mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-04 13:29:59 -05:00
The previous commit, "loopback: Initialize latency at startup and during source/sink changes", was an old version of the patch that got accidentally pushed instead of the last version. This commit does the changes that were omitted when applying the old patch.
1269 lines
46 KiB
C
1269 lines
46 KiB
C
/***
|
|
This file is part of PulseAudio.
|
|
|
|
Copyright 2009 Intel Corporation
|
|
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
|
|
|
|
PulseAudio is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 2.1 of the License,
|
|
or (at your option) any later version.
|
|
|
|
PulseAudio is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
|
|
***/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <pulse/xmalloc.h>
|
|
|
|
#include <pulsecore/sink-input.h>
|
|
#include <pulsecore/module.h>
|
|
#include <pulsecore/modargs.h>
|
|
#include <pulsecore/namereg.h>
|
|
#include <pulsecore/log.h>
|
|
#include <pulsecore/core-util.h>
|
|
|
|
#include <pulse/rtclock.h>
|
|
#include <pulse/timeval.h>
|
|
|
|
#include "module-loopback-symdef.h"
|
|
|
|
PA_MODULE_AUTHOR("Pierre-Louis Bossart");
|
|
PA_MODULE_DESCRIPTION("Loopback from source to sink");
|
|
PA_MODULE_VERSION(PACKAGE_VERSION);
|
|
PA_MODULE_LOAD_ONCE(false);
|
|
PA_MODULE_USAGE(
|
|
"source=<source to connect to> "
|
|
"sink=<sink to connect to> "
|
|
"adjust_time=<how often to readjust rates in s> "
|
|
"latency_msec=<latency in ms> "
|
|
"format=<sample format> "
|
|
"rate=<sample rate> "
|
|
"channels=<number of channels> "
|
|
"channel_map=<channel map> "
|
|
"sink_input_properties=<proplist> "
|
|
"source_output_properties=<proplist> "
|
|
"source_dont_move=<boolean> "
|
|
"sink_dont_move=<boolean> "
|
|
"remix=<remix channels?> ");
|
|
|
|
#define DEFAULT_LATENCY_MSEC 200
|
|
|
|
#define MEMBLOCKQ_MAXLENGTH (1024*1024*32)
|
|
|
|
#define MIN_DEVICE_LATENCY (2.5*PA_USEC_PER_MSEC)
|
|
|
|
#define DEFAULT_ADJUST_TIME_USEC (10*PA_USEC_PER_SEC)
|
|
|
|
struct userdata {
|
|
pa_core *core;
|
|
pa_module *module;
|
|
|
|
pa_sink_input *sink_input;
|
|
pa_source_output *source_output;
|
|
|
|
pa_asyncmsgq *asyncmsgq;
|
|
pa_memblockq *memblockq;
|
|
|
|
pa_rtpoll_item *rtpoll_item_read, *rtpoll_item_write;
|
|
|
|
pa_time_event *time_event;
|
|
pa_usec_t adjust_time;
|
|
|
|
size_t skip;
|
|
pa_usec_t latency;
|
|
|
|
/* Latency boundaries and current values */
|
|
pa_usec_t min_source_latency;
|
|
pa_usec_t max_source_latency;
|
|
pa_usec_t min_sink_latency;
|
|
pa_usec_t max_sink_latency;
|
|
pa_usec_t configured_sink_latency;
|
|
pa_usec_t configured_source_latency;
|
|
|
|
/* Used for sink input and source output snapshots */
|
|
struct {
|
|
int64_t send_counter;
|
|
pa_usec_t source_latency;
|
|
pa_usec_t source_timestamp;
|
|
|
|
int64_t recv_counter;
|
|
size_t loopback_memblockq_length;
|
|
pa_usec_t sink_latency;
|
|
pa_usec_t sink_timestamp;
|
|
} latency_snapshot;
|
|
|
|
/* Input thread variable */
|
|
int64_t send_counter;
|
|
|
|
/* Output thread variables */
|
|
struct {
|
|
int64_t recv_counter;
|
|
pa_usec_t effective_source_latency;
|
|
|
|
/* Various booleans */
|
|
bool in_pop;
|
|
bool pop_called;
|
|
bool pop_adjust;
|
|
bool first_pop_done;
|
|
bool push_called;
|
|
} output_thread_info;
|
|
};
|
|
|
|
static const char* const valid_modargs[] = {
|
|
"source",
|
|
"sink",
|
|
"adjust_time",
|
|
"latency_msec",
|
|
"format",
|
|
"rate",
|
|
"channels",
|
|
"channel_map",
|
|
"sink_input_properties",
|
|
"source_output_properties",
|
|
"source_dont_move",
|
|
"sink_dont_move",
|
|
"remix",
|
|
NULL,
|
|
};
|
|
|
|
enum {
|
|
SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX,
|
|
SINK_INPUT_MESSAGE_REWIND,
|
|
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT,
|
|
SINK_INPUT_MESSAGE_SOURCE_CHANGED,
|
|
SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY
|
|
};
|
|
|
|
enum {
|
|
SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT = PA_SOURCE_OUTPUT_MESSAGE_MAX
|
|
};
|
|
|
|
static void enable_adjust_timer(struct userdata *u, bool enable);
|
|
|
|
/* Called from main context */
|
|
static void teardown(struct userdata *u) {
|
|
pa_assert(u);
|
|
pa_assert_ctl_context();
|
|
|
|
u->adjust_time = 0;
|
|
enable_adjust_timer(u, false);
|
|
|
|
/* Handling the asyncmsgq between the source output and the sink input
|
|
* requires some care. When the source output is unlinked, nothing needs
|
|
* to be done for the asyncmsgq, because the source output is the sending
|
|
* end. But when the sink input is unlinked, we should ensure that the
|
|
* asyncmsgq is emptied, because the messages in the queue hold references
|
|
* to the sink input. Also, we need to ensure that new messages won't be
|
|
* written to the queue after we have emptied it.
