pulseaudio/src/modules/echo-cancel/module-echo-cancel.c

2263 lines
74 KiB
C

/***
This file is part of PulseAudio.
Copyright 2010 Wim Taymans <wim.taymans@gmail.com>
Based on module-virtual-sink.c
module-virtual-source.c
module-loopback.c
Copyright 2010 Intel Corporation
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <math.h>
#include "echo-cancel.h"
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulse/rtclock.h>
#include <pulsecore/i18n.h>
#include <pulsecore/atomic.h>
#include <pulsecore/macro.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-rtclock.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include "module-echo-cancel-symdef.h"
PA_MODULE_AUTHOR("Wim Taymans");
PA_MODULE_DESCRIPTION("Echo Cancellation");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(
_("source_name=<name for the source> "
"source_properties=<properties for the source> "
"source_master=<name of source to filter> "
"sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"sink_master=<name of sink to filter> "
"adjust_time=<how often to readjust rates in s> "
"adjust_threshold=<how much drift to readjust after in ms> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"aec_method=<implementation to use> "
"aec_args=<parameters for the AEC engine> "
"save_aec=<save AEC data in /tmp> "
"autoloaded=<set if this module is being loaded automatically> "
"use_volume_sharing=<yes or no> "
));
/* NOTE: Make sure the enum and ec_table are maintained in the correct order */
typedef enum {
PA_ECHO_CANCELLER_INVALID = -1,
PA_ECHO_CANCELLER_NULL,
#ifdef HAVE_SPEEX
PA_ECHO_CANCELLER_SPEEX,
#endif
#ifdef HAVE_ADRIAN_EC
PA_ECHO_CANCELLER_ADRIAN,
#endif
#ifdef HAVE_WEBRTC
PA_ECHO_CANCELLER_WEBRTC,
#endif
} pa_echo_canceller_method_t;
#ifdef HAVE_WEBRTC
#define DEFAULT_ECHO_CANCELLER "webrtc"
#else
#define DEFAULT_ECHO_CANCELLER "speex"
#endif
static const pa_echo_canceller ec_table[] = {
{
/* Null, Dummy echo canceller (just copies data) */
.init = pa_null_ec_init,
.run = pa_null_ec_run,
.done = pa_null_ec_done,
},
#ifdef HAVE_SPEEX
{
/* Speex */
.init = pa_speex_ec_init,
.run = pa_speex_ec_run,
.done = pa_speex_ec_done,
},
#endif
#ifdef HAVE_ADRIAN_EC
{
/* Adrian Andre's NLMS implementation */
.init = pa_adrian_ec_init,
.run = pa_adrian_ec_run,
.done = pa_adrian_ec_done,
},
#endif
#ifdef HAVE_WEBRTC
{
/* WebRTC's audio processing engine */
.init = pa_webrtc_ec_init,
.play = pa_webrtc_ec_play,
.record = pa_webrtc_ec_record,
.set_drift = pa_webrtc_ec_set_drift,
.run = pa_webrtc_ec_run,
.done = pa_webrtc_ec_done,
},
#endif
};
#define DEFAULT_RATE 32000
#define DEFAULT_CHANNELS 1
#define DEFAULT_ADJUST_TIME_USEC (1*PA_USEC_PER_SEC)
#define DEFAULT_ADJUST_TOLERANCE (5*PA_USEC_PER_MSEC)
#define DEFAULT_SAVE_AEC FALSE
#define DEFAULT_AUTOLOADED FALSE
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
/* Can only be used in main context */
#define IS_ACTIVE(u) ((pa_source_get_state((u)->source) == PA_SOURCE_RUNNING) && \
(pa_sink_get_state((u)->sink) == PA_SINK_RUNNING))
/* This module creates a new (virtual) source and sink.
*
* The data sent to the new sink is kept in a memblockq before being
* forwarded to the real sink_master.
*
* Data read from source_master is matched against the saved sink data and
* echo canceled data is then pushed onto the new source.
*
* Both source and sink masters have their own threads to push/pull data
* respectively. We however perform all our actions in the source IO thread.
* To do this we send all played samples to the source IO thread where they
* are then pushed into the memblockq.
*
* Alignment is performed in two steps:
*
* 1) when something happens that requires quick adjustment of the alignment of
* capture and playback samples, we perform a resync. This adjusts the
* position in the playback memblock to the requested sample. Quick
* adjustments include moving the playback samples before the capture
* samples (because else the echo canceler does not work) or when the
* playback pointer drifts too far away.
*
* 2) periodically check the difference between capture and playback. We use a
* low and high watermark for adjusting the alignment. Playback should always
* be before capture and the difference should not be bigger than one frame
* size. We would ideally like to resample the sink_input but most driver
* don't give enough accuracy to be able to do that right now.
*/
struct userdata;
struct pa_echo_canceller_msg {
pa_msgobject parent;
struct userdata *userdata;
};
PA_DEFINE_PRIVATE_CLASS(pa_echo_canceller_msg, pa_msgobject);
#define PA_ECHO_CANCELLER_MSG(o) (pa_echo_canceller_msg_cast(o))
struct snapshot {
pa_usec_t sink_now;
pa_usec_t sink_latency;
size_t sink_delay;
int64_t send_counter;
pa_usec_t source_now;
pa_usec_t source_latency;
size_t source_delay;
int64_t recv_counter;
size_t rlen;
size_t plen;
};
struct userdata {
pa_core *core;
pa_module *module;
pa_bool_t autoloaded;
pa_bool_t dead;
pa_bool_t save_aec;
pa_echo_canceller *ec;
uint32_t source_blocksize;
uint32_t sink_blocksize;
pa_bool_t need_realign;
/* to wakeup the source I/O thread */
pa_asyncmsgq *asyncmsgq;
pa_rtpoll_item *rtpoll_item_read, *rtpoll_item_write;
pa_source *source;
pa_bool_t source_auto_desc;
pa_source_output *source_output;
pa_memblockq *source_memblockq; /* echo canceler needs fixed sized chunks */
size_t source_skip;
pa_sink *sink;
pa_bool_t sink_auto_desc;
pa_sink_input *sink_input;
pa_memblockq *sink_memblockq;
int64_t send_counter; /* updated in sink IO thread */
int64_t recv_counter;
size_t sink_skip;
/* Bytes left over from previous iteration */
size_t sink_rem;
size_t source_rem;
pa_atomic_t request_resync;
pa_time_event *time_event;
pa_usec_t adjust_time;
int adjust_threshold;
FILE *captured_file;
FILE *played_file;
FILE *canceled_file;
FILE *drift_file;
pa_bool_t use_volume_sharing;
struct {
pa_cvolume current_volume;
} thread_info;
};
static void source_output_snapshot_within_thread(struct userdata *u, struct snapshot *snapshot);
static const char* const valid_modargs[] = {
"source_name",
"source_properties",
"source_master",
"sink_name",
"sink_properties",
"sink_master",
"adjust_time",
"adjust_threshold",
"format",
"rate",
"channels",
"channel_map",
"aec_method",
"aec_args",
"save_aec",
"autoloaded",
"use_volume_sharing",
NULL
};
enum {
SOURCE_OUTPUT_MESSAGE_POST = PA_SOURCE_OUTPUT_MESSAGE_MAX,
SOURCE_OUTPUT_MESSAGE_REWIND,
SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT,
SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME
};
enum {
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT
};
enum {
ECHO_CANCELLER_MESSAGE_SET_VOLUME,
};
static int64_t calc_diff(struct userdata *u, struct snapshot *snapshot) {
int64_t diff_time, buffer_latency;
pa_usec_t plen, rlen, source_delay, sink_delay, recv_counter, send_counter;
/* get latency difference between playback and record */
plen = pa_bytes_to_usec(snapshot->plen, &u->sink_input->sample_spec);
rlen = pa_bytes_to_usec(snapshot->rlen, &u->source_output->sample_spec);
if (plen > rlen)
buffer_latency = plen - rlen;
else
buffer_latency = 0;
source_delay = pa_bytes_to_usec(snapshot->source_delay, &u->source_output->sample_spec);
sink_delay = pa_bytes_to_usec(snapshot->sink_delay, &u->sink_input->sample_spec);
buffer_latency += source_delay + sink_delay;
/* add the latency difference due to samples not yet transferred */
send_counter = pa_bytes_to_usec(snapshot->send_counter, &u->sink_input->sample_spec);
recv_counter = pa_bytes_to_usec(snapshot->recv_counter, &u->source_output->sample_spec);
if (recv_counter <= send_counter)
buffer_latency += (int64_t) (send_counter - recv_counter);
else
buffer_latency += PA_CLIP_SUB(buffer_latency, (int64_t) (recv_counter - send_counter));
/* capture and playback are perfectly aligned when diff_time is 0 */
diff_time = (snapshot->sink_now + snapshot->sink_latency - buffer_latency) -
(snapshot->source_now - snapshot->source_latency);
pa_log_debug("Diff %lld (%lld - %lld + %lld) %lld %lld %lld %lld", (long long) diff_time,
(long long) snapshot->sink_latency,
(long long) buffer_latency, (long long) snapshot->source_latency,
(long long) source_delay, (long long) sink_delay,
(long long) (send_counter - recv_counter),
(long long) (snapshot->sink_now - snapshot->source_now));
return diff_time;
}
/* Called from main context */
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
struct userdata *u = userdata;
uint32_t old_rate, base_rate, new_rate;
int64_t diff_time;
/*size_t fs*/
struct snapshot latency_snapshot;
pa_assert(u);
pa_assert(a);
pa_assert(u->time_event == e);
pa_assert_ctl_context();
if (!IS_ACTIVE(u))
return;
/* update our snapshots */
pa_asyncmsgq_send(u->source_output->source->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL);
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL);
/* calculate drift between capture and playback */
diff_time = calc_diff(u, &latency_snapshot);
/*fs = pa_frame_size(&u->source_output->sample_spec);*/
old_rate = u->sink_input->sample_spec.rate;
base_rate = u->source_output->sample_spec.rate;
if (diff_time < 0) {
/* recording before playback, we need to adjust quickly. The echo
* canceler does not work in this case. */
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME,
NULL, diff_time, NULL, NULL);
/*new_rate = base_rate - ((pa_usec_to_bytes(-diff_time, &u->source_output->sample_spec) / fs) * PA_USEC_PER_SEC) / u->adjust_time;*/
new_rate = base_rate;
}
else {
if (diff_time > u->adjust_threshold) {
/* diff too big, quickly adjust */
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME,
NULL, diff_time, NULL, NULL);
}
/* recording behind playback, we need to slowly adjust the rate to match */
/*new_rate = base_rate + ((pa_usec_to_bytes(diff_time, &u->source_output->sample_spec) / fs) * PA_USEC_PER_SEC) / u->adjust_time;*/
/* assume equal samplerates for now */
new_rate = base_rate;
}
/* make sure we don't make too big adjustments because that sounds horrible */
if (new_rate > base_rate * 1.1 || new_rate < base_rate * 0.9)
new_rate = base_rate;
if (new_rate != old_rate) {
pa_log_info("Old rate %lu Hz, new rate %lu Hz", (unsigned long) old_rate, (unsigned long) new_rate);
pa_sink_input_set_rate(u->sink_input, new_rate);
}
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
}
/* Called from source I/O thread context */
static int source_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE(o)->userdata;
switch (code) {
case PA_SOURCE_MESSAGE_GET_LATENCY:
/* The source is _put() before the source output is, so let's
* make sure we don't access it in that time. Also, the
* source output is first shut down, the source second. */
if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state) ||
!PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master source */
pa_source_get_latency_within_thread(u->source_output->source) +
/* Add the latency internal to our source output on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq), &u->source_output->source->sample_spec) +
/* and the buffering we do on the source */
pa_bytes_to_usec(u->source_blocksize, &u->source_output->source->sample_spec);
return 0;
case PA_SOURCE_MESSAGE_SET_VOLUME_SYNCED:
u->thread_info.current_volume = u->source->reference_volume;
break;
}
return pa_source_process_msg(o, code, data, offset, chunk);
}
/* Called from sink I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it in that time. Also, the
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
return 0;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int source_set_state_cb(pa_source *s, pa_source_state_t state) {
struct userdata *u;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(state) ||
!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output)))
return 0;
if (state == PA_SOURCE_RUNNING) {
/* restart timer when both sink and source are active */
if (IS_ACTIVE(u) && u->adjust_time)
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
pa_atomic_store(&u->request_resync, 1);
pa_source_output_cork(u->source_output, FALSE);
} else if (state == PA_SOURCE_SUSPENDED) {
pa_source_output_cork(u->source_output, TRUE);
}
return 0;
}
/* Called from main context */
static int sink_set_state_cb(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return 0;
if (state == PA_SINK_RUNNING) {
/* restart timer when both sink and source are active */
if (IS_ACTIVE(u) && u->adjust_time)
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
pa_atomic_store(&u->request_resync, 1);
pa_sink_input_cork(u->sink_input, FALSE);
} else if (state == PA_SINK_SUSPENDED) {
pa_sink_input_cork(u->sink_input, TRUE);
}
return 0;
}
/* Called from source I/O thread context */
static void source_update_requested_latency_cb(pa_source *s) {
struct userdata *u;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(u->source->thread_info.state) ||
!PA_SOURCE_OUTPUT_IS_LINKED(u->source_output->thread_info.state))
return;
pa_log_debug("Source update requested latency");
