pulseaudio/src/modules/module-equalizer-sink.c
Georg Chini 2af10cf39b various places: Include resampler delay to latency reports and calculations
The resampler delay was not taken into account in all necessary places.
This patch adds it where required.

Part-of: <https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/708>
2022-05-28 14:30:59 +00:00

2280 lines
78 KiB
C

/***
This file is part of PulseAudio.
This module is based off Lennart Poettering's LADSPA sink and swaps out
LADSPA functionality for a dbus-aware STFT OLA based digital equalizer.
All new work is published under PulseAudio's original license.
Copyright 2009 Jason Newton <nevion@gmail.com>
Original Author:
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <float.h>
#include <math.h>
#include <string.h>
#include <stdint.h>
//#undef __SSE2__
#ifdef __SSE2__
#include <xmmintrin.h>
#include <emmintrin.h>
#endif
#include <fftw3.h>
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulsecore/core-rtclock.h>
#include <pulsecore/i18n.h>
#include <pulsecore/aupdate.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/shared.h>
#include <pulsecore/idxset.h>
#include <pulsecore/strlist.h>
#include <pulsecore/database.h>
#include <pulsecore/protocol-dbus.h>
#include <pulsecore/dbus-util.h>
PA_MODULE_AUTHOR("Jason Newton");
PA_MODULE_DESCRIPTION(_("General Purpose Equalizer"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
_("sink_name=<name of the sink> "
"sink_properties=<properties for the sink> "
"sink_master=<sink to connect to> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"autoloaded=<set if this module is being loaded automatically> "
"use_volume_sharing=<yes or no> "
));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
#define DEFAULT_AUTOLOADED false
struct userdata {
pa_module *module;
pa_sink *sink;
pa_sink_input *sink_input;
bool autoloaded;
size_t channels;
size_t fft_size;//length (res) of fft
size_t window_size;/*
*sliding window size
*effectively chooses R
*/
size_t R;/* the hop size between overlapping windows
* the latency of the filter, calculated from window_size
* based on constraints of COLA and window function
*/
//for twiddling with pulseaudio
size_t overlap_size;//window_size-R
size_t samples_gathered;
size_t input_buffer_max;
//message
float *W;//windowing function (time domain)
float *work_buffer, **input, **overlap_accum;
fftwf_complex *output_window;
fftwf_plan forward_plan, inverse_plan;
//size_t samplings;
float **Xs;
float ***Hs;//thread updatable copies of the freq response filters (magnitude based)
pa_aupdate **a_H;
pa_memblockq *input_q;
char *output_buffer;
size_t output_buffer_length;
size_t output_buffer_max_length;
pa_memblockq *output_q;
bool first_iteration;
pa_dbus_protocol *dbus_protocol;
char *dbus_path;
pa_database *database;
char **base_profiles;
bool automatic_description;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"sink_master",
"format",
"rate",
"channels",
"channel_map",
"autoloaded",
"use_volume_sharing",
NULL
};
#define v_size 4
#define SINKLIST "equalized_sinklist"
#define EQDB "equalizer_db"
#define EQ_STATE_DB "equalizer-state"
#define FILTER_SIZE(u) ((u)->fft_size / 2 + 1)
#define CHANNEL_PROFILE_SIZE(u) (FILTER_SIZE(u) + 1)
#define FILTER_STATE_SIZE(u) (CHANNEL_PROFILE_SIZE(u) * (u)->channels)
static void dbus_init(struct userdata *u);
static void dbus_done(struct userdata *u);
static void hanning_window(float *W, size_t window_size) {
/* h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2 */
for (size_t i = 0; i < window_size; ++i)
W[i] = (float).5 * (1 - cos(2*M_PI*i / (window_size+1)));
}
static void fix_filter(float *H, size_t fft_size) {
/* divide out the fft gain */
for (size_t i = 0; i < fft_size / 2 + 1; ++i)
H[i] /= fft_size;
}
static void interpolate(float *samples, size_t length, uint32_t *xs, float *ys, size_t n_points) {
/* Note that xs must be monotonically increasing! */
float x_range_lower, x_range_upper, c0;
pa_assert(n_points >= 2);
pa_assert(xs[0] == 0);
pa_assert(xs[n_points - 1] == length - 1);
for (size_t x = 0, x_range_lower_i = 0; x < length-1; ++x) {
pa_assert(x_range_lower_i < n_points-1);
x_range_lower = (float) xs[x_range_lower_i];
x_range_upper = (float) xs[x_range_lower_i+1];
pa_assert_se(x_range_lower < x_range_upper);
pa_assert_se(x >= x_range_lower);
pa_assert_se(x <= x_range_upper);
/* bilinear-interpolation of coefficients specified */
c0 = (x-x_range_lower) / (x_range_upper-x_range_lower);
pa_assert(c0 >= 0 && c0 <= 1.0);
samples[x] = ((1.0f - c0) * ys[x_range_lower_i] + c0 * ys[x_range_lower_i + 1]);
while(x >= xs[x_range_lower_i + 1])
x_range_lower_i++;
}
samples[length-1] = ys[n_points-1];
}
static bool is_monotonic(const uint32_t *xs, size_t length) {
pa_assert(xs);
if (length < 2)
return true;
for(size_t i = 1; i < length; ++i)
if (xs[i] <= xs[i-1])
return false;
return true;
}
/* ensures memory allocated is a multiple of v_size and aligned */
static void * alloc(size_t x, size_t s) {
size_t f;
float *t;
f = PA_ROUND_UP(x*s, sizeof(float)*v_size);
pa_assert_se(t = fftwf_malloc(f));
pa_memzero(t, f);
return t;
}
static void alloc_input_buffers(struct userdata *u, size_t min_buffer_length) {
if (min_buffer_length <= u->input_buffer_max)
return;
pa_assert(min_buffer_length >= u->window_size);
for (size_t c = 0; c < u->channels; ++c) {
float *tmp = alloc(min_buffer_length, sizeof(float));
if (u->input[c]) {
if (!u->first_iteration)
memcpy(tmp, u->input[c], u->overlap_size * sizeof(float));
fftwf_free(u->input[c]);
}
u->input[c] = tmp;
}
u->input_buffer_max = min_buffer_length;
}
/* Called from I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
//size_t fs=pa_frame_size(&u->sink->sample_spec);
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it in that time. Also, the
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((int64_t*) data) = 0;
return 0;
}
*((int64_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink, true) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->output_q) +
pa_memblockq_get_length(u->input_q), &u->sink_input->sink->sample_spec) +
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
// pa_bytes_to_usec(u->samples_gathered * fs, &u->sink->sample_spec);
//+ pa_bytes_to_usec(u->latency * fs, ss)
/* Add resampler latency */
*((int64_t*) data) += pa_resampler_get_delay_usec(u->sink_input->thread_info.resampler);
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return 0;
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* When set to running or idle for the first time, request a rewind
* of the master sink to make sure we are heard immediately */
if (PA_SINK_IS_OPENED(new_state) && s->thread_info.state == PA_SINK_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(u->sink_input, 0, false, true, true);
}
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes+pa_memblockq_get_length(u->input_q), true, false, false);
}
/* Called from I/O thread context */
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from main context */
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(s->state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return;
pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, true);
}
/* Called from main context */
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(s->state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return;
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
#if 1
//reference implementation
static void dsp_logic(
float * restrict dst,//used as a temp array too, needs to be fft_length!