|
|
*
|
|
* Emptying the queue can be done in the state_changed() callback of the
|
|
* sink input, when the new state is "unlinked".
|
|
*
|
|
* Preventing new messages from being written to the queue can be achieved
|
|
* by unlinking the source output before unlinking the sink input. There
|
|
* are no other writers for that queue, so this is sufficient. */
|
|
|
|
if (u->source_output) {
|
|
pa_source_output_unlink(u->source_output);
|
|
pa_source_output_unref(u->source_output);
|
|
u->source_output = NULL;
|
|
}
|
|
|
|
if (u->sink_input) {
|
|
pa_sink_input_unlink(u->sink_input);
|
|
pa_sink_input_unref(u->sink_input);
|
|
u->sink_input = NULL;
|
|
}
|
|
}
|
|
|
|
/* rate controller, called from main context
|
|
* - maximum deviation from base rate is less than 1%
|
|
* - can create audible artifacts by changing the rate too quickly
|
|
* - exhibits hunting with USB or Bluetooth sources
|
|
*/
|
|
static uint32_t rate_controller(
|
|
uint32_t base_rate,
|
|
pa_usec_t adjust_time,
|
|
int32_t latency_difference_usec) {
|
|
|
|
uint32_t new_rate;
|
|
double min_cycles;
|
|
|
|
/* Calculate best rate to correct the current latency offset, limit at
|
|
* slightly below 1% difference from base_rate */
|
|
min_cycles = (double)abs(latency_difference_usec) / adjust_time / 0.01 + 1;
|
|
new_rate = base_rate * (1.0 + (double)latency_difference_usec / min_cycles / adjust_time);
|
|
|
|
return new_rate;
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void adjust_rates(struct userdata *u) {
|
|
size_t buffer;
|
|
uint32_t old_rate, base_rate, new_rate;
|
|
int32_t latency_difference;
|
|
pa_usec_t current_buffer_latency, snapshot_delay, current_source_sink_latency, current_latency, latency_at_optimum_rate;
|
|
pa_usec_t final_latency;
|
|
|
|
pa_assert(u);
|
|
pa_assert_ctl_context();
|
|
|
|
/* Rates and latencies*/
|
|
old_rate = u->sink_input->sample_spec.rate;
|
|
base_rate = u->source_output->sample_spec.rate;
|
|
|
|
buffer = u->latency_snapshot.loopback_memblockq_length;
|
|
if (u->latency_snapshot.recv_counter <= u->latency_snapshot.send_counter)
|
|
buffer += (size_t) (u->latency_snapshot.send_counter - u->latency_snapshot.recv_counter);
|
|
else
|
|
buffer = PA_CLIP_SUB(buffer, (size_t) (u->latency_snapshot.recv_counter - u->latency_snapshot.send_counter));
|
|
|
|
current_buffer_latency = pa_bytes_to_usec(buffer, &u->sink_input->sample_spec);
|
|
snapshot_delay = u->latency_snapshot.source_timestamp - u->latency_snapshot.sink_timestamp;
|
|
current_source_sink_latency = u->latency_snapshot.sink_latency + u->latency_snapshot.source_latency - snapshot_delay;
|
|
|
|
/* Current latency */
|
|
current_latency = current_source_sink_latency + current_buffer_latency;
|
|
|
|
/* Latency at base rate */
|
|
latency_at_optimum_rate = current_source_sink_latency + current_buffer_latency * old_rate / base_rate;
|
|
|
|
final_latency = u->latency;
|
|
latency_difference = (int32_t)((int64_t)latency_at_optimum_rate - final_latency);
|
|
|
|
pa_log_debug("Loopback overall latency is %0.2f ms + %0.2f ms + %0.2f ms = %0.2f ms",
|
|
(double) u->latency_snapshot.sink_latency / PA_USEC_PER_MSEC,
|
|
(double) current_buffer_latency / PA_USEC_PER_MSEC,
|
|
(double) u->latency_snapshot.source_latency / PA_USEC_PER_MSEC,
|
|
(double) current_latency / PA_USEC_PER_MSEC);
|
|
|
|
pa_log_debug("Loopback latency at base rate is %0.2f ms", (double)latency_at_optimum_rate / PA_USEC_PER_MSEC);
|
|
|
|
/* Calculate new rate */
|
|
new_rate = rate_controller(base_rate, u->adjust_time, latency_difference);
|
|
|
|
/* Set rate */
|
|
pa_sink_input_set_rate(u->sink_input, new_rate);
|
|
pa_log_debug("[%s] Updated sampling rate to %lu Hz.", u->sink_input->sink->name, (unsigned long) new_rate);
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
|
|
struct userdata *u = userdata;
|
|
|
|
pa_assert(u);
|
|
pa_assert(a);
|
|
pa_assert(u->time_event == e);
|
|
|
|
/* Restart timer right away */
|
|
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
|
|
|
|
/* Get sink and source latency snapshot */
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
|
|
pa_asyncmsgq_send(u->source_output->source->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
|
|
|
|
adjust_rates(u);
|
|
}
|
|
|
|
/* Called from main context
|
|
* When source or sink changes, give it a third of a second to settle down, then call adjust_rates for the first time */
|
|
static void enable_adjust_timer(struct userdata *u, bool enable) {
|
|
if (enable) {
|
|
if (!u->adjust_time)
|
|
return;
|
|
if (u->time_event)
|
|
u->core->mainloop->time_free(u->time_event);
|
|
|
|
u->time_event = pa_core_rttime_new(u->module->core, pa_rtclock_now() + 333 * PA_USEC_PER_MSEC, time_callback, u);
|
|
} else {
|
|
if (!u->time_event)
|
|
return;
|
|
|
|
u->core->mainloop->time_free(u->time_event);
|
|
u->time_event = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void update_adjust_timer(struct userdata *u) {