/* Just hand this one over to the master source */
pa_source_output_set_requested_latency_within_thread(
u->source_output,
pa_source_get_requested_latency_within_thread(s));
}
/* Called from sink I/O thread context */
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
pa_log_debug("Sink update requested latency");
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from sink I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
pa_log_debug("Sink request rewind %lld", (long long) s->thread_info.rewind_nbytes);
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input,
s->thread_info.rewind_nbytes, TRUE, FALSE, FALSE);
}
/* Called from main context */
static void source_set_volume_cb(pa_source *s) {
struct userdata *u;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(pa_source_get_state(s)) ||
!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output)))
return;
pa_source_output_set_volume(u->source_output, &s->real_volume, s->save_volume, TRUE);
}
/* Called from main context */
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, TRUE);
}
/* Called from main context. */
static void source_get_volume_cb(pa_source *s) {
struct userdata *u;
pa_cvolume v;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(pa_source_get_state(s)) ||
!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output)))
return;
pa_source_output_get_volume(u->source_output, &v, TRUE);
if (pa_cvolume_equal(&s->real_volume, &v))
/* no change */
return;
s->real_volume = v;
pa_source_set_soft_volume(s, NULL);
}
/* Called from main context */
static void source_set_mute_cb(pa_source *s) {
struct userdata *u;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(pa_source_get_state(s)) ||
!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output)))
return;
pa_source_output_set_mute(u->source_output, s->muted, s->save_muted);
}
/* Called from main context */
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
/* Called from main context */
static void source_get_mute_cb(pa_source *s) {
struct userdata *u;
pa_source_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SOURCE_IS_LINKED(pa_source_get_state(s)) ||
!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output)))
return;
pa_source_output_get_mute(u->source_output);
}
/* Called from source I/O thread context. */
static void apply_diff_time(struct userdata *u, int64_t diff_time) {
int64_t diff;
if (diff_time < 0) {
diff = pa_usec_to_bytes(-diff_time, &u->sink_input->sample_spec);
if (diff > 0) {
/* add some extra safety samples to compensate for jitter in the
* timings */
diff += 10 * pa_frame_size (&u->sink_input->sample_spec);
pa_log("Playback after capture (%lld), drop sink %lld", (long long) diff_time, (long long) diff);
u->sink_skip = diff;
u->source_skip = 0;
}
} else if (diff_time > 0) {
diff = pa_usec_to_bytes(diff_time, &u->source_output->sample_spec);
if (diff > 0) {
pa_log("Playback too far ahead (%lld), drop source %lld", (long long) diff_time, (long long) diff);
u->source_skip = diff;
u->sink_skip = 0;
}
}
}
/* Called from source I/O thread context. */
static void do_resync(struct userdata *u) {
int64_t diff_time;
struct snapshot latency_snapshot;
pa_log("Doing resync");
/* update our snapshot */
source_output_snapshot_within_thread(u, &latency_snapshot);
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, &latency_snapshot, 0, NULL);
/* calculate drift between capture and playback */
diff_time = calc_diff(u, &latency_snapshot);
/* and adjust for the drift */
apply_diff_time(u, diff_time);
}
/* 1. Calculate drift at this point, pass to canceller
* 2. Push out playback samples in blocksize chunks
* 3. Push out capture samples in blocksize chunks
* 4. ???
* 5. Profit
*
* Called from source I/O thread context.
*/
static void do_push_drift_comp(struct userdata *u) {
size_t rlen, plen;
pa_memchunk rchunk, pchunk, cchunk;
uint8_t *rdata, *pdata, *cdata;
float drift;
int unused PA_GCC_UNUSED;
rlen = pa_memblockq_get_length(u->source_memblockq);
plen = pa_memblockq_get_length(u->sink_memblockq);
/* Estimate snapshot drift as follows:
* pd: amount of data consumed since last time
* rd: amount of data consumed since last time
*
* drift = (pd - rd) / rd;
*
* We calculate pd and rd as the memblockq length less the number of
* samples left from the last iteration (to avoid double counting
* those remainder samples.
*/
drift = ((float)(plen - u->sink_rem) - (rlen - u->source_rem)) / ((float)(rlen - u->source_rem));
u->sink_rem = plen % u->sink_blocksize;
u->source_rem = rlen % u->source_blocksize;
/* Now let the canceller work its drift compensation magic */
u->ec->set_drift(u->ec, drift);
if (u->save_aec) {
if (u->drift_file)
fprintf(u->drift_file, "d %a\n", drift);
}
/* Send in the playback samples first */
while (plen >= u->sink_blocksize) {
pa_memblockq_peek_fixed_size(u->sink_memblockq, u->sink_blocksize, &pchunk);
pdata = pa_memblock_acquire(pchunk.memblock);
pdata += pchunk.index;
u->ec->play(u->ec, pdata);
if (u->save_aec) {
if (u->drift_file)
fprintf(u->drift_file, "p %d\n", u->sink_blocksize);
if (u->played_file)
unused = fwrite(pdata, 1, u->sink_blocksize, u->played_file);
}
pa_memblock_release(pchunk.memblock);
pa_memblockq_drop(u->sink_memblockq, u->sink_blocksize);
pa_memblock_unref(pchunk.memblock);
plen -= u->sink_blocksize;
}
/* And now the capture samples */
while (rlen >= u->source_blocksize) {
pa_memblockq_peek_fixed_size(u->source_memblockq, u->source_blocksize, &rchunk);
rdata = pa_memblock_acquire(rchunk.memblock);
rdata += rchunk.index;
cchunk.index = 0;
cchunk.length = u->source_blocksize;
cchunk.memblock = pa_memblock_new(u->source->core->mempool, cchunk.length);
cdata = pa_memblock_acquire(cchunk.memblock);
u->ec->record(u->ec, rdata, cdata);
if (u->save_aec) {
if (u->drift_file)
fprintf(u->drift_file, "c %d\n", u->source_blocksize);
if (u->captured_file)
unused = fwrite(rdata, 1, u->source_blocksize, u->captured_file);
if (u->canceled_file)
unused = fwrite(cdata, 1, u->source_blocksize, u->canceled_file);
}
pa_memblock_release(cchunk.memblock);
pa_memblock_release(rchunk.memblock);
pa_memblock_unref(rchunk.memblock);
pa_source_post(u->source, &cchunk);
pa_memblock_unref(cchunk.memblock);
pa_memblockq_drop(u->source_memblockq, u->source_blocksize);
rlen -= u->source_blocksize;
}
}
/* This one's simpler than the drift compensation case -- we just iterate over
* the capture buffer, and pass the canceller blocksize bytes of playback and
* capture data.