float * restrict src,/*input data w/ overlap at start,
*automatically cycled in routine
*/
float * restrict overlap,
const float X,//multiplier
const float * restrict H,//The freq. magnitude scalers filter
const float * restrict W,//The windowing function
fftwf_complex * restrict output_window,//The transformed windowed src
struct userdata *u) {
//use a linear-phase sliding STFT and overlap-add method (for each channel)
//window the data
for(size_t j = 0; j < u->window_size; ++j) {
dst[j] = X * W[j] * src[j];
}
//zero pad the remaining fft window
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//perform filtering
for(size_t j = 0; j < FILTER_SIZE(u); ++j) {
u->output_window[j][0] *= H[j];
u->output_window[j][1] *= H[j];
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
////debug: tests overlapping add
////and negates ALL PREVIOUS processing
////yields a perfect reconstruction if COLA is held
//for(size_t j = 0; j < u->window_size; ++j) {
// u->work_buffer[j] = u->W[j] * u->input[c][j];
//}
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j = 0; j < u->overlap_size; ++j) {
u->work_buffer[j] += overlap[j];
overlap[j] = dst[u->R + j];
}
////debug: tests if basic buffering works
////shouldn't modify the signal AT ALL (beyond roundoff)
//for(size_t j = 0; j < u->window_size;++j) {
// u->work_buffer[j] = u->input[c][j];
//}
//preserve the needed input for the next window's overlap
memmove(src, src + u->R,
(u->samples_gathered - u->R) * sizeof(float)
);
}
#else
typedef float v4sf __attribute__ ((__aligned__(v_size * sizeof(float))));
typedef union float_vector {
float f[v_size];
v4sf v;
__m128 m;
} float_vector_t;
//regardless of sse enabled, the loops in here assume
//16 byte aligned addresses and memory allocations divisible by v_size
static void dsp_logic(
float * restrict dst,//used as a temp array too, needs to be fft_length!
float * restrict src,/*input data w/ overlap at start,
*automatically cycled in routine
*/
float * restrict overlap,//The size of the overlap
const float X,//multiplier
const float * restrict H,//The freq. magnitude scalers filter
const float * restrict W,//The windowing function
fftwf_complex * restrict output_window,//The transformed windowed src
struct userdata *u) {//Collection of constants
const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
float_vector_t x;
x.f[0] = x.f[1] = x.f[2] = x.f[3] = X;
//assert(u->samples_gathered >= u->R);
//use a linear-phase sliding STFT and overlap-add method
for(size_t j = 0; j < u->window_size; j += v_size) {
//dst[j] = W[j] * src[j];
float_vector_t *d = (float_vector_t*) (dst + j);
float_vector_t *w = (float_vector_t*) (W + j);
float_vector_t *s = (float_vector_t*) (src + j);
//#if __SSE2__
d->m = _mm_mul_ps(x.m, _mm_mul_ps(w->m, s->m));
// d->v = x->v * w->v * s->v;
//#endif
}
//zero pad the remaining fft window
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//perform filtering - purely magnitude based
for(size_t j = 0; j < FILTER_SIZE; j += v_size / 2) {
//output_window[j][0]*=H[j];
//output_window[j][1]*=H[j];
float_vector_t *d = (float_vector_t*)( ((float *) output_window) + 2 * j);
float_vector_t h;
h.f[0] = h.f[1] = H[j];
h.f[2] = h.f[3] = H[j + 1];
//#if __SSE2__
d->m = _mm_mul_ps(d->m, h.m);
//#else
// d->v = d->v * h.v;
//#endif
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
////debug: tests overlapping add
////and negates ALL PREVIOUS processing
////yields a perfect reconstruction if COLA is held
//for(size_t j = 0; j < u->window_size; ++j) {
// dst[j] = W[j] * src[j];
//}
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j = 0; j < overlap_size; j += v_size) {
//dst[j]+=overlap[j];
//overlap[j]+=dst[j+R];
float_vector_t *d = (float_vector_t*)(dst + j);
float_vector_t *o = (float_vector_t*)(overlap + j);
//#if __SSE2__
d->m = _mm_add_ps(d->m, o->m);
o->m = ((float_vector_t*)(dst + u->R + j))->m;
//#else
// d->v = d->v + o->v;
// o->v = ((float_vector_t*)(dst + u->R + j))->v;
//#endif
}
//memcpy(overlap, dst+u->R, u->overlap_size * sizeof(float)); //overlap preserve (debug)
//zero out the bit beyond the real overlap so we don't add garbage next iteration
memset(overlap + u->overlap_size, 0, overlap_size - u->overlap_size);
////debug: tests if basic buffering works
////shouldn't modify the signal AT ALL (beyond roundoff)
//for(size_t j = 0; j < u->window_size; ++j) {
// dst[j] = src[j];
//}
//preserve the needed input for the next window's overlap
memmove(src, src + u->R,
(u->samples_gathered - u->R) * sizeof(float)
);
}
#endif
static void flatten_to_memblockq(struct userdata *u) {
size_t mbs = pa_mempool_block_size_max(u->sink->core->mempool);
pa_memchunk tchunk;
char *dst;
size_t i = 0;
while(i < u->output_buffer_length) {
tchunk.index = 0;
tchunk.length = PA_MIN((u->output_buffer_length - i), mbs);
tchunk.memblock = pa_memblock_new(u->sink->core->mempool, tchunk.length);
//pa_log_debug("pushing %ld into the q", tchunk.length);
dst = pa_memblock_acquire(tchunk.memblock);
memcpy(dst, u->output_buffer + i, tchunk.length);
pa_memblock_release(tchunk.memblock);
pa_memblockq_push(u->output_q, &tchunk);
pa_memblock_unref(tchunk.memblock);
i += tchunk.length;
}
}
static void process_samples(struct userdata *u) {
size_t fs = pa_frame_size(&(u->sink->sample_spec));
unsigned a_i;
float *H, X;
size_t iterations, offset;
pa_assert(u->samples_gathered >= u->window_size);
iterations = (u->samples_gathered - u->overlap_size) / u->R;
//make sure there is enough buffer memory allocated
if (iterations * u->R * fs > u->output_buffer_max_length) {
u->output_buffer_max_length = iterations * u->R * fs;
pa_xfree(u->output_buffer);
u->output_buffer = pa_xmalloc(u->output_buffer_max_length);
}
u->output_buffer_length = iterations * u->R * fs;
for(size_t iter = 0; iter < iterations; ++iter) {
offset = iter * u->R * fs;
for(size_t c = 0;c < u->channels; c++) {
a_i = pa_aupdate_read_begin(u->a_H[c]);
X = u->Xs[c][a_i];
H = u->Hs[c][a_i];
dsp_logic(
u->work_buffer,
u->input[c],
u->overlap_accum[c],