|
|
if (u->sink_input->state == PA_SINK_INPUT_CORKED || u->source_output->state == PA_SOURCE_OUTPUT_CORKED)
|
|
enable_adjust_timer(u, false);
|
|
else
|
|
enable_adjust_timer(u, true);
|
|
}
|
|
|
|
/* Called from main thread
|
|
* Calculates minimum and maximum possible latency for source and sink */
|
|
static void update_latency_boundaries(struct userdata *u, pa_source *source, pa_sink *sink) {
|
|
|
|
if (source) {
|
|
/* Source latencies */
|
|
if (source->flags & PA_SOURCE_DYNAMIC_LATENCY)
|
|
pa_source_get_latency_range(source, &u->min_source_latency, &u->max_source_latency);
|
|
else {
|
|
u->min_source_latency = pa_source_get_fixed_latency(source);
|
|
u->max_source_latency = u->min_source_latency;
|
|
}
|
|
/* Latencies below 2.5 ms cause problems, limit source latency if possible */
|
|
if (u->max_source_latency >= MIN_DEVICE_LATENCY)
|
|
u->min_source_latency = PA_MAX(u->min_source_latency, MIN_DEVICE_LATENCY);
|
|
else
|
|
u->min_source_latency = u->max_source_latency;
|
|
}
|
|
|
|
if (sink) {
|
|
/* Sink latencies */
|
|
if (sink->flags & PA_SINK_DYNAMIC_LATENCY)
|
|
pa_sink_get_latency_range(sink, &u->min_sink_latency, &u->max_sink_latency);
|
|
else {
|
|
u->min_sink_latency = pa_sink_get_fixed_latency(sink);
|
|
u->max_sink_latency = u->min_sink_latency;
|
|
}
|
|
/* Latencies below 2.5 ms cause problems, limit sink latency if possible */
|
|
if (u->max_sink_latency >= MIN_DEVICE_LATENCY)
|
|
u->min_sink_latency = PA_MAX(u->min_sink_latency, MIN_DEVICE_LATENCY);
|
|
else
|
|
u->min_sink_latency = u->max_sink_latency;
|
|
}
|
|
}
|
|
|
|
/* Called from output context
|
|
* Sets the memblockq to the configured latency corrected by latency_offset_usec */
|
|
static void memblockq_adjust(struct userdata *u, pa_usec_t latency_offset_usec, bool allow_push) {
|
|
size_t current_memblockq_length, requested_memblockq_length, buffer_correction;
|
|
pa_usec_t requested_buffer_latency;
|
|
|
|
requested_buffer_latency = PA_CLIP_SUB(u->latency, latency_offset_usec);
|
|
requested_memblockq_length = pa_usec_to_bytes(requested_buffer_latency, &u->sink_input->sample_spec);
|
|
current_memblockq_length = pa_memblockq_get_length(u->memblockq);
|
|
|
|
if (current_memblockq_length > requested_memblockq_length) {
|
|
/* Drop audio from queue */
|
|
buffer_correction = current_memblockq_length - requested_memblockq_length;
|
|
pa_log_info("Dropping %lu usec of audio from queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
|
|
pa_memblockq_drop(u->memblockq, buffer_correction);
|
|
|
|
} else if (current_memblockq_length < requested_memblockq_length && allow_push) {
|
|
/* Add silence to queue */
|
|
buffer_correction = requested_memblockq_length - current_memblockq_length;
|
|
pa_log_info("Adding %lu usec of silence to queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
|
|
pa_memblockq_seek(u->memblockq, (int64_t)buffer_correction, PA_SEEK_RELATIVE, true);
|
|
}
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_push_cb(pa_source_output *o, const pa_memchunk *chunk) {
|
|
struct userdata *u;
|
|
pa_memchunk copy;
|
|
pa_usec_t push_time, current_source_latency;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (u->skip >= chunk->length) {
|
|
u->skip -= chunk->length;
|
|
return;
|
|
}
|
|
|
|
if (u->skip > 0) {
|
|
copy = *chunk;
|
|
copy.index += u->skip;
|
|
copy.length -= u->skip;
|
|
u->skip = 0;
|
|
|
|
chunk = ©
|
|
}
|
|
|
|
/* Send current source latency and timestamp with the message */
|
|
push_time = pa_rtclock_now();
|
|
current_source_latency = pa_source_get_latency_within_thread(u->source_output->source);
|
|
|
|
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_POST, PA_UINT_TO_PTR(current_source_latency), push_time, chunk, NULL);
|
|
u->send_counter += (int64_t) chunk->length;
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_process_rewind_cb(pa_source_output *o, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_REWIND, NULL, (int64_t) nbytes, NULL, NULL);
|
|
u->send_counter -= (int64_t) nbytes;
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static int source_output_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
|
|
struct userdata *u = PA_SOURCE_OUTPUT(obj)->userdata;
|
|
|
|
switch (code) {
|
|
|
|
case SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT: {
|
|
size_t length;
|
|
|
|
length = pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq);
|
|
|
|
u->latency_snapshot.send_counter = u->send_counter;
|
|
/* Add content of delay memblockq to the source latency */
|
|
u->latency_snapshot.source_latency = pa_source_get_latency_within_thread(u->source_output->source) +
|
|
pa_bytes_to_usec(length, &u->source_output->source->sample_spec);
|
|
u->latency_snapshot.source_timestamp = pa_rtclock_now();
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return pa_source_output_process_msg(obj, code, data, offset, chunk);
|
|
}
|
|
|
|
/* Called from main thread.