*
* Called from source I/O thread context. */
static void do_push(struct userdata *u) {
size_t rlen, plen;
pa_memchunk rchunk, pchunk, cchunk;
uint8_t *rdata, *pdata, *cdata;
int unused PA_GCC_UNUSED;
rlen = pa_memblockq_get_length(u->source_memblockq);
plen = pa_memblockq_get_length(u->sink_memblockq);
while (rlen >= u->source_blocksize) {
/* take fixed block from recorded samples */
pa_memblockq_peek_fixed_size(u->source_memblockq, u->source_blocksize, &rchunk);
if (plen >= u->sink_blocksize) {
/* take fixed block from played samples */
pa_memblockq_peek_fixed_size(u->sink_memblockq, u->sink_blocksize, &pchunk);
rdata = pa_memblock_acquire(rchunk.memblock);
rdata += rchunk.index;
pdata = pa_memblock_acquire(pchunk.memblock);
pdata += pchunk.index;
cchunk.index = 0;
cchunk.length = u->source_blocksize;
cchunk.memblock = pa_memblock_new(u->source->core->mempool, cchunk.length);
cdata = pa_memblock_acquire(cchunk.memblock);
if (u->save_aec) {
if (u->captured_file)
unused = fwrite(rdata, 1, u->source_blocksize, u->captured_file);
if (u->played_file)
unused = fwrite(pdata, 1, u->sink_blocksize, u->played_file);
}
/* perform echo cancellation */
u->ec->run(u->ec, rdata, pdata, cdata);
if (u->save_aec) {
if (u->canceled_file)
unused = fwrite(cdata, 1, u->source_blocksize, u->canceled_file);
}
pa_memblock_release(cchunk.memblock);
pa_memblock_release(pchunk.memblock);
pa_memblock_release(rchunk.memblock);
/* drop consumed sink samples */
pa_memblockq_drop(u->sink_memblockq, u->sink_blocksize);
pa_memblock_unref(pchunk.memblock);
pa_memblock_unref(rchunk.memblock);
/* the filtered samples now become the samples from our
* source */
rchunk = cchunk;
plen -= u->sink_blocksize;
}
/* forward the (echo-canceled) data to the virtual source */
pa_source_post(u->source, &rchunk);
pa_memblock_unref(rchunk.memblock);
pa_memblockq_drop(u->source_memblockq, u->source_blocksize);
rlen -= u->source_blocksize;
}
}
/* Called from source I/O thread context. */
static void source_output_push_cb(pa_source_output *o, const pa_memchunk *chunk) {
struct userdata *u;
size_t rlen, plen, to_skip;
pa_memchunk rchunk;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
if (!PA_SOURCE_OUTPUT_IS_LINKED(pa_source_output_get_state(u->source_output))) {
pa_log("Push when no link?");
return;
}
if (PA_UNLIKELY(u->source->thread_info.state != PA_SOURCE_RUNNING ||
u->sink->thread_info.state != PA_SINK_RUNNING)) {
pa_source_post(u->source, chunk);
return;
}
/* handle queued messages, do any message sending of our own */
while (pa_asyncmsgq_process_one(u->asyncmsgq) > 0)
;
pa_memblockq_push_align(u->source_memblockq, chunk);
rlen = pa_memblockq_get_length(u->source_memblockq);
plen = pa_memblockq_get_length(u->sink_memblockq);
/* Let's not do anything else till we have enough data to process */
if (rlen < u->source_blocksize)
return;
/* See if we need to drop samples in order to sync */
if (pa_atomic_cmpxchg (&u->request_resync, 1, 0)) {
do_resync(u);
}
/* Okay, skip cancellation for skipped source samples if needed. */
if (PA_UNLIKELY(u->source_skip)) {
/* The slightly tricky bit here is that we drop all but modulo
* blocksize bytes and then adjust for that last bit on the sink side.
* We do this because the source data is coming at a fixed rate, which
* means the only way to try to catch up is drop sink samples and let
* the canceller cope up with this. */
to_skip = rlen >= u->source_skip ? u->source_skip : rlen;
to_skip -= to_skip % u->source_blocksize;
if (to_skip) {
pa_memblockq_peek_fixed_size(u->source_memblockq, to_skip, &rchunk);
pa_source_post(u->source, &rchunk);
pa_memblock_unref(rchunk.memblock);
pa_memblockq_drop(u->source_memblockq, to_skip);
rlen -= to_skip;
u->source_skip -= to_skip;
}
if (rlen && u->source_skip % u->source_blocksize) {
u->sink_skip += (uint64_t) (u->source_blocksize - (u->source_skip % u->source_blocksize)) * u->sink_blocksize / u->source_blocksize;
u->source_skip -= (u->source_skip % u->source_blocksize);
}
}
/* And for the sink, these samples have been played back already, so we can
* just drop them and get on with it. */
if (PA_UNLIKELY(u->sink_skip)) {
to_skip = plen >= u->sink_skip ? u->sink_skip : plen;
pa_memblockq_drop(u->sink_memblockq, to_skip);
plen -= to_skip;
u->sink_skip -= to_skip;
}
/* process and push out samples */
if (u->ec->params.drift_compensation)
do_push_drift_comp(u);
else
do_push(u);
}
/* Called from sink I/O thread context. */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
if (u->sink->thread_info.rewind_requested)
pa_sink_process_rewind(u->sink, 0);
pa_sink_render_full(u->sink, nbytes, chunk);
if (i->thread_info.underrun_for > 0) {
pa_log_debug("Handling end of underrun.");
pa_atomic_store(&u->request_resync, 1);
}
/* let source thread handle the chunk. pass the sample count as well so that
* the source IO thread can update the right variables. */
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_POST,
NULL, 0, chunk, NULL);
u->send_counter += chunk->length;
return 0;
}
/* Called from source I/O thread context. */
static void source_output_process_rewind_cb(pa_source_output *o, size_t nbytes) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
pa_source_process_rewind(u->source, nbytes);
/* go back on read side, we need to use older sink data for this */
pa_memblockq_rewind(u->sink_memblockq, nbytes);
/* manipulate write index */
pa_memblockq_seek(u->source_memblockq, -nbytes, PA_SEEK_RELATIVE, TRUE);
pa_log_debug("Source rewind (%lld) %lld", (long long) nbytes,
(long long) pa_memblockq_get_length (u->source_memblockq));
}
/* Called from sink I/O thread context. */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink process rewind %lld", (long long) nbytes);
pa_sink_process_rewind(u->sink, nbytes);
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_REWIND, NULL, (int64_t) nbytes, NULL, NULL);
u->send_counter -= nbytes;
}
/* Called from source I/O thread context. */
static void source_output_snapshot_within_thread(struct userdata *u, struct snapshot *snapshot) {
size_t delay, rlen, plen;
pa_usec_t now, latency;
now = pa_rtclock_now();
latency = pa_source_get_latency_within_thread(u->source_output->source);
delay = pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq);
delay = (u->source_output->thread_info.resampler ? pa_resampler_request(u->source_output->thread_info.resampler, delay) : delay);
rlen = pa_memblockq_get_length(u->source_memblockq);
plen = pa_memblockq_get_length(u->sink_memblockq);
snapshot->source_now = now;
snapshot->source_latency = latency;
snapshot->source_delay = delay;
snapshot->recv_counter = u->recv_counter;
snapshot->rlen = rlen + u->sink_skip;
snapshot->plen = plen + u->source_skip;
}
/* Called from source I/O thread context. */
static int source_output_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE_OUTPUT(obj)->userdata;
switch (code) {
case SOURCE_OUTPUT_MESSAGE_POST:
pa_source_output_assert_io_context(u->source_output);
if (u->source_output->source->thread_info.state == PA_SOURCE_RUNNING)
pa_memblockq_push_align(u->sink_memblockq, chunk);
else
pa_memblockq_flush_write(u->sink_memblockq, TRUE);
u->recv_counter += (int64_t) chunk->length;
return 0;
case SOURCE_OUTPUT_MESSAGE_REWIND:
pa_source_output_assert_io_context(u->source_output);
/* manipulate write index, never go past what we have */
if (PA_SOURCE_IS_OPENED(u->source_output->source->thread_info.state))
pa_memblockq_seek(u->sink_memblockq, -offset, PA_SEEK_RELATIVE, TRUE);
else
pa_memblockq_flush_write(u->sink_memblockq, TRUE);
pa_log_debug("Sink rewind (%lld)", (long long) offset);
u->recv_counter -= offset;
return 0;
case SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT: {
struct snapshot *snapshot = (struct snapshot *) data;
source_output_snapshot_within_thread(u, snapshot);
return 0;
}
case SOURCE_OUTPUT_MESSAGE_APPLY_DIFF_TIME:
apply_diff_time(u, offset);
return 0;
}
return pa_source_output_process_msg(obj, code, data, offset, chunk);
}
/* Called from sink I/O thread context. */
static int sink_input_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK_INPUT(obj)->userdata;
switch (code) {