X,
H,
u->W,
u->output_window,
u
);
pa_aupdate_read_end(u->a_H[c]);
if (u->first_iteration) {
/* The windowing function will make the audio ramped in, as a cheap fix we can
* undo the windowing (for non-zero window values)
*/
for(size_t i = 0; i < u->overlap_size; ++i) {
u->work_buffer[i] = u->W[i] <= FLT_EPSILON ? u->work_buffer[i] : u->work_buffer[i] / u->W[i];
}
}
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, (uint8_t *) (((float *)u->output_buffer) + c) + offset, fs, u->work_buffer, sizeof(float), u->R);
}
if (u->first_iteration) {
u->first_iteration = false;
}
u->samples_gathered -= u->R;
}
flatten_to_memblockq(u);
}
static void input_buffer(struct userdata *u, pa_memchunk *in) {
size_t fs = pa_frame_size(&(u->sink->sample_spec));
size_t samples = in->length/fs;
float *src = pa_memblock_acquire_chunk(in);
pa_assert(u->samples_gathered + samples <= u->input_buffer_max);
for(size_t c = 0; c < u->channels; c++) {
//buffer with an offset after the overlap from previous
//iterations
pa_assert_se(
u->input[c] + u->samples_gathered + samples <= u->input[c] + u->input_buffer_max
);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input[c] + u->samples_gathered, sizeof(float), src + c, fs, samples);
}
u->samples_gathered += samples;
pa_memblock_release(in->memblock);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
size_t fs, target_samples;
size_t mbs;
//struct timeval start, end;
pa_memchunk tchunk;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_assert(chunk);
pa_assert(u->sink);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state))
return -1;
/* FIXME: Please clean this up. I see more commented code lines
* than uncommented code lines. I am sorry, but I am too dumb to
* understand this. */
fs = pa_frame_size(&(u->sink->sample_spec));
mbs = pa_mempool_block_size_max(u->sink->core->mempool);
if (pa_memblockq_get_length(u->output_q) > 0) {
//pa_log_debug("qsize is %ld", pa_memblockq_get_length(u->output_q));
goto END;
}
//nbytes = PA_MIN(nbytes, pa_mempool_block_size_max(u->sink->core->mempool));
target_samples = PA_ROUND_UP(nbytes / fs, u->R);
////pa_log_debug("vanilla mbs = %ld",mbs);
//mbs = PA_ROUND_DOWN(mbs / fs, u->R);
//mbs = PA_MAX(mbs, u->R);
//target_samples = PA_MAX(target_samples, mbs);
//pa_log_debug("target samples: %ld", target_samples);
if (u->first_iteration) {
//allocate request_size
target_samples = PA_MAX(target_samples, u->window_size);
}else{
//allocate request_size + overlap
target_samples += u->overlap_size;
}
alloc_input_buffers(u, target_samples);
//pa_log_debug("post target samples: %ld", target_samples);
chunk->memblock = NULL;
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
//pa_log_debug("start output-buffered %ld, input-buffered %ld, requested %ld",buffered_samples,u->samples_gathered,samples_requested);
//pa_rtclock_get(&start);
do{
size_t input_remaining = target_samples - u->samples_gathered;
// pa_log_debug("input remaining %ld samples", input_remaining);
pa_assert(input_remaining > 0);
while (pa_memblockq_peek(u->input_q, &tchunk) < 0) {
//pa_sink_render(u->sink, input_remaining * fs, &tchunk);
pa_sink_render_full(u->sink, PA_MIN(input_remaining * fs, mbs), &tchunk);
pa_memblockq_push(u->input_q, &tchunk);
pa_memblock_unref(tchunk.memblock);
}
pa_assert(tchunk.memblock);
tchunk.length = PA_MIN(input_remaining * fs, tchunk.length);
pa_memblockq_drop(u->input_q, tchunk.length);
//pa_log_debug("asked for %ld input samples, got %ld samples",input_remaining,buffer->length/fs);
/* copy new input */
//pa_rtclock_get(start);
// pa_log_debug("buffering %ld bytes", tchunk.length);
input_buffer(u, &tchunk);
//pa_rtclock_get(&end);
//pa_log_debug("Took %0.5f seconds to setup", pa_timeval_diff(end, start) / (double) PA_USEC_PER_SEC);
pa_memblock_unref(tchunk.memblock);
} while(u->samples_gathered < target_samples);
//pa_rtclock_get(&end);
//pa_log_debug("Took %0.6f seconds to get data", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
pa_assert(u->fft_size >= u->window_size);
pa_assert(u->R < u->window_size);
//pa_rtclock_get(&start);
/* process a block */
process_samples(u);
//pa_rtclock_get(&end);
//pa_log_debug("Took %0.6f seconds to process", (double) pa_timeval_diff(&end, &start) / PA_USEC_PER_SEC);
END:
pa_assert_se(pa_memblockq_peek(u->output_q, chunk) >= 0);
pa_assert(chunk->memblock);
pa_memblockq_drop(u->output_q, chunk->length);
//pa_log_debug("gave %ld", chunk->length/fs);
//pa_log_debug("end pop");
return 0;
}
/* Called from main context */
static void sink_input_volume_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_volume_changed(u->sink, &i->volume);
}
/* Called from main context */
static void sink_input_mute_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_mute_changed(u->sink, i->muted);
}
#if 0
static void reset_filter(struct userdata *u) {
size_t fs = pa_frame_size(&u->sink->sample_spec);
size_t max_request;
u->samples_gathered = 0;
for(size_t i = 0; i < u->channels; ++i)
pa_memzero(u->overlap_accum[i], u->overlap_size * sizeof(float));
u->first_iteration = true;
//set buffer size to max request, no overlap copy
max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs , u->R);
max_request = PA_MAX(max_request, u->window_size);
pa_sink_set_max_request_within_thread(u->sink, max_request * fs);
}
#endif
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_log_debug("Rewind callback!");
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If the sink is not yet linked, there is nothing to rewind */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state))
return;
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
//max_rewrite = nbytes;
max_rewrite = nbytes + pa_memblockq_get_length(u->input_q);
//PA_MIN(pa_memblockq_get_length(u->input_q), nbytes);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
//invalidate the output q
pa_memblockq_seek(u->input_q, - (int64_t) amount, PA_SEEK_RELATIVE, true);
pa_log("Resetting filter");
//reset_filter(u); //this is the "proper" thing to do...