|
|
* Get current effective latency of the source. If the source is in use with
|
|
* smaller latency than the configured latency, it will continue running with
|
|
* the smaller value when the source output is switched to the source. */
|
|
static void update_effective_source_latency(struct userdata *u, pa_source *source, pa_sink *sink) {
|
|
pa_usec_t effective_source_latency;
|
|
|
|
effective_source_latency = u->configured_source_latency;
|
|
|
|
if (source) {
|
|
effective_source_latency = pa_source_get_requested_latency(source);
|
|
if (effective_source_latency == 0 || effective_source_latency > u->configured_source_latency)
|
|
effective_source_latency = u->configured_source_latency;
|
|
}
|
|
|
|
/* If the sink is valid, send a message to the output thread, else set the variable directly */
|
|
if (sink)
|
|
pa_asyncmsgq_send(sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY, NULL, (int64_t)effective_source_latency, NULL);
|
|
else
|
|
u->output_thread_info.effective_source_latency = effective_source_latency;
|
|
}
|
|
|
|
/* Called from main thread.
|
|
* Set source output latency to one third of the overall latency if possible.
|
|
* The choice of one third is rather arbitrary somewhere between the minimum
|
|
* possible latency which would cause a lot of CPU load and half the configured
|
|
* latency which would quickly lead to underruns */
|
|
static void set_source_output_latency(struct userdata *u, pa_source *source) {
|
|
pa_usec_t latency, requested_latency;
|
|
|
|
requested_latency = u->latency / 3;
|
|
|
|
latency = PA_CLAMP(requested_latency , u->min_source_latency, u->max_source_latency);
|
|
u->configured_source_latency = pa_source_output_set_requested_latency(u->source_output, latency);
|
|
if (u->configured_source_latency != requested_latency)
|
|
pa_log_warn("Cannot set requested source latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_source_latency / PA_USEC_PER_MSEC);
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_attach_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
u->rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
|
|
o->source->thread_info.rtpoll,
|
|
PA_RTPOLL_LATE,
|
|
u->asyncmsgq);
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_detach_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (u->rtpoll_item_write) {
|
|
pa_rtpoll_item_free(u->rtpoll_item_write);
|
|
u->rtpoll_item_write = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_state_change_cb(pa_source_output *o, pa_source_output_state_t state) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (PA_SOURCE_OUTPUT_IS_LINKED(state) && o->thread_info.state == PA_SOURCE_OUTPUT_INIT) {
|
|
|
|
u->skip = pa_usec_to_bytes(PA_CLIP_SUB(pa_source_get_latency_within_thread(o->source),
|
|
u->latency),
|
|
&o->sample_spec);
|
|
|
|
pa_log_info("Skipping %lu bytes", (unsigned long) u->skip);
|
|
}
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_kill_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
teardown(u);
|
|
pa_module_unload_request(u->module, true);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static bool source_output_may_move_to_cb(pa_source_output *o, pa_source *dest) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (!u->sink_input || !u->sink_input->sink)
|
|
return true;
|
|
|
|
return dest != u->sink_input->sink->monitor_source;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_moving_cb(pa_source_output *o, pa_source *dest) {
|
|
struct userdata *u;
|
|
char *input_description;
|
|
const char *n;
|
|
|
|
if (!dest)
|
|
return;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
input_description = pa_sprintf_malloc("Loopback of %s",
|
|
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
pa_sink_input_set_property(u->sink_input, PA_PROP_MEDIA_NAME, input_description);
|
|
pa_xfree(input_description);
|
|
|
|
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_sink_input_set_property(u->sink_input, PA_PROP_DEVICE_ICON_NAME, n);
|
|
|
|
/* Set latency and calculate latency limits */
|
|
update_latency_boundaries(u, dest, NULL);
|
|
set_source_output_latency(u, dest);
|
|
update_effective_source_latency(u, dest, u->sink_input->sink);
|
|
|
|
if (pa_source_get_state(dest) == PA_SOURCE_SUSPENDED)
|
|
pa_sink_input_cork(u->sink_input, true);
|
|
else
|
|
pa_sink_input_cork(u->sink_input, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
/* Send a mesage to the output thread that the source has changed.