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
size_t delay;
pa_usec_t now, latency;
struct snapshot *snapshot = (struct snapshot *) data;
pa_sink_input_assert_io_context(u->sink_input);
now = pa_rtclock_now();
latency = pa_sink_get_latency_within_thread(u->sink_input->sink);
delay = pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq);
delay = (u->sink_input->thread_info.resampler ? pa_resampler_request(u->sink_input->thread_info.resampler, delay) : delay);
snapshot->sink_now = now;
snapshot->sink_latency = latency;
snapshot->sink_delay = delay;
snapshot->send_counter = u->send_counter;
return 0;
}
}
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
}
/* Called from sink I/O thread context. */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink input update max rewind %lld", (long long) nbytes);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_memblockq_set_maxrewind(u->sink_memblockq, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from source I/O thread context. */
static void source_output_update_max_rewind_cb(pa_source_output *o, size_t nbytes) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_se(u = o->userdata);
pa_log_debug("Source output update max rewind %lld", (long long) nbytes);
pa_source_set_max_rewind_within_thread(u->source, nbytes);
}
/* Called from sink I/O thread context. */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink input update max request %lld", (long long) nbytes);
pa_sink_set_max_request_within_thread(u->sink, nbytes);
}
/* Called from sink I/O thread context. */
static void sink_input_update_sink_requested_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_usec_t latency;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
latency = pa_sink_get_requested_latency_within_thread(i->sink);
pa_log_debug("Sink input update requested latency %lld", (long long) latency);
}
/* Called from source I/O thread context. */
static void source_output_update_source_requested_latency_cb(pa_source_output *o) {
struct userdata *u;
pa_usec_t latency;
pa_source_output_assert_ref(o);
pa_assert_se(u = o->userdata);
latency = pa_source_get_requested_latency_within_thread(o->source);
pa_log_debug("Source output update requested latency %lld", (long long) latency);
}
/* Called from sink I/O thread context. */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink input update latency range %lld %lld",
(long long) i->sink->thread_info.min_latency,
(long long) i->sink->thread_info.max_latency);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from source I/O thread context. */
static void source_output_update_source_latency_range_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_se(u = o->userdata);
pa_log_debug("Source output update latency range %lld %lld",
(long long) o->source->thread_info.min_latency,
(long long) o->source->thread_info.max_latency);
pa_source_set_latency_range_within_thread(u->source, o->source->thread_info.min_latency, o->source->thread_info.max_latency);
}
/* Called from sink I/O thread context. */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink input update fixed latency %lld",
(long long) i->sink->thread_info.fixed_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from source I/O thread context. */
static void source_output_update_source_fixed_latency_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_se(u = o->userdata);
pa_log_debug("Source output update fixed latency %lld",
(long long) o->source->thread_info.fixed_latency);
pa_source_set_fixed_latency_within_thread(u->source, o->source->thread_info.fixed_latency);
}
/* Called from source I/O thread context. */
static void source_output_attach_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
pa_source_set_rtpoll(u->source, o->source->thread_info.rtpoll);
pa_source_set_latency_range_within_thread(u->source, o->source->thread_info.min_latency, o->source->thread_info.max_latency);
pa_source_set_fixed_latency_within_thread(u->source, o->source->thread_info.fixed_latency);
pa_source_set_max_rewind_within_thread(u->source, pa_source_output_get_max_rewind(o));
pa_log_debug("Source output %d attach", o->index);
pa_source_attach_within_thread(u->source);
u->rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
o->source->thread_info.rtpoll,
PA_RTPOLL_LATE,
u->asyncmsgq);
}
/* Called from sink I/O thread context. */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
/* (8.1) IF YOU NEED A FIXED BLOCK SIZE ADD THE LATENCY FOR ONE
* BLOCK MINUS ONE SAMPLE HERE. SEE (7) */
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
/* (8.2) IF YOU NEED A FIXED BLOCK SIZE ROUND
* pa_sink_input_get_max_request(i) UP TO MULTIPLES OF IT
* HERE. SEE (6) */
pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i));
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
pa_log_debug("Sink input %d attach", i->index);
u->rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
i->sink->thread_info.rtpoll,
PA_RTPOLL_LATE,
u->asyncmsgq);
pa_sink_attach_within_thread(u->sink);
}
/* Called from source I/O thread context. */
static void source_output_detach_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
pa_source_detach_within_thread(u->source);
pa_source_set_rtpoll(u->source, NULL);
pa_log_debug("Source output %d detach", o->index);
if (u->rtpoll_item_read) {
pa_rtpoll_item_free(u->rtpoll_item_read);
u->rtpoll_item_read = NULL;
}
}
/* Called from sink I/O thread context. */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
pa_log_debug("Sink input %d detach", i->index);
if (u->rtpoll_item_write) {
pa_rtpoll_item_free(u->rtpoll_item_write);
u->rtpoll_item_write = NULL;
}
}
/* Called from source I/O thread context. */
static void source_output_state_change_cb(pa_source_output *o, pa_source_output_state_t state) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
pa_log_debug("Source output %d state %d", o->index, state);
}
/* Called from sink I/O thread context. */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_log_debug("Sink input %d state %d", i->index, state);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context. */
static void source_output_kill_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
u->dead = TRUE;
/* The order here matters! We first kill the source output, followed
* by the source. That means the source callbacks must be protected
* against an unconnected source output! */
pa_source_output_unlink(u->source_output);
pa_source_unlink(u->source);
pa_source_output_unref(u->source_output);
u->source_output = NULL;
pa_source_unref(u->source);
u->source = NULL;
pa_log_debug("Source output kill %d", o->index);
pa_module_unload_request(u->module, TRUE);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
u->dead = TRUE;
/* The order here matters! We first kill the sink input, followed
* by the sink. That means the sink callbacks must be protected
* against an unconnected sink input! */
pa_sink_input_unlink(u->sink_input);
pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_unref(u->sink);
u->sink = NULL;
pa_log_debug("Sink input kill %d", i->index);
pa_module_unload_request(u->module, TRUE);
}
/* Called from main context. */
static pa_bool_t source_output_may_move_to_cb(pa_source_output *o, pa_source *dest) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
if (u->dead || u->autoloaded)
return FALSE;
return (u->source != dest) && (u->sink != dest->monitor_of);
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->dead || u->autoloaded)
return FALSE;
return u->sink != dest;
}
/* Called from main context. */
static void source_output_moving_cb(pa_source_output *o, pa_source *dest) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
if (dest) {
pa_source_set_asyncmsgq(u->source, dest->asyncmsgq);
pa_source_update_flags(u->source, PA_SOURCE_LATENCY|PA_SOURCE_DYNAMIC_LATENCY, dest->flags);
} else
pa_source_set_asyncmsgq(u->source, NULL);
if (u->source_auto_desc && dest) {
const char *y, *z;
pa_proplist *pl;
pl = pa_proplist_new();
y = pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_DESCRIPTION);
z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : dest->name,
y ? y : u->sink_input->sink->name);