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->input_q, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_memblockq_set_maxrewind(u->input_q, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t fs;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
fs = pa_frame_size(&u->sink_input->sample_spec);
pa_sink_set_max_request_within_thread(u->sink, PA_ROUND_UP(nbytes / fs, u->R) * fs);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (PA_SINK_IS_LINKED(u->sink->thread_info.state))
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
size_t fs, max_request;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
fs = pa_frame_size(&u->sink_input->sample_spec);
/* set buffer size to max request, no overlap copy */
max_request = PA_ROUND_UP(pa_sink_input_get_max_request(u->sink_input) / fs, u->R);
max_request = PA_MAX(max_request, u->window_size);
pa_sink_set_max_request_within_thread(u->sink, max_request * fs);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
if (PA_SINK_IS_LINKED(u->sink->thread_info.state))
pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* The order here matters! We first kill the sink so that streams
* can properly be moved away while the sink input is still connected
* to the master. */
pa_sink_input_cork(u->sink_input, true);
pa_sink_unlink(u->sink);
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
/* Leave u->sink alone for now, it will be cleaned up on module
* unload (and it is needed during unload as well). */
pa_module_unload_request(u->module, true);
}
static void pack(char **strs, size_t len, char **packed, size_t *length) {
size_t t_len = 0;
size_t headers = (1+len) * sizeof(uint16_t);
char *p;
for(size_t i = 0; i < len; ++i) {
t_len += strlen(strs[i]);
}
*length = headers + t_len;
p = *packed = pa_xmalloc0(*length);
*((uint16_t *) p) = (uint16_t) len;
p += sizeof(uint16_t);
for(size_t i = 0; i < len; ++i) {
uint16_t l = strlen(strs[i]);
*((uint16_t *) p) = (uint16_t) l;
p += sizeof(uint16_t);
memcpy(p, strs[i], l);
p += l;
}
}
static void unpack(char *str, size_t length, char ***strs, size_t *len) {
char *p = str;
*len = *((uint16_t *) p);
p += sizeof(uint16_t);
*strs = pa_xnew(char *, *len);
for(size_t i = 0; i < *len; ++i) {
size_t l = *((uint16_t *) p);
p += sizeof(uint16_t);
(*strs)[i] = pa_xnew(char, l + 1);
memcpy((*strs)[i], p, l);
(*strs)[i][l] = '\0';
p += l;
}
}
static void save_profile(struct userdata *u, size_t channel, char *name) {
unsigned a_i;
const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float);
float *H_n, *profile;
const float *H;
pa_datum key, data;
profile = pa_xnew0(float, profile_size);
a_i = pa_aupdate_read_begin(u->a_H[channel]);
profile[0] = u->Xs[a_i][channel];
H = u->Hs[channel][a_i];
H_n = profile + 1;
for(size_t i = 0 ; i < FILTER_SIZE(u); ++i) {
H_n[i] = H[i] * u->fft_size;
//H_n[i] = H[i];
}
pa_aupdate_read_end(u->a_H[channel]);
key.data=name;
key.size = strlen(key.data);
data.data = profile;
data.size = profile_size;
pa_database_set(u->database, &key, &data, true);
pa_database_sync(u->database);
if (u->base_profiles[channel]) {
pa_xfree(u->base_profiles[channel]);
}
u->base_profiles[channel] = pa_xstrdup(name);
}
static void save_state(struct userdata *u) {
unsigned a_i;
const size_t filter_state_size = FILTER_STATE_SIZE(u) * sizeof(float);
float *H_n, *state;
float *H;
pa_datum key, data;
pa_database *database;
char *state_path;
char *packed;
size_t packed_length;
pack(u->base_profiles, u->channels, &packed, &packed_length);
state = (float *) pa_xmalloc0(filter_state_size + packed_length);
memcpy(state + FILTER_STATE_SIZE(u), packed, packed_length);
pa_xfree(packed);
for(size_t c = 0; c < u->channels; ++c) {
a_i = pa_aupdate_read_begin(u->a_H[c]);
state[c * CHANNEL_PROFILE_SIZE(u)] = u->Xs[c][a_i];
H = u->Hs[c][a_i];
H_n = &state[c * CHANNEL_PROFILE_SIZE(u) + 1];
memcpy(H_n, H, FILTER_SIZE(u) * sizeof(float));
pa_aupdate_read_end(u->a_H[c]);
}
key.data = u->sink->name;
key.size = strlen(key.data);
data.data = state;
data.size = filter_state_size + packed_length;
//thread safety for 0.9.17?