|
|
* If the sink is invalid here during a profile switching situation
|
|
* we can safely set push_called to false directly. */
|
|
if (u->sink_input->sink)
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
|
|
else
|
|
u->output_thread_info.push_called = false;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_suspend_cb(pa_source_output *o, bool suspended) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
/* If the source has been suspended, we need to handle this like
|
|
* a source change when the source is resumed */
|
|
if (suspended) {
|
|
if (u->sink_input->sink)
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
|
|
else
|
|
u->output_thread_info.push_called = false;
|
|
|
|
} else
|
|
/* Get effective source latency on unsuspend */
|
|
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
|
|
|
|
pa_sink_input_cork(u->sink_input, suspended);
|
|
|
|
update_adjust_timer(u);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
pa_assert(chunk);
|
|
|
|
/* It seems necessary to handle outstanding push messages here, though it is not clear
|
|
* why. Removing this part leads to underruns when low latencies are configured. */
|
|
u->output_thread_info.in_pop = true;
|
|
while (pa_asyncmsgq_process_one(u->asyncmsgq) > 0)
|
|
;
|
|
u->output_thread_info.in_pop = false;
|
|
|
|
/* While pop has not been called, latency adjustments in SINK_INPUT_MESSAGE_POST are
|
|
* enabled. Disable them on second pop and enable the final adjustment during the
|
|
* next push. The adjustment must be done on the next push, because there is no way
|
|
* to retrieve the source latency here. We are waiting for the second pop, because
|
|
* the first pop may be called before the sink is actually started. */
|
|
if (!u->output_thread_info.pop_called && u->output_thread_info.first_pop_done) {
|
|
u->output_thread_info.pop_adjust = true;
|
|
u->output_thread_info.pop_called = true;
|
|
}
|
|
u->output_thread_info.first_pop_done = true;
|
|
|
|
if (pa_memblockq_peek(u->memblockq, chunk) < 0) {
|
|
pa_log_info("Could not peek into queue");
|
|
return -1;
|
|
}
|
|
|
|
chunk->length = PA_MIN(chunk->length, nbytes);
|
|
pa_memblockq_drop(u->memblockq, chunk->length);
|
|
|
|
/* Adjust the memblockq to ensure that there is
|
|
* enough data in the queue to avoid underruns. */
|
|
if (!u->output_thread_info.push_called)
|
|
memblockq_adjust(u, 0, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_rewind(u->memblockq, nbytes);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static int sink_input_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
|
|
struct userdata *u = PA_SINK_INPUT(obj)->userdata;
|
|
|
|
pa_sink_input_assert_io_context(u->sink_input);
|
|
|
|
switch (code) {
|
|
|
|
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
|
|
pa_usec_t *r = data;
|
|
|
|
*r = pa_bytes_to_usec(pa_memblockq_get_length(u->memblockq), &u->sink_input->sample_spec);
|
|
|
|
/* Fall through, the default handler will add in the extra
|
|
* latency added by the resampler */
|
|
break;
|
|
}
|
|
|
|
case SINK_INPUT_MESSAGE_POST:
|
|
|
|
pa_memblockq_push_align(u->memblockq, chunk);
|
|
|
|
/* If push has not been called yet, latency adjustments in sink_input_pop_cb()
|
|
* are enabled. Disable them on first push and correct the memblockq. If pop
|
|
* has not been called yet, wait until the pop_cb() requests the adjustment */
|
|
if (u->output_thread_info.pop_called && (!u->output_thread_info.push_called || u->output_thread_info.pop_adjust)) {
|
|
pa_usec_t time_delta;
|
|
|
|
/* This is the source latency at the time push was called */
|
|
time_delta = PA_PTR_TO_UINT(data);
|
|
/* Add the time between push and post */
|
|
time_delta += pa_rtclock_now() - (pa_usec_t) offset;
|
|
/* Add the sink latency */
|
|
time_delta += pa_sink_get_latency_within_thread(u->sink_input->sink);
|
|
|
|
/* The source latency report includes the audio in the chunk,
|
|
* but since we already pushed the chunk to the memblockq, we need
|
|
* to subtract the chunk size from the source latency so that it
|
|
* won't be counted towards both the memblockq latency and the
|
|
* source latency.
|
|
*
|
|
* Sometimes the alsa source reports way too low latency (might
|
|
* be a bug in the alsa source code). This seems to happen when
|
|
* there's an overrun. As an attempt to detect overruns, we
|
|
* check if the chunk size is larger than the configured source
|
|
* latency. If so, we assume that the source should have pushed
|
|
* a chunk whose size equals the configured latency, so we
|
|
* modify time_delta only by that amount, which makes
|
|
* memblockq_adjust() drop more data than it would otherwise.
|
|
* This seems to work quite well, but it's possible that the
|
|
* next push also contains too much data, and in that case the
|
|
* resulting latency will be wrong. */
|
|
if (pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec) > u->output_thread_info.effective_source_latency)
|
|
time_delta = PA_CLIP_SUB(time_delta, u->output_thread_info.effective_source_latency);
|
|
else
|
|
time_delta = PA_CLIP_SUB(time_delta, pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec));
|
|
|
|
/* FIXME: We allow pushing silence here to fix up the latency. This
|
|
* might lead to a gap in the stream */
|
|
memblockq_adjust(u, time_delta, true);
|
|
|
|
u->output_thread_info.pop_adjust = false;
|
|
u->output_thread_info.push_called = true;
|
|
}
|
|
|
|
/* If pop has not been called yet, make sure the latency does not grow too much.
|
|
* Don't push any silence here, because we already have new data in the queue */
|
|
if (!u->output_thread_info.pop_called)
|
|
memblockq_adjust(u, 0, false);
|
|
|
|
/* Is this the end of an underrun? Then let's start things
|
|
* right-away */
|
|
if (!u->output_thread_info.in_pop &&
|
|
u->sink_input->sink->thread_info.state != PA_SINK_SUSPENDED &&
|
|
u->sink_input->thread_info.underrun_for > 0 &&
|
|
pa_memblockq_is_readable(u->memblockq)) {
|
|
|
|
pa_log_debug("Requesting rewind due to end of underrun.");
|
|
pa_sink_input_request_rewind(u->sink_input,
|
|
(size_t) (u->sink_input->thread_info.underrun_for == (size_t) -1 ? 0 : u->sink_input->thread_info.underrun_for),
|
|
false, true, false);
|
|
}
|
|
|
|
u->output_thread_info.recv_counter += (int64_t) chunk->length;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_REWIND:
|
|
|
|
pa_memblockq_seek(u->memblockq, -offset, PA_SEEK_RELATIVE, true);
|
|
|
|
u->output_thread_info.recv_counter -= offset;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
|
|
size_t length;
|
|
|
|
length = pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq);
|
|
|
|
u->latency_snapshot.recv_counter = u->output_thread_info.recv_counter;
|
|
u->latency_snapshot.loopback_memblockq_length = pa_memblockq_get_length(u->memblockq);
|
|
/* Add content of render memblockq to sink latency */
|
|
u->latency_snapshot.sink_latency = pa_sink_get_latency_within_thread(u->sink_input->sink) +
|
|
pa_bytes_to_usec(length, &u->sink_input->sink->sample_spec);
|
|
u->latency_snapshot.sink_timestamp = pa_rtclock_now();
|
|
|
|
return 0;
|
|
}
|
|
|
|
case SINK_INPUT_MESSAGE_SOURCE_CHANGED:
|
|
|
|
u->output_thread_info.push_called = false;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY:
|
|
|
|
u->output_thread_info.effective_source_latency = (pa_usec_t)offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
|
|
}
|
|
/* Called from main thread.