pa_source_update_proplist(u->source, PA_UPDATE_REPLACE, pl);
pa_proplist_free(pl);
}
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
if (u->sink_auto_desc && dest) {
const char *y, *z;
pa_proplist *pl;
pl = pa_proplist_new();
y = pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_DESCRIPTION);
z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)", z ? z : dest->name,
y ? y : u->source_output->source->name);
pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl);
pa_proplist_free(pl);
}
}
/* Called from main context */
static void sink_input_volume_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_volume_changed(u->sink, &i->volume);
}
/* Called from main context */
static void sink_input_mute_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_mute_changed(u->sink, i->muted);
}
/* Called from main context */
static int canceller_process_msg_cb(pa_msgobject *o, int code, void *userdata, int64_t offset, pa_memchunk *chunk) {
struct pa_echo_canceller_msg *msg;
struct userdata *u;
pa_assert(o);
msg = PA_ECHO_CANCELLER_MSG(o);
u = msg->userdata;
switch (code) {
case ECHO_CANCELLER_MESSAGE_SET_VOLUME: {
pa_cvolume *v = (pa_cvolume *) userdata;
if (u->use_volume_sharing)
pa_source_set_volume(u->source, v, TRUE, FALSE);
else
pa_source_output_set_volume(u->source_output, v, FALSE, TRUE);
break;
}
default:
pa_assert_not_reached();
break;
}
return 0;
}
/* Called by the canceller, so source I/O thread context. */
void pa_echo_canceller_get_capture_volume(pa_echo_canceller *ec, pa_cvolume *v) {
*v = ec->msg->userdata->thread_info.current_volume;
}
/* Called by the canceller, so source I/O thread context. */
void pa_echo_canceller_set_capture_volume(pa_echo_canceller *ec, pa_cvolume *v) {
if (!pa_cvolume_equal(&ec->msg->userdata->thread_info.current_volume, v)) {
pa_cvolume *vol = pa_xnewdup(pa_cvolume, v, 1);
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(ec->msg), ECHO_CANCELLER_MESSAGE_SET_VOLUME, vol, 0, NULL,
pa_xfree);
}
}
uint32_t pa_echo_canceller_blocksize_power2(unsigned rate, unsigned ms) {
unsigned nframes = (rate * ms) / 1000;
uint32_t y = 1 << ((8 * sizeof(uint32_t)) - 2);
assert(rate >= 4000);
assert(ms >= 1);
/* nframes should be a power of 2, round down to nearest power of two */
while (y > nframes)
y >>= 1;
assert(y >= 1);
return y;
}
static pa_echo_canceller_method_t get_ec_method_from_string(const char *method) {
if (pa_streq(method, "null"))
return PA_ECHO_CANCELLER_NULL;
#ifdef HAVE_SPEEX
if (pa_streq(method, "speex"))
return PA_ECHO_CANCELLER_SPEEX;
#endif
#ifdef HAVE_ADRIAN_EC
if (pa_streq(method, "adrian"))
return PA_ECHO_CANCELLER_ADRIAN;
#endif
#ifdef HAVE_WEBRTC
if (pa_streq(method, "webrtc"))
return PA_ECHO_CANCELLER_WEBRTC;
#endif
return PA_ECHO_CANCELLER_INVALID;
}
/* Common initialisation bits between module-echo-cancel and the standalone
* test program.
*
* Called from main context. */
static int init_common(pa_modargs *ma, struct userdata *u, pa_sample_spec *source_ss, pa_channel_map *source_map) {
const char *ec_string;
pa_echo_canceller_method_t ec_method;
if (pa_modargs_get_sample_spec_and_channel_map(ma, source_ss, source_map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
u->ec = pa_xnew0(pa_echo_canceller, 1);
if (!u->ec) {
pa_log("Failed to alloc echo canceller");
goto fail;
}
ec_string = pa_modargs_get_value(ma, "aec_method", DEFAULT_ECHO_CANCELLER);
if ((ec_method = get_ec_method_from_string(ec_string)) < 0) {
pa_log("Invalid echo canceller implementation '%s'", ec_string);
goto fail;
}
pa_log_info("Using AEC engine: %s", ec_string);
u->ec->init = ec_table[ec_method].init;
u->ec->play = ec_table[ec_method].play;
u->ec->record = ec_table[ec_method].record;
u->ec->set_drift = ec_table[ec_method].set_drift;
u->ec->run = ec_table[ec_method].run;
u->ec->done = ec_table[ec_method].done;
return 0;
fail:
return -1;
}
/* Called from main context. */
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec source_ss, sink_ss;
pa_channel_map source_map, sink_map;
pa_modargs *ma;
pa_source *source_master=NULL;
pa_sink *sink_master=NULL;
pa_source_output_new_data source_output_data;
pa_sink_input_new_data sink_input_data;
pa_source_new_data source_data;
pa_sink_new_data sink_data;
pa_memchunk silence;
uint32_t temp;
uint32_t nframes = 0;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(source_master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "source_master", NULL), PA_NAMEREG_SOURCE))) {
pa_log("Master source not found");
goto fail;
}
pa_assert(source_master);
if (!(sink_master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sink_master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
pa_assert(sink_master);
if (source_master->monitor_of == sink_master) {
pa_log("Can't cancel echo between a sink and its monitor");
goto fail;
}
source_ss = source_master->sample_spec;
source_ss.rate = DEFAULT_RATE;
source_ss.channels = DEFAULT_CHANNELS;
pa_channel_map_init_auto(&source_map, source_ss.channels, PA_CHANNEL_MAP_DEFAULT);
sink_ss = sink_master->sample_spec;
sink_map = sink_master->channel_map;
u = pa_xnew0(struct userdata, 1);
if (!u) {
pa_log("Failed to alloc userdata");
goto fail;
}
u->core = m->core;
u->module = m;
m->userdata = u;
u->dead = FALSE;
u->use_volume_sharing = TRUE;
if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &u->use_volume_sharing) < 0) {
pa_log("use_volume_sharing= expects a boolean argument");
goto fail;
}
temp = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
if (pa_modargs_get_value_u32(ma, "adjust_time", &temp) < 0) {
pa_log("Failed to parse adjust_time value");
goto fail;
}
if (temp != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC)
u->adjust_time = temp * PA_USEC_PER_SEC;
else
u->adjust_time = DEFAULT_ADJUST_TIME_USEC;
temp = DEFAULT_ADJUST_TOLERANCE / PA_USEC_PER_MSEC;
if (pa_modargs_get_value_u32(ma, "adjust_threshold", &temp) < 0) {
pa_log("Failed to parse adjust_threshold value");
goto fail;
}
if (temp != DEFAULT_ADJUST_TOLERANCE / PA_USEC_PER_MSEC)
u->adjust_threshold = temp * PA_USEC_PER_MSEC;
else
u->adjust_threshold = DEFAULT_ADJUST_TOLERANCE;
u->save_aec = DEFAULT_SAVE_AEC;
if (pa_modargs_get_value_boolean(ma, "save_aec", &u->save_aec) < 0) {
pa_log("Failed to parse save_aec value");
goto fail;
}
u->autoloaded = DEFAULT_AUTOLOADED;
if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) {
pa_log("Failed to parse autoloaded value");
goto fail;
}
if (init_common(ma, u, &source_ss, &source_map) < 0)
goto fail;
u->asyncmsgq = pa_asyncmsgq_new(0);
u->need_realign = TRUE;
pa_assert(u->ec->init);
if (!u->ec->init(u->core, u->ec, &source_ss, &source_map, &sink_ss, &sink_map, &nframes, pa_modargs_get_value(ma, "aec_args", NULL))) {
pa_log("Failed to init AEC engine");
goto fail;
}
u->source_blocksize = nframes * pa_frame_size(&source_ss);
u->sink_blocksize = nframes * pa_frame_size(&sink_ss);
if (u->ec->params.drift_compensation)
pa_assert(u->ec->set_drift);
/* Create source */
pa_source_new_data_init(&source_data);
source_data.driver = __FILE__;
source_data.module = m;
if (!(source_data.name = pa_xstrdup(pa_modargs_get_value(ma, "source_name", NULL))))
source_data.name = pa_sprintf_malloc("%s.echo-cancel", source_master->name);
pa_source_new_data_set_sample_spec(&source_data, &source_ss);
pa_source_new_data_set_channel_map(&source_data, &source_map);
pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, source_master->name);
pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (!u->autoloaded)
pa_proplist_sets(source_data.proplist, PA_PROP_DEVICE_INTENDED_ROLES, "phone");
if (pa_modargs_get_proplist(ma, "source_properties", source_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_source_new_data_done(&source_data);
goto fail;
}
if ((u->source_auto_desc = !pa_proplist_contains(source_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
const char *y, *z;
y = pa_proplist_gets(sink_master->proplist, PA_PROP_DEVICE_DESCRIPTION);
z = pa_proplist_gets(source_master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(source_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)",
z ? z : source_master->name, y ? y : sink_master->name);
}