pa_assert_se(state_path = pa_state_path(NULL, false));
pa_assert_se(database = pa_database_open(state_path, EQ_STATE_DB, false, true));
pa_xfree(state_path);
pa_database_set(database, &key, &data, true);
pa_database_sync(database);
pa_database_close(database);
pa_xfree(state);
}
static void remove_profile(pa_core *c, char *name) {
pa_datum key;
pa_database *database;
key.data = name;
key.size = strlen(key.data);
pa_assert_se(database = pa_shared_get(c, EQDB));
pa_database_unset(database, &key);
pa_database_sync(database);
}
static const char* load_profile(struct userdata *u, size_t channel, char *name) {
unsigned a_i;
pa_datum key, value;
const size_t profile_size = CHANNEL_PROFILE_SIZE(u) * sizeof(float);
key.data = name;
key.size = strlen(key.data);
if (pa_database_get(u->database, &key, &value) != NULL) {
if (value.size == profile_size) {
float *profile = (float *) value.data;
a_i = pa_aupdate_write_begin(u->a_H[channel]);
u->Xs[channel][a_i] = profile[0];
memcpy(u->Hs[channel][a_i], profile + 1, FILTER_SIZE(u) * sizeof(float));
fix_filter(u->Hs[channel][a_i], u->fft_size);
pa_aupdate_write_end(u->a_H[channel]);
pa_xfree(u->base_profiles[channel]);
u->base_profiles[channel] = pa_xstrdup(name);
}else{
return "incompatible size";
}
pa_datum_free(&value);
}else{
return "profile doesn't exist";
}
return NULL;
}
static void load_state(struct userdata *u) {
unsigned a_i;
float *H;
pa_datum key, value;
pa_database *database;
char *state_path;
pa_assert_se(state_path = pa_state_path(NULL, false));
database = pa_database_open(state_path, EQ_STATE_DB, false, false);
pa_xfree(state_path);
if (!database) {
pa_log("No resume state");
return;
}
key.data = u->sink->name;
key.size = strlen(key.data);
if (pa_database_get(database, &key, &value) != NULL) {
if (value.size > FILTER_STATE_SIZE(u) * sizeof(float) + sizeof(uint16_t)) {
float *state = (float *) value.data;
size_t n_profs;
char **names;
for(size_t c = 0; c < u->channels; ++c) {
a_i = pa_aupdate_write_begin(u->a_H[c]);
H = state + c * CHANNEL_PROFILE_SIZE(u) + 1;
u->Xs[c][a_i] = state[c * CHANNEL_PROFILE_SIZE(u)];
memcpy(u->Hs[c][a_i], H, FILTER_SIZE(u) * sizeof(float));
pa_aupdate_write_end(u->a_H[c]);
}
unpack(((char *)value.data) + FILTER_STATE_SIZE(u) * sizeof(float), value.size - FILTER_STATE_SIZE(u) * sizeof(float), &names, &n_profs);
n_profs = PA_MIN(n_profs, u->channels);
for(size_t c = 0; c < n_profs; ++c) {
pa_xfree(u->base_profiles[c]);
u->base_profiles[c] = names[c];
}
pa_xfree(names);
}
pa_datum_free(&value);
}else{
pa_log("resume state exists but is wrong size!");
}
pa_database_close(database);
}
/* Called from main context */
static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->autoloaded) {
/* We were autoloaded, and don't support moving. Let's unload ourselves. */
pa_log_debug("Can't move autoloaded stream, unloading");
pa_module_unload_request(u->module, true);
}
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
if (u->automatic_description) {
const char *master_description;
char *new_description;
master_description = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
new_description = pa_sprintf_malloc(_("FFT based equalizer on %s"),
master_description ? master_description : dest->name);
pa_sink_set_description(u->sink, new_description);
pa_xfree(new_description);
}
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
size_t i;
unsigned c;
float *H;
unsigned a_i;
bool use_volume_sharing = true;
pa_assert(m);
pa_log_warn("module-equalizer-sink is currently unsupported, and can sometimes cause "
"PulseAudio crashes, increased latency or audible artifacts.");
pa_log_warn("If you're facing audio problems, try unloading this module as a potential workaround.");
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sink_master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
ss.format = PA_SAMPLE_FLOAT32;
map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
//fs = pa_frame_size(&ss);
if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) {
pa_log("use_volume_sharing= expects a boolean argument");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
u->module = m;
m->userdata = u;
u->channels = ss.channels;
u->fft_size = pow(2, ceil(log(ss.rate) / log(2)));//probably unstable near corner cases of powers of 2
pa_log_debug("fft size: %zd", u->fft_size);
u->window_size = 15999;
if (u->window_size % 2 == 0)
u->window_size--;
u->R = (u->window_size + 1) / 2;
u->overlap_size = u->window_size - u->R;
u->samples_gathered = 0;
u->input_buffer_max = 0;
u->a_H = pa_xnew0(pa_aupdate *, u->channels);
u->Xs = pa_xnew0(float *, u->channels);
u->Hs = pa_xnew0(float **, u->channels);
for (c = 0; c < u->channels; ++c) {
u->Xs[c] = pa_xnew0(float, 2);
u->Hs[c] = pa_xnew0(float *, 2);
for (i = 0; i < 2; ++i)
u->Hs[c][i] = alloc(FILTER_SIZE(u), sizeof(float));
}
u->W = alloc(u->window_size, sizeof(float));
u->work_buffer = alloc(u->fft_size, sizeof(float));
u->input = pa_xnew0(float *, u->channels);
u->overlap_accum = pa_xnew0(float *, u->channels);
for (c = 0; c < u->channels; ++c) {
u->a_H[c] = pa_aupdate_new();
u->input[c] = NULL;
u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
}
u->output_window = alloc(FILTER_SIZE(u), sizeof(fftwf_complex));
u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);
u->inverse_plan = fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_ESTIMATE);
hanning_window(u->W, u->window_size);
u->first_iteration = true;
u->base_profiles = pa_xnew0(char *, u->channels);
for (c = 0; c < u->channels; ++c)
u->base_profiles[c] = pa_xstrdup("default");
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.equalizer", master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
if (!pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION)) {
const char *master_description;
master_description = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION,
_("FFT based equalizer on %s"), master_description ? master_description : master->name);