|
|
* Set sink input latency to one third of the overall latency if possible.
|
|
* The choice of one third is rather arbitrary somewhere between the minimum
|
|
* possible latency which would cause a lot of CPU load and half the configured
|
|
* latency which would quickly lead to underruns. */
|
|
static void set_sink_input_latency(struct userdata *u, pa_sink *sink) {
|
|
pa_usec_t latency, requested_latency;
|
|
|
|
requested_latency = u->latency / 3;
|
|
|
|
latency = PA_CLAMP(requested_latency , u->min_sink_latency, u->max_sink_latency);
|
|
u->configured_sink_latency = pa_sink_input_set_requested_latency(u->sink_input, latency);
|
|
if (u->configured_sink_latency != requested_latency)
|
|
pa_log_warn("Cannot set requested sink latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_sink_latency / PA_USEC_PER_MSEC);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_attach_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
u->rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
|
|
i->sink->thread_info.rtpoll,
|
|
PA_RTPOLL_LATE,
|
|
u->asyncmsgq);
|
|
|
|
pa_memblockq_set_prebuf(u->memblockq, pa_sink_input_get_max_request(i)*2);
|
|
pa_memblockq_set_maxrewind(u->memblockq, pa_sink_input_get_max_rewind(i));
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_detach_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (u->rtpoll_item_read) {
|
|
pa_rtpoll_item_free(u->rtpoll_item_read);
|
|
u->rtpoll_item_read = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_set_maxrewind(u->memblockq, nbytes);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_set_prebuf(u->memblockq, nbytes*2);
|
|
pa_log_info("Max request changed");
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_kill_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
teardown(u);
|
|
pa_module_unload_request(u->module, true);
|
|
}
|
|
|
|
/* Called from the output thread context */
|
|
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (state == PA_SINK_INPUT_UNLINKED)
|
|
pa_asyncmsgq_flush(u->asyncmsgq, false);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
|
|
struct userdata *u;
|
|
char *output_description;
|
|
const char *n;
|
|
|
|
if (!dest)
|
|
return;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
output_description = pa_sprintf_malloc("Loopback to %s",
|
|
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_NAME, output_description);
|
|
pa_xfree(output_description);
|
|
|
|
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
/* Set latency and calculate latency limits */
|
|
update_latency_boundaries(u, NULL, dest);
|
|
set_sink_input_latency(u, dest);
|
|
update_effective_source_latency(u, u->source_output->source, dest);
|
|
|
|
if (pa_sink_get_state(dest) == PA_SINK_SUSPENDED)
|
|
pa_source_output_cork(u->source_output, true);
|
|
else
|
|
pa_source_output_cork(u->source_output, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.first_pop_done = false;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (!u->source_output || !u->source_output->source)
|
|
return true;
|
|
|
|
return dest != u->source_output->source->monitor_of;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_suspend_cb(pa_sink_input *i, bool suspended) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
/* If the sink has been suspended, we need to handle this like
|
|
* a sink change when the sink is resumed. Because the sink
|
|
* is suspended, we can set the variables directly. */
|
|
if (suspended) {
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.first_pop_done = false;
|
|
|
|
} else
|
|
/* Set effective source latency on unsuspend */
|
|
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
|
|
|
|
pa_source_output_cork(u->source_output, suspended);
|
|
|
|
update_adjust_timer(u);
|
|
}
|
|
|
|
int pa__init(pa_module *m) {
|
|
pa_modargs *ma = NULL;
|
|
struct userdata *u;
|
|
pa_sink *sink = NULL;
|
|
pa_sink_input_new_data sink_input_data;
|
|
bool sink_dont_move;
|
|
pa_source *source = NULL;
|
|
pa_source_output_new_data source_output_data;
|
|
bool source_dont_move;
|
|
uint32_t latency_msec;
|
|
pa_sample_spec ss;
|
|
pa_channel_map map;
|
|
bool format_set = false;
|
|
bool rate_set = false;
|
|
bool channels_set = false;
|
|
pa_memchunk silence;
|
|
uint32_t adjust_time_sec;
|
|
const char *n;
|
|
bool remix = true;
|
|
|
|
pa_assert(m);
|
|
|
|
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
|
|
pa_log("Failed to parse module arguments");
|
|
goto fail;
|
|
}
|
|
|
|
n = pa_modargs_get_value(ma, "source", NULL);
|
|
if (n && !(source = pa_namereg_get(m->core, n, PA_NAMEREG_SOURCE))) {
|
|
pa_log("No such source.");
|
|
goto fail;
|
|
}
|
|
|
|
n = pa_modargs_get_value(ma, "sink", NULL);
|
|
if (n && !(sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK))) {
|
|