u->source = pa_source_new(m->core, &source_data, (source_master->flags & (PA_SOURCE_LATENCY | PA_SOURCE_DYNAMIC_LATENCY))
| (u->use_volume_sharing ? PA_SOURCE_SHARE_VOLUME_WITH_MASTER : 0));
pa_source_new_data_done(&source_data);
if (!u->source) {
pa_log("Failed to create source.");
goto fail;
}
u->source->parent.process_msg = source_process_msg_cb;
u->source->set_state = source_set_state_cb;
u->source->update_requested_latency = source_update_requested_latency_cb;
pa_source_set_get_mute_callback(u->source, source_get_mute_cb);
pa_source_set_set_mute_callback(u->source, source_set_mute_cb);
if (!u->use_volume_sharing) {
pa_source_set_get_volume_callback(u->source, source_get_volume_cb);
pa_source_set_set_volume_callback(u->source, source_set_volume_cb);
pa_source_enable_decibel_volume(u->source, TRUE);
}
u->source->userdata = u;
pa_source_set_asyncmsgq(u->source, source_master->asyncmsgq);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.echo-cancel", sink_master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &sink_ss);
pa_sink_new_data_set_channel_map(&sink_data, &sink_map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, sink_master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (!u->autoloaded)
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_INTENDED_ROLES, "phone");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
if ((u->sink_auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
const char *y, *z;
y = pa_proplist_gets(source_master->proplist, PA_PROP_DEVICE_DESCRIPTION);
z = pa_proplist_gets(sink_master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "%s (echo cancelled with %s)",
z ? z : sink_master->name, y ? y : source_master->name);
}
u->sink = pa_sink_new(m->core, &sink_data, (sink_master->flags & (PA_SINK_LATENCY | PA_SINK_DYNAMIC_LATENCY))
| (u->use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg_cb;
u->sink->set_state = sink_set_state_cb;
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->request_rewind = sink_request_rewind_cb;
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
if (!u->use_volume_sharing) {
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_enable_decibel_volume(u->sink, TRUE);
}
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, sink_master->asyncmsgq);
/* Create source output */
pa_source_output_new_data_init(&source_output_data);
source_output_data.driver = __FILE__;
source_output_data.module = m;
pa_source_output_new_data_set_source(&source_output_data, source_master, FALSE);
source_output_data.destination_source = u->source;
/* FIXME
source_output_data.flags = PA_SOURCE_OUTPUT_DONT_INHIBIT_AUTO_SUSPEND; */
pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_NAME, "Echo-Cancel Source Stream");
pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_source_output_new_data_set_sample_spec(&source_output_data, &source_ss);
pa_source_output_new_data_set_channel_map(&source_output_data, &source_map);
pa_source_output_new(&u->source_output, m->core, &source_output_data);
pa_source_output_new_data_done(&source_output_data);
if (!u->source_output)
goto fail;
u->source_output->parent.process_msg = source_output_process_msg_cb;
u->source_output->push = source_output_push_cb;
u->source_output->process_rewind = source_output_process_rewind_cb;
u->source_output->update_max_rewind = source_output_update_max_rewind_cb;
u->source_output->update_source_requested_latency = source_output_update_source_requested_latency_cb;
u->source_output->update_source_latency_range = source_output_update_source_latency_range_cb;
u->source_output->update_source_fixed_latency = source_output_update_source_fixed_latency_cb;
u->source_output->kill = source_output_kill_cb;
u->source_output->attach = source_output_attach_cb;
u->source_output->detach = source_output_detach_cb;
u->source_output->state_change = source_output_state_change_cb;
u->source_output->may_move_to = source_output_may_move_to_cb;
u->source_output->moving = source_output_moving_cb;
u->source_output->userdata = u;
u->source->output_from_master = u->source_output;
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
pa_sink_input_new_data_set_sink(&sink_input_data, sink_master, FALSE);
sink_input_data.origin_sink = u->sink;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Echo-Cancel Sink Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &sink_ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &sink_map);
sink_input_data.flags = PA_SINK_INPUT_VARIABLE_RATE;
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->parent.process_msg = sink_input_process_msg_cb;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_requested_latency = sink_input_update_sink_requested_latency_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
if (!u->use_volume_sharing)
u->sink_input->volume_changed = sink_input_volume_changed_cb;
u->sink_input->mute_changed = sink_input_mute_changed_cb;
u->sink_input->userdata = u;
u->sink->input_to_master = u->sink_input;
pa_sink_input_get_silence(u->sink_input, &silence);
u->source_memblockq = pa_memblockq_new("module-echo-cancel source_memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0,
&source_ss, 1, 1, 0, &silence);
u->sink_memblockq = pa_memblockq_new("module-echo-cancel sink_memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0,
&sink_ss, 1, 1, 0, &silence);
pa_memblock_unref(silence.memblock);
if (!u->source_memblockq || !u->sink_memblockq) {
pa_log("Failed to create memblockq.");
goto fail;
}
if (u->adjust_time > 0 && !u->ec->params.drift_compensation)
u->time_event = pa_core_rttime_new(m->core, pa_rtclock_now() + u->adjust_time, time_callback, u);
else if (u->ec->params.drift_compensation) {
pa_log_info("Canceller does drift compensation -- built-in compensation will be disabled");
u->adjust_time = 0;
/* Perform resync just once to give the canceller a leg up */
pa_atomic_store(&u->request_resync, 1);
}
if (u->save_aec) {
pa_log("Creating AEC files in /tmp");
u->captured_file = fopen("/tmp/aec_rec.sw", "wb");
if (u->captured_file == NULL)
perror ("fopen failed");
u->played_file = fopen("/tmp/aec_play.sw", "wb");
if (u->played_file == NULL)
perror ("fopen failed");
u->canceled_file = fopen("/tmp/aec_out.sw", "wb");
if (u->canceled_file == NULL)
perror ("fopen failed");
if (u->ec->params.drift_compensation) {
u->drift_file = fopen("/tmp/aec_drift.txt", "w");
if (u->drift_file == NULL)
perror ("fopen failed");
}
}
u->ec->msg = pa_msgobject_new(pa_echo_canceller_msg);
u->ec->msg->parent.process_msg = canceller_process_msg_cb;
u->ec->msg->userdata = u;
u->thread_info.current_volume = u->source->reference_volume;
pa_sink_put(u->sink);
pa_source_put(u->source);
pa_sink_input_put(u->sink_input);
pa_source_output_put(u->source_output);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
/* Called from main context. */
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink) + pa_source_linked_by(u->source);
}
/* Called from main context. */
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
u->dead = TRUE;
/* See comments in source_output_kill_cb() above regarding
* destruction order! */
if (u->time_event)
u->core->mainloop->time_free(u->time_event);
if (u->source_output)
pa_source_output_unlink(u->source_output);
if (u->sink_input)
pa_sink_input_unlink(u->sink_input);
if (u->source)
pa_source_unlink(u->source);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->source_output)
pa_source_output_unref(u->source_output);
if (u->sink_input)
pa_sink_input_unref(u->sink_input);
if (u->source)
pa_source_unref(u->source);
if (u->sink)
pa_sink_unref(u->sink);
if (u->source_memblockq)
pa_memblockq_free(u->source_memblockq);
if (u->sink_memblockq)
pa_memblockq_free(u->sink_memblockq);
if (u->ec) {
if (u->ec->done)
u->ec->done(u->ec);
pa_xfree(u->ec);
}
if (u->asyncmsgq)
pa_asyncmsgq_unref(u->asyncmsgq);
if (u->save_aec) {
if (u->played_file)
fclose(u->played_file);
if (u->captured_file)
fclose(u->captured_file);
if (u->canceled_file)
fclose(u->canceled_file);
if (u->drift_file)
fclose(u->drift_file);
}
pa_xfree(u);
}
#ifdef ECHO_CANCEL_TEST
/*
* Stand-alone test program for running in the canceller on pre-recorded files.