u->automatic_description = true;
}
u->autoloaded = DEFAULT_AUTOLOADED;
if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) {
pa_log("Failed to parse autoloaded value");
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY | PA_SINK_DYNAMIC_LATENCY))
| (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg_cb;
u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->request_rewind = sink_request_rewind_cb;
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
if (!use_volume_sharing) {
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_enable_decibel_volume(u->sink, true);
}
u->sink->userdata = u;
u->input_q = pa_memblockq_new("module-equalizer-sink input_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, &u->sink->silence);
u->output_q = pa_memblockq_new("module-equalizer-sink output_q", 0, MEMBLOCKQ_MAXLENGTH, 0, &ss, 1, 1, 0, NULL);
u->output_buffer = NULL;
u->output_buffer_length = 0;
u->output_buffer_max_length = 0;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
//pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->R*fs, &ss));
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
pa_sink_input_new_data_set_sink(&sink_input_data, master, false, true);
sink_input_data.origin_sink = u->sink;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Equalized Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
sink_input_data.flags |= PA_SINK_INPUT_START_CORKED;
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
if (!use_volume_sharing)
u->sink_input->volume_changed = sink_input_volume_changed_cb;
u->sink_input->mute_changed = sink_input_mute_changed_cb;
u->sink_input->userdata = u;
u->sink->input_to_master = u->sink_input;
dbus_init(u);
/* default filter to these */
for (c = 0; c< u->channels; ++c) {
a_i = pa_aupdate_write_begin(u->a_H[c]);
H = u->Hs[c][a_i];
u->Xs[c][a_i] = 1.0f;
for(i = 0; i < FILTER_SIZE(u); ++i)
H[i] = 1.0 / sqrtf(2.0f);
fix_filter(H, u->fft_size);
pa_aupdate_write_end(u->a_H[c]);
}
/* load old parameters */
load_state(u);
/* The order here is important. The input must be put first,
* otherwise streams might attach to the sink before the sink
* input is attached to the master. */
pa_sink_input_put(u->sink_input);
pa_sink_put(u->sink);
pa_sink_input_cork(u->sink_input, false);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
unsigned c;
pa_assert(m);
if (!(u = m->userdata))
return;
save_state(u);
dbus_done(u);
for(c = 0; c < u->channels; ++c)
pa_xfree(u->base_profiles[c]);
pa_xfree(u->base_profiles);
/* See comments in sink_input_kill_cb() above regarding
* destruction order! */
if (u->sink_input)
pa_sink_input_cork(u->sink_input, true);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->sink_input) {
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
}
if (u->sink)
pa_sink_unref(u->sink);
pa_xfree(u->output_buffer);
pa_memblockq_free(u->output_q);
pa_memblockq_free(u->input_q);
fftwf_destroy_plan(u->inverse_plan);
fftwf_destroy_plan(u->forward_plan);
fftwf_free(u->output_window);
for (c = 0; c < u->channels; ++c) {
pa_aupdate_free(u->a_H[c]);
fftwf_free(u->overlap_accum[c]);
fftwf_free(u->input[c]);
}
pa_xfree(u->a_H);
pa_xfree(u->overlap_accum);
pa_xfree(u->input);
fftwf_free(u->work_buffer);
fftwf_free(u->W);
for (c = 0; c < u->channels; ++c) {
pa_xfree(u->Xs[c]);
for (size_t i = 0; i < 2; ++i)
fftwf_free(u->Hs[c][i]);
fftwf_free(u->Hs[c]);
}
pa_xfree(u->Xs);
pa_xfree(u->Hs);
pa_xfree(u);
}
/*
* DBus Routines and Callbacks
*/
#define EXTNAME "org.PulseAudio.Ext.Equalizing1"
#define MANAGER_PATH "/org/pulseaudio/equalizing1"
#define MANAGER_IFACE EXTNAME ".Manager"
#define EQUALIZER_IFACE EXTNAME ".Equalizer"
static void manager_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u);
static void manager_get_sinks(DBusConnection *conn, DBusMessage *msg, void *_u);
static void manager_get_profiles(DBusConnection *conn, DBusMessage *msg, void *_u);
static void manager_get_all(DBusConnection *conn, DBusMessage *msg, void *_u);
static void manager_handle_remove_profile(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_n_channels(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_get_all(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_get_filter_points(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_get_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_set_filter(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_save_profile(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_load_profile(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_save_state(DBusConnection *conn, DBusMessage *msg, void *_u);
static void equalizer_handle_get_profile_name(DBusConnection *conn, DBusMessage *msg, void *_u);
enum manager_method_index {
MANAGER_METHOD_REMOVE_PROFILE,
MANAGER_METHOD_MAX
};
pa_dbus_arg_info remove_profile_args[]={
{"name", "s","in"},
};
static pa_dbus_method_handler manager_methods[MANAGER_METHOD_MAX]={
[MANAGER_METHOD_REMOVE_PROFILE]={
.method_name="RemoveProfile",
.arguments=remove_profile_args,
.n_arguments=sizeof(remove_profile_args)/sizeof(pa_dbus_arg_info),
.receive_cb=manager_handle_remove_profile}
};
enum manager_handler_index {
MANAGER_HANDLER_REVISION,
MANAGER_HANDLER_EQUALIZED_SINKS,
MANAGER_HANDLER_PROFILES,
MANAGER_HANDLER_MAX
};
static pa_dbus_property_handler manager_handlers[MANAGER_HANDLER_MAX]={
[MANAGER_HANDLER_REVISION]={.property_name="InterfaceRevision",.type="u",.get_cb=manager_get_revision,.set_cb=NULL},
[MANAGER_HANDLER_EQUALIZED_SINKS]={.property_name="EqualizedSinks",.type="ao",.get_cb=manager_get_sinks,.set_cb=NULL},
[MANAGER_HANDLER_PROFILES]={.property_name="Profiles",.type="as",.get_cb=manager_get_profiles,.set_cb=NULL}
};
pa_dbus_arg_info sink_args[]={
{"sink", "o", NULL}
};
enum manager_signal_index{
MANAGER_SIGNAL_SINK_ADDED,
MANAGER_SIGNAL_SINK_REMOVED,
MANAGER_SIGNAL_PROFILES_CHANGED,
MANAGER_SIGNAL_MAX
};
static pa_dbus_signal_info manager_signals[MANAGER_SIGNAL_MAX]={
[MANAGER_SIGNAL_SINK_ADDED]={.name="SinkAdded", .arguments=sink_args, .n_arguments=sizeof(sink_args)/sizeof(pa_dbus_arg_info)},