pa_log("No such sink.");
|
|
goto fail;
|
|
}
|
|
|
|
if (pa_modargs_get_value_boolean(ma, "remix", &remix) < 0) {
|
|
pa_log("Invalid boolean remix parameter");
|
|
goto fail;
|
|
}
|
|
|
|
if (sink) {
|
|
ss = sink->sample_spec;
|
|
map = sink->channel_map;
|
|
format_set = true;
|
|
rate_set = true;
|
|
channels_set = true;
|
|
} else if (source) {
|
|
ss = source->sample_spec;
|
|
map = source->channel_map;
|
|
format_set = true;
|
|
rate_set = true;
|
|
channels_set = true;
|
|
} else {
|
|
/* FIXME: Dummy stream format, needed because pa_sink_input_new()
|
|
* requires valid sample spec and channel map even when all the FIX_*
|
|
* stream flags are specified. pa_sink_input_new() should be changed
|
|
* to ignore the sample spec and channel map when the FIX_* flags are
|
|
* present. */
|
|
ss.format = PA_SAMPLE_U8;
|
|
ss.rate = 8000;
|
|
ss.channels = 1;
|
|
map.channels = 1;
|
|
map.map[0] = PA_CHANNEL_POSITION_MONO;
|
|
}
|
|
|
|
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
|
|
pa_log("Invalid sample format specification or channel map");
|
|
goto fail;
|
|
}
|
|
|
|
if (ss.rate < 4000 || ss.rate > PA_RATE_MAX) {
|
|
pa_log("Invalid rate specification, valid range is 4000 Hz to %i Hz", PA_RATE_MAX);
|
|
goto fail;
|
|
}
|
|
|
|
if (pa_modargs_get_value(ma, "format", NULL))
|
|
format_set = true;
|
|
|
|
if (pa_modargs_get_value(ma, "rate", NULL))
|
|
rate_set = true;
|
|
|
|
if (pa_modargs_get_value(ma, "channels", NULL) || pa_modargs_get_value(ma, "channel_map", NULL))
|
|
channels_set = true;
|
|
|
|
latency_msec = DEFAULT_LATENCY_MSEC;
|
|
if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 30000) {
|
|
pa_log("Invalid latency specification");
|
|
goto fail;
|
|
}
|
|
|
|
m->userdata = u = pa_xnew0(struct userdata, 1);
|
|
u->core = m->core;
|
|
u->module = m;
|
|
u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.pop_adjust = false;
|
|
u->output_thread_info.push_called = false;
|
|
|
|
adjust_time_sec = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
|
|
if (pa_modargs_get_value_u32(ma, "adjust_time", &adjust_time_sec) < 0) {
|
|
pa_log("Failed to parse adjust_time value");
|
|
goto fail;
|
|
}
|
|
|
|
if (adjust_time_sec != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC)
|
|
u->adjust_time = adjust_time_sec * PA_USEC_PER_SEC;
|
|
else
|
|
u->adjust_time = DEFAULT_ADJUST_TIME_USEC;
|
|
|
|
pa_sink_input_new_data_init(&sink_input_data);
|
|
sink_input_data.driver = __FILE__;
|
|
sink_input_data.module = m;
|
|
|
|
if (sink)
|
|
pa_sink_input_new_data_set_sink(&sink_input_data, sink, false);
|
|
|
|
if (pa_modargs_get_proplist(ma, "sink_input_properties", sink_input_data.proplist, PA_UPDATE_REPLACE) < 0) {
|
|
pa_log("Failed to parse the sink_input_properties value.");
|
|
pa_sink_input_new_data_done(&sink_input_data);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(sink_input_data.proplist, PA_PROP_MEDIA_ROLE))
|
|
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
|
|
|
|
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
|
|
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
|
|
sink_input_data.flags = PA_SINK_INPUT_VARIABLE_RATE | PA_SINK_INPUT_START_CORKED;
|
|
|
|
if (!remix)
|
|
sink_input_data.flags |= PA_SINK_INPUT_NO_REMIX;
|
|
|
|
if (!format_set)
|
|
sink_input_data.flags |= PA_SINK_INPUT_FIX_FORMAT;
|
|
|
|
if (!rate_set)
|
|
sink_input_data.flags |= PA_SINK_INPUT_FIX_RATE;
|
|
|
|
if (!channels_set)
|
|
sink_input_data.flags |= PA_SINK_INPUT_FIX_CHANNELS;
|
|
|
|
sink_dont_move = false;
|
|
if (pa_modargs_get_value_boolean(ma, "sink_dont_move", &sink_dont_move) < 0) {
|
|
pa_log("sink_dont_move= expects a boolean argument.");
|
|
goto fail;
|
|
}
|
|
|
|
if (sink_dont_move)
|
|
sink_input_data.flags |= PA_SINK_INPUT_DONT_MOVE;
|
|
|
|
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
|
|
pa_sink_input_new_data_done(&sink_input_data);
|
|
|
|
if (!u->sink_input)
|
|
goto fail;
|
|
|
|
/* If format, rate or channels were originally unset, they are set now
|
|
* after the pa_sink_input_new() call. */
|
|
ss = u->sink_input->sample_spec;
|
|
map = u->sink_input->channel_map;
|
|
|
|
u->sink_input->parent.process_msg = sink_input_process_msg_cb;
|
|
u->sink_input->pop = sink_input_pop_cb;
|
|
u->sink_input->process_rewind = sink_input_process_rewind_cb;
|
|
u->sink_input->kill = sink_input_kill_cb;
|
|
u->sink_input->state_change = sink_input_state_change_cb;
|
|
u->sink_input->attach = sink_input_attach_cb;
|
|
u->sink_input->detach = sink_input_detach_cb;
|
|
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
|
|
u->sink_input->update_max_request = sink_input_update_max_request_cb;
|
|
u->sink_input->may_move_to = sink_input_may_move_to_cb;
|
|
u->sink_input->moving = sink_input_moving_cb;
|
|
u->sink_input->suspend = sink_input_suspend_cb;
