }
 | 
						|
 | 
						|
            assert(p);
 | 
						|
 | 
						|
            /* Take the existing buffer and make it a memblock */
 | 
						|
            out->memblock = pa_memblock_new_dynamic(*p, out->length, r->memblock_stat);
 | 
						|
            *p = NULL;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        out->memblock = NULL;
 | 
						|
        out->index = out->length = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void libsamplerate_update_input_rate(pa_resampler *r, uint32_t rate) {
 | 
						|
    struct impl_libsamplerate *u;
 | 
						|
    
 | 
						|
    assert(r);
 | 
						|
    assert(rate > 0);
 | 
						|
    assert(r->impl_data);
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    if (!u->src_state) {
 | 
						|
        int err;
 | 
						|
        u->src_state = src_new(r->resample_method, r->o_ss.channels, &err);
 | 
						|
        assert(u->src_state);
 | 
						|
    } else {
 | 
						|
        int ret = src_set_ratio(u->src_state, (double) r->o_ss.rate / rate);
 | 
						|
        assert(ret == 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int libsamplerate_init(pa_resampler *r) {
 | 
						|
    struct impl_libsamplerate *u = NULL;
 | 
						|
    int err;
 | 
						|
 | 
						|
    r->impl_data = u = pa_xnew(struct impl_libsamplerate, 1);
 | 
						|
 | 
						|
    u->buf1 = u->buf2 = u->buf3 = u->buf4 = NULL;
 | 
						|
    u->buf1_samples = u->buf2_samples = u->buf3_samples = u->buf4_samples = 0;
 | 
						|
 | 
						|
    if (r->i_ss.format == PA_SAMPLE_FLOAT32NE)
 | 
						|
        u->to_float32ne_func = NULL;
 | 
						|
    else if (!(u->to_float32ne_func = pa_get_convert_to_float32ne_function(r->i_ss.format)))
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    if (r->o_ss.format == PA_SAMPLE_FLOAT32NE)
 | 
						|
        u->from_float32ne_func = NULL;
 | 
						|
    else if (!(u->from_float32ne_func = pa_get_convert_from_float32ne_function(r->o_ss.format)))
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    if (r->o_ss.rate == r->i_ss.rate)
 | 
						|
        u->src_state = NULL;
 | 
						|
    else if (!(u->src_state = src_new(r->resample_method, r->o_ss.channels, &err)))
 | 
						|
        goto fail;
 | 
						|
 | 
						|
    r->impl_free = libsamplerate_free;
 | 
						|
    r->impl_update_input_rate = libsamplerate_update_input_rate;
 | 
						|
    r->impl_run = libsamplerate_run;
 | 
						|
 | 
						|
    calc_map_table(r);
 | 
						|
    
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    pa_xfree(u);
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/* Trivial implementation */
 | 
						|
 | 
						|
static void trivial_run(pa_resampler *r, const pa_memchunk *in, pa_memchunk *out) {
 | 
						|
    size_t fz;
 | 
						|
    unsigned  n_frames;
 | 
						|
    struct impl_trivial *u;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(in);
 | 
						|
    assert(out);
 | 
						|
    assert(r->impl_data);
 | 
						|
    
 | 
						|
    u = r->impl_data;
 | 
						|
 | 
						|
    fz = r->i_fz;
 | 
						|
    assert(fz == r->o_fz);
 | 
						|
 | 
						|
    n_frames = in->length/fz;
 | 
						|
 | 
						|
    if (r->i_ss.rate == r->o_ss.rate) {
 | 
						|
 | 
						|
        /* In case there's no diefference in sample types, do nothing */
 | 
						|
        *out = *in;
 | 
						|
        pa_memblock_ref(out->memblock);
 | 
						|
 | 
						|
        u->o_counter += n_frames;
 | 
						|
    } else {
 | 
						|
        /* Do real resampling */
 | 
						|
        size_t l;
 | 
						|
        unsigned o_index;
 | 
						|
        
 | 
						|
        /* The length of the new memory block rounded up */
 | 
						|
        l = ((((n_frames+1) * r->o_ss.rate) / r->i_ss.rate) + 1) * fz;
 | 
						|
        
 | 
						|
        out->index = 0;
 | 
						|
        out->memblock = pa_memblock_new(l, r->memblock_stat);
 | 
						|
        
 | 
						|
        for (o_index = 0;; o_index++, u->o_counter++) {
 | 
						|
            unsigned j;
 | 
						|
            
 | 
						|
            j = (u->o_counter * r->i_ss.rate / r->o_ss.rate);
 | 
						|
            j = j > u->i_counter ? j - u->i_counter : 0;
 | 
						|
            
 | 
						|
            if (j >= n_frames)
 | 
						|
                break;
 | 
						|
 | 
						|
            assert(o_index*fz < out->memblock->length);
 | 
						|
            
 | 
						|
            memcpy((uint8_t*) out->memblock->data + fz*o_index,
 | 
						|
                   (uint8_t*) in->memblock->data + in->index + fz*j, fz);
 | 
						|
            
 | 
						|
        }
 | 
						|
            
 | 
						|
        out->length = o_index*fz;
 | 
						|
    }
 | 
						|
 | 
						|
    u->i_counter += n_frames;
 | 
						|
    
 | 
						|
    /* Normalize counters */
 | 
						|
    while (u->i_counter >= r->i_ss.rate) {
 | 
						|
        u->i_counter -= r->i_ss.rate;
 | 
						|
        assert(u->o_counter >= r->o_ss.rate);
 | 
						|
        u->o_counter -= r->o_ss.rate;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void trivial_free(pa_resampler *r) {
 | 
						|
    assert(r);
 | 
						|
    
 | 
						|
    pa_xfree(r->impl_data);
 | 
						|
}
 | 
						|
 | 
						|
static void trivial_update_input_rate(pa_resampler *r, uint32_t rate) {
 | 
						|
    struct impl_trivial *u;
 | 
						|
 | 
						|
    assert(r);
 | 
						|
    assert(rate > 0);
 | 
						|
    assert(r->impl_data);
 | 
						|
 | 
						|
    u = r->impl_data;
 | 
						|
    u->i_counter = 0;
 | 
						|
    u->o_counter = 0;
 | 
						|
}
 | 
						|
 | 
						|
static int trivial_init(pa_resampler*r) {
 | 
						|
    struct impl_trivial *u;
 | 
						|
    
 | 
						|
    assert(r);
 | 
						|
    assert(r->i_ss.format == r->o_ss.format);
 | 
						|
    assert(r->i_ss.channels == r->o_ss.channels);
 | 
						|
 | 
						|
    r->impl_data = u = pa_xnew(struct impl_trivial, 1);
 | 
						|
    u->o_counter = u->i_counter = 0;
 | 
						|
 | 
						|
    r->impl_run = trivial_run;
 | 
						|
    r->impl_free = trivial_free;
 | 
						|
    r->impl_update_input_rate = trivial_update_input_rate;
 | 
						|
                                  
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 |