[MANAGER_SIGNAL_SINK_REMOVED]={.name="SinkRemoved", .arguments=sink_args, .n_arguments=sizeof(sink_args)/sizeof(pa_dbus_arg_info)},
[MANAGER_SIGNAL_PROFILES_CHANGED]={.name="ProfilesChanged", .arguments=NULL, .n_arguments=0}
};
static pa_dbus_interface_info manager_info={
.name=MANAGER_IFACE,
.method_handlers=manager_methods,
.n_method_handlers=MANAGER_METHOD_MAX,
.property_handlers=manager_handlers,
.n_property_handlers=MANAGER_HANDLER_MAX,
.get_all_properties_cb=manager_get_all,
.signals=manager_signals,
.n_signals=MANAGER_SIGNAL_MAX
};
enum equalizer_method_index {
EQUALIZER_METHOD_FILTER_POINTS,
EQUALIZER_METHOD_SEED_FILTER,
EQUALIZER_METHOD_SAVE_PROFILE,
EQUALIZER_METHOD_LOAD_PROFILE,
EQUALIZER_METHOD_SET_FILTER,
EQUALIZER_METHOD_GET_FILTER,
EQUALIZER_METHOD_SAVE_STATE,
EQUALIZER_METHOD_GET_PROFILE_NAME,
EQUALIZER_METHOD_MAX
};
enum equalizer_handler_index {
EQUALIZER_HANDLER_REVISION,
EQUALIZER_HANDLER_SAMPLERATE,
EQUALIZER_HANDLER_FILTERSAMPLERATE,
EQUALIZER_HANDLER_N_COEFS,
EQUALIZER_HANDLER_N_CHANNELS,
EQUALIZER_HANDLER_MAX
};
pa_dbus_arg_info filter_points_args[]={
{"channel", "u","in"},
{"xs", "au","in"},
{"ys", "ad","out"},
{"preamp", "d","out"}
};
pa_dbus_arg_info seed_filter_args[]={
{"channel", "u","in"},
{"xs", "au","in"},
{"ys", "ad","in"},
{"preamp", "d","in"}
};
pa_dbus_arg_info set_filter_args[]={
{"channel", "u","in"},
{"ys", "ad","in"},
{"preamp", "d","in"}
};
pa_dbus_arg_info get_filter_args[]={
{"channel", "u","in"},
{"ys", "ad","out"},
{"preamp", "d","out"}
};
pa_dbus_arg_info save_profile_args[]={
{"channel", "u","in"},
{"name", "s","in"}
};
pa_dbus_arg_info load_profile_args[]={
{"channel", "u","in"},
{"name", "s","in"}
};
pa_dbus_arg_info base_profile_name_args[]={
{"channel", "u","in"},
{"name", "s","out"}
};
static pa_dbus_method_handler equalizer_methods[EQUALIZER_METHOD_MAX]={
[EQUALIZER_METHOD_SEED_FILTER]={
.method_name="SeedFilter",
.arguments=seed_filter_args,
.n_arguments=sizeof(seed_filter_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_seed_filter},
[EQUALIZER_METHOD_FILTER_POINTS]={
.method_name="FilterAtPoints",
.arguments=filter_points_args,
.n_arguments=sizeof(filter_points_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_get_filter_points},
[EQUALIZER_METHOD_SET_FILTER]={
.method_name="SetFilter",
.arguments=set_filter_args,
.n_arguments=sizeof(set_filter_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_set_filter},
[EQUALIZER_METHOD_GET_FILTER]={
.method_name="GetFilter",
.arguments=get_filter_args,
.n_arguments=sizeof(get_filter_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_get_filter},
[EQUALIZER_METHOD_SAVE_PROFILE]={
.method_name="SaveProfile",
.arguments=save_profile_args,
.n_arguments=sizeof(save_profile_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_save_profile},
[EQUALIZER_METHOD_LOAD_PROFILE]={
.method_name="LoadProfile",
.arguments=load_profile_args,
.n_arguments=sizeof(load_profile_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_load_profile},
[EQUALIZER_METHOD_SAVE_STATE]={
.method_name="SaveState",
.arguments=NULL,
.n_arguments=0,
.receive_cb=equalizer_handle_save_state},
[EQUALIZER_METHOD_GET_PROFILE_NAME]={
.method_name="BaseProfile",
.arguments=base_profile_name_args,
.n_arguments=sizeof(base_profile_name_args)/sizeof(pa_dbus_arg_info),
.receive_cb=equalizer_handle_get_profile_name}
};
static pa_dbus_property_handler equalizer_handlers[EQUALIZER_HANDLER_MAX]={
[EQUALIZER_HANDLER_REVISION]={.property_name="InterfaceRevision",.type="u",.get_cb=equalizer_get_revision,.set_cb=NULL},
[EQUALIZER_HANDLER_SAMPLERATE]={.property_name="SampleRate",.type="u",.get_cb=equalizer_get_sample_rate,.set_cb=NULL},
[EQUALIZER_HANDLER_FILTERSAMPLERATE]={.property_name="FilterSampleRate",.type="u",.get_cb=equalizer_get_filter_rate,.set_cb=NULL},
[EQUALIZER_HANDLER_N_COEFS]={.property_name="NFilterCoefficients",.type="u",.get_cb=equalizer_get_n_coefs,.set_cb=NULL},
[EQUALIZER_HANDLER_N_CHANNELS]={.property_name="NChannels",.type="u",.get_cb=equalizer_get_n_channels,.set_cb=NULL},
};
enum equalizer_signal_index{
EQUALIZER_SIGNAL_FILTER_CHANGED,
EQUALIZER_SIGNAL_SINK_RECONFIGURED,
EQUALIZER_SIGNAL_MAX
};
static pa_dbus_signal_info equalizer_signals[EQUALIZER_SIGNAL_MAX]={
[EQUALIZER_SIGNAL_FILTER_CHANGED]={.name="FilterChanged", .arguments=NULL, .n_arguments=0},
[EQUALIZER_SIGNAL_SINK_RECONFIGURED]={.name="SinkReconfigured", .arguments=NULL, .n_arguments=0},
};
static pa_dbus_interface_info equalizer_info={
.name=EQUALIZER_IFACE,
.method_handlers=equalizer_methods,
.n_method_handlers=EQUALIZER_METHOD_MAX,
.property_handlers=equalizer_handlers,
.n_property_handlers=EQUALIZER_HANDLER_MAX,
.get_all_properties_cb=equalizer_get_all,
.signals=equalizer_signals,
.n_signals=EQUALIZER_SIGNAL_MAX
};
void dbus_init(struct userdata *u) {
uint32_t dummy;
DBusMessage *message = NULL;
pa_idxset *sink_list = NULL;
u->dbus_protocol=pa_dbus_protocol_get(u->sink->core);
u->dbus_path=pa_sprintf_malloc("/org/pulseaudio/core1/sink%d", u->sink->index);
pa_assert_se(pa_dbus_protocol_add_interface(u->dbus_protocol, u->dbus_path, &equalizer_info, u) >= 0);
sink_list = pa_shared_get(u->sink->core, SINKLIST);
u->database = pa_shared_get(u->sink->core, EQDB);
if (sink_list == NULL) {
char *state_path;
sink_list=pa_idxset_new(&pa_idxset_trivial_hash_func, &pa_idxset_trivial_compare_func);
pa_shared_set(u->sink->core, SINKLIST, sink_list);
pa_assert_se(state_path = pa_state_path(NULL, false));
pa_assert_se(u->database = pa_database_open(state_path, "equalizer-presets", false, true));
pa_xfree(state_path);
pa_shared_set(u->sink->core, EQDB, u->database);
pa_dbus_protocol_add_interface(u->dbus_protocol, MANAGER_PATH, &manager_info, u->sink->core);
pa_dbus_protocol_register_extension(u->dbus_protocol, EXTNAME);
}
pa_idxset_put(sink_list, u, &dummy);
pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_SINK_ADDED].name)));