|
|
u->sink_input->userdata = u;
|
|
|
|
pa_source_output_new_data_init(&source_output_data);
|
|
source_output_data.driver = __FILE__;
|
|
source_output_data.module = m;
|
|
if (source)
|
|
pa_source_output_new_data_set_source(&source_output_data, source, false);
|
|
|
|
if (pa_modargs_get_proplist(ma, "source_output_properties", source_output_data.proplist, PA_UPDATE_REPLACE) < 0) {
|
|
pa_log("Failed to parse the source_output_properties value.");
|
|
pa_source_output_new_data_done(&source_output_data);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(source_output_data.proplist, PA_PROP_MEDIA_ROLE))
|
|
pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
|
|
|
|
pa_source_output_new_data_set_sample_spec(&source_output_data, &ss);
|
|
pa_source_output_new_data_set_channel_map(&source_output_data, &map);
|
|
source_output_data.flags = PA_SOURCE_OUTPUT_START_CORKED;
|
|
|
|
if (!remix)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_NO_REMIX;
|
|
|
|
source_dont_move = false;
|
|
if (pa_modargs_get_value_boolean(ma, "source_dont_move", &source_dont_move) < 0) {
|
|
pa_log("source_dont_move= expects a boolean argument.");
|
|
goto fail;
|
|
}
|
|
|
|
if (source_dont_move)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_DONT_MOVE;
|
|
|
|
pa_source_output_new(&u->source_output, m->core, &source_output_data);
|
|
pa_source_output_new_data_done(&source_output_data);
|
|
|
|
if (!u->source_output)
|
|
goto fail;
|
|
|
|
u->source_output->parent.process_msg = source_output_process_msg_cb;
|
|
u->source_output->push = source_output_push_cb;
|
|
u->source_output->process_rewind = source_output_process_rewind_cb;
|
|
u->source_output->kill = source_output_kill_cb;
|
|
u->source_output->attach = source_output_attach_cb;
|
|
u->source_output->detach = source_output_detach_cb;
|
|
u->source_output->state_change = source_output_state_change_cb;
|
|
u->source_output->may_move_to = source_output_may_move_to_cb;
|
|
u->source_output->moving = source_output_moving_cb;
|
|
u->source_output->suspend = source_output_suspend_cb;
|
|
u->source_output->userdata = u;
|
|
|
|
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
|
|
set_sink_input_latency(u, u->sink_input->sink);
|
|
set_source_output_latency(u, u->source_output->source);
|
|
|
|
pa_sink_input_get_silence(u->sink_input, &silence);
|
|
u->memblockq = pa_memblockq_new(
|
|
"module-loopback memblockq",
|
|
0, /* idx */
|
|
MEMBLOCKQ_MAXLENGTH, /* maxlength */
|
|
MEMBLOCKQ_MAXLENGTH, /* tlength */
|
|
&ss, /* sample_spec */
|
|
0, /* prebuf */
|
|
0, /* minreq */
|
|
0, /* maxrewind */
|
|
&silence); /* silence frame */
|
|
pa_memblock_unref(silence.memblock);
|
|
/* Fill the memblockq with silence */
|
|
pa_memblockq_seek(u->memblockq, pa_usec_to_bytes(u->latency, &u->sink_input->sample_spec), PA_SEEK_RELATIVE, true);
|
|
|
|
u->asyncmsgq = pa_asyncmsgq_new(0);
|
|
if (!u->asyncmsgq) {
|
|
pa_log("pa_asyncmsgq_new() failed.");
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_NAME))
|
|
pa_proplist_setf(u->source_output->proplist, PA_PROP_MEDIA_NAME, "Loopback to %s",
|
|
pa_strnull(pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
|
|
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME)
|
|
&& (n = pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_proplist_sets(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
if (!pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_NAME))
|
|
pa_proplist_setf(u->sink_input->proplist, PA_PROP_MEDIA_NAME, "Loopback from %s",
|
|
pa_strnull(pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
|
|
if (source && !pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME)
|
|
&& (n = pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_proplist_sets(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
/* The output thread is not yet running, set effective_source_latency directly */
|
|
update_effective_source_latency(u, u->source_output->source, NULL);
|
|
|
|
pa_sink_input_put(u->sink_input);
|
|
pa_source_output_put(u->source_output);
|
|
|
|
if (pa_source_get_state(u->source_output->source) != PA_SOURCE_SUSPENDED)
|
|
pa_sink_input_cork(u->sink_input, false);
|
|
|
|
if (pa_sink_get_state(u->sink_input->sink) != PA_SINK_SUSPENDED)
|
|
pa_source_output_cork(u->source_output, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
pa_modargs_free(ma);
|
|
return 0;
|
|
|
|
fail:
|
|
if (ma)
|
|
pa_modargs_free(ma);
|
|
|
|
pa__done(m);
|
|
|
|
return -1;
|
|
}
|
|
|
|
void pa__done(pa_module*m) {
|
|
struct userdata *u;
|
|
|
|
pa_assert(m);
|
|
|
|
if (!(u = m->userdata))
|
|
return;
|
|
|
|
teardown(u);
|
|
|
|
if (u->memblockq)
|
|
pa_memblockq_free(u->memblockq);
|
|
|
|
if (u->asyncmsgq)
|
|
pa_asyncmsgq_unref(u->asyncmsgq);
|
|
|
|
pa_xfree(u);
|
|
}
|