*/
int main(int argc, char* argv[]) {
struct userdata u;
pa_sample_spec source_ss, sink_ss;
pa_channel_map source_map, sink_map;
pa_modargs *ma = NULL;
uint8_t *rdata = NULL, *pdata = NULL, *cdata = NULL;
int unused PA_GCC_UNUSED;
int ret = 0, i;
char c;
float drift;
uint32_t nframes;
if (!getenv("MAKE_CHECK"))
pa_log_set_level(PA_LOG_DEBUG);
pa_memzero(&u, sizeof(u));
if (argc < 4 || argc > 7) {
goto usage;
}
u.captured_file = fopen(argv[2], "rb");
if (u.captured_file == NULL) {
perror ("Could not open capture file");
goto fail;
}
u.played_file = fopen(argv[1], "rb");
if (u.played_file == NULL) {
perror ("Could not open play file");
goto fail;
}
u.canceled_file = fopen(argv[3], "wb");
if (u.canceled_file == NULL) {
perror ("Could not open canceled file");
goto fail;
}
u.core = pa_xnew0(pa_core, 1);
u.core->cpu_info.cpu_type = PA_CPU_X86;
u.core->cpu_info.flags.x86 |= PA_CPU_X86_SSE;
if (!(ma = pa_modargs_new(argc > 4 ? argv[4] : NULL, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
source_ss.format = PA_SAMPLE_S16LE;
source_ss.rate = DEFAULT_RATE;
source_ss.channels = DEFAULT_CHANNELS;
pa_channel_map_init_auto(&source_map, source_ss.channels, PA_CHANNEL_MAP_DEFAULT);
sink_ss.format = PA_SAMPLE_S16LE;
sink_ss.rate = DEFAULT_RATE;
sink_ss.channels = DEFAULT_CHANNELS;
pa_channel_map_init_auto(&sink_map, sink_ss.channels, PA_CHANNEL_MAP_DEFAULT);
if (init_common(ma, &u, &source_ss, &source_map) < 0)
goto fail;
if (!u.ec->init(u.core, u.ec, &source_ss, &source_map, &sink_ss, &sink_map, &nframes,
pa_modargs_get_value(ma, "aec_args", NULL))) {
pa_log("Failed to init AEC engine");
goto fail;
}
u.source_blocksize = nframes * pa_frame_size(&source_ss);
u.sink_blocksize = nframes * pa_frame_size(&sink_ss);
if (u.ec->params.drift_compensation) {
if (argc < 6) {
pa_log("Drift compensation enabled but drift file not specified");
goto fail;
}
u.drift_file = fopen(argv[5], "rt");
if (u.drift_file == NULL) {
perror ("Could not open drift file");
goto fail;
}
}
rdata = pa_xmalloc(u.source_blocksize);
pdata = pa_xmalloc(u.sink_blocksize);
cdata = pa_xmalloc(u.source_blocksize);
if (!u.ec->params.drift_compensation) {
while (fread(rdata, u.source_blocksize, 1, u.captured_file) > 0) {
if (fread(pdata, u.sink_blocksize, 1, u.played_file) == 0) {
perror("Played file ended before captured file");
goto fail;
}
u.ec->run(u.ec, rdata, pdata, cdata);
unused = fwrite(cdata, u.source_blocksize, 1, u.canceled_file);
}
} else {
while (fscanf(u.drift_file, "%c", &c) > 0) {
switch (c) {
case 'd':
if (!fscanf(u.drift_file, "%a", &drift)) {
perror("Drift file incomplete");
goto fail;
}
u.ec->set_drift(u.ec, drift);
break;
case 'c':
if (!fscanf(u.drift_file, "%d", &i)) {
perror("Drift file incomplete");
goto fail;
}
if (fread(rdata, i, 1, u.captured_file) <= 0) {
perror("Captured file ended prematurely");
goto fail;
}
u.ec->record(u.ec, rdata, cdata);
unused = fwrite(cdata, i, 1, u.canceled_file);
break;
case 'p':
if (!fscanf(u.drift_file, "%d", &i)) {
perror("Drift file incomplete");
goto fail;
}
if (fread(pdata, i, 1, u.played_file) <= 0) {
perror("Played file ended prematurely");
goto fail;
}
u.ec->play(u.ec, pdata);
break;
}
}
if (fread(rdata, i, 1, u.captured_file) > 0)
pa_log("All capture data was not consumed");
if (fread(pdata, i, 1, u.played_file) > 0)
pa_log("All playback data was not consumed");
}
u.ec->done(u.ec);
out:
if (u.captured_file)
fclose(u.captured_file);
if (u.played_file)
fclose(u.played_file);
if (u.canceled_file)
fclose(u.canceled_file);
if (u.drift_file)
fclose(u.drift_file);
pa_xfree(rdata);
pa_xfree(pdata);
pa_xfree(cdata);
pa_xfree(u.ec);
pa_xfree(u.core);
if (ma)
pa_modargs_free(ma);
return ret;
usage:
pa_log("Usage: %s play_file rec_file out_file [module args] [drift_file]", argv[0]);
fail:
ret = -1;
goto out;
}
#endif /* ECHO_CANCEL_TEST */