dbus_message_append_args(message, DBUS_TYPE_OBJECT_PATH, &u->dbus_path, DBUS_TYPE_INVALID);
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
}
void dbus_done(struct userdata *u) {
pa_idxset *sink_list;
uint32_t dummy;
DBusMessage *message = NULL;
pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_SINK_REMOVED].name)));
dbus_message_append_args(message, DBUS_TYPE_OBJECT_PATH, &u->dbus_path, DBUS_TYPE_INVALID);
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
pa_assert_se(sink_list=pa_shared_get(u->sink->core,SINKLIST));
pa_idxset_remove_by_data(sink_list,u,&dummy);
if (pa_idxset_size(sink_list) == 0) {
pa_dbus_protocol_unregister_extension(u->dbus_protocol, EXTNAME);
pa_dbus_protocol_remove_interface(u->dbus_protocol, MANAGER_PATH, manager_info.name);
pa_shared_remove(u->sink->core, EQDB);
pa_database_close(u->database);
pa_shared_remove(u->sink->core, SINKLIST);
pa_xfree(sink_list);
}
pa_dbus_protocol_remove_interface(u->dbus_protocol, u->dbus_path, equalizer_info.name);
pa_xfree(u->dbus_path);
pa_dbus_protocol_unref(u->dbus_protocol);
}
void manager_handle_remove_profile(DBusConnection *conn, DBusMessage *msg, void *_u) {
DBusError error;
pa_core *c = (pa_core *)_u;
DBusMessage *message = NULL;
pa_dbus_protocol *dbus_protocol;
char *name;
pa_assert(conn);
pa_assert(msg);
pa_assert(c);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_STRING, &name,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
remove_profile(c,name);
pa_dbus_send_empty_reply(conn, msg);
pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_PROFILES_CHANGED].name)));
dbus_protocol = pa_dbus_protocol_get(c);
pa_dbus_protocol_send_signal(dbus_protocol, message);
pa_dbus_protocol_unref(dbus_protocol);
dbus_message_unref(message);
}
void manager_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u) {
uint32_t rev=1;
pa_dbus_send_basic_value_reply(conn, msg, DBUS_TYPE_UINT32, &rev);
}
static void get_sinks(pa_core *u, char ***names, unsigned *n_sinks) {
void *iter = NULL;
struct userdata *sink_u = NULL;
uint32_t dummy;
pa_idxset *sink_list;
pa_assert(u);
pa_assert(names);
pa_assert(n_sinks);
pa_assert_se(sink_list = pa_shared_get(u, SINKLIST));
*n_sinks = (unsigned) pa_idxset_size(sink_list);
*names = *n_sinks > 0 ? pa_xnew0(char *,*n_sinks) : NULL;
for(uint32_t i = 0; i < *n_sinks; ++i) {
sink_u = (struct userdata *) pa_idxset_iterate(sink_list, &iter, &dummy);
(*names)[i] = pa_xstrdup(sink_u->dbus_path);
}
}
void manager_get_sinks(DBusConnection *conn, DBusMessage *msg, void *_u) {
unsigned n;
char **names = NULL;
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
get_sinks((pa_core *) _u, &names, &n);
pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_OBJECT_PATH, names, n);
for(unsigned i = 0; i < n; ++i) {
pa_xfree(names[i]);
}
pa_xfree(names);
}
static void get_profiles(pa_core *c, char ***names, unsigned *n) {
char *name;
pa_database *database;
pa_datum key, next_key;
pa_strlist *head=NULL, *iter;
bool done;
pa_assert_se(database = pa_shared_get(c, EQDB));
pa_assert(c);
pa_assert(names);
pa_assert(n);
done = !pa_database_first(database, &key, NULL);
*n = 0;
while(!done) {
done = !pa_database_next(database, &key, &next_key, NULL);
name=pa_xmalloc(key.size + 1);
memcpy(name, key.data, key.size);
name[key.size] = '\0';
pa_datum_free(&key);
head = pa_strlist_prepend(head, name);
pa_xfree(name);
key = next_key;
(*n)++;
}
(*names) = *n > 0 ? pa_xnew0(char *, *n) : NULL;
iter=head;
for(unsigned i = 0; i < *n; ++i) {
(*names)[*n - 1 - i] = pa_xstrdup(pa_strlist_data(iter));
iter = pa_strlist_next(iter);
}
pa_strlist_free(head);
}
void manager_get_profiles(DBusConnection *conn, DBusMessage *msg, void *_u) {
char **names;
unsigned n;
pa_assert(conn);
pa_assert(msg);
pa_assert(_u);
get_profiles((pa_core *)_u, &names, &n);
pa_dbus_send_basic_array_variant_reply(conn, msg, DBUS_TYPE_STRING, names, n);
for(unsigned i = 0; i < n; ++i) {
pa_xfree(names[i]);
}
pa_xfree(names);
}
void manager_get_all(DBusConnection *conn, DBusMessage *msg, void *_u) {
pa_core *c;
char **names = NULL;
unsigned n;
DBusMessage *reply = NULL;
DBusMessageIter msg_iter, dict_iter;
uint32_t rev;
pa_assert(conn);
pa_assert(msg);
pa_assert_se(c = _u);
pa_assert_se((reply = dbus_message_new_method_return(msg)));
dbus_message_iter_init_append(reply, &msg_iter);
pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter));
rev = 1;
pa_dbus_append_basic_variant_dict_entry(&dict_iter, manager_handlers[MANAGER_HANDLER_REVISION].property_name, DBUS_TYPE_UINT32, &rev);
get_sinks(c, &names, &n);
pa_dbus_append_basic_array_variant_dict_entry(&dict_iter,manager_handlers[MANAGER_HANDLER_EQUALIZED_SINKS].property_name, DBUS_TYPE_OBJECT_PATH, names, n);
for(unsigned i = 0; i < n; ++i) {
pa_xfree(names[i]);
}
pa_xfree(names);
get_profiles(c, &names, &n);
pa_dbus_append_basic_array_variant_dict_entry(&dict_iter, manager_handlers[MANAGER_HANDLER_PROFILES].property_name, DBUS_TYPE_STRING, names, n);
for(unsigned i = 0; i < n; ++i) {
pa_xfree(names[i]);
}
pa_xfree(names);
pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter));
pa_assert_se(dbus_connection_send(conn, reply, NULL));
dbus_message_unref(reply);
}
void equalizer_handle_seed_filter(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = _u;
DBusError error;
DBusMessage *message = NULL;
float *ys;
uint32_t *xs, channel, r_channel;
double *_ys, preamp;
unsigned x_npoints, y_npoints, a_i;
float *H;
bool points_good = true;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_ARRAY, DBUS_TYPE_UINT32, &xs, &x_npoints,
DBUS_TYPE_ARRAY, DBUS_TYPE_DOUBLE, &_ys, &y_npoints,
DBUS_TYPE_DOUBLE, &preamp,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
for(size_t i = 0; i < x_npoints; ++i) {
if (xs[i] >= FILTER_SIZE(u)) {
points_good = false;
break;
}
}
if (!is_monotonic(xs, x_npoints) || !points_good) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs must be monotonic and 0<=x<=%zd", u->fft_size / 2);
dbus_error_free(&error);
return;
}else if (x_npoints != y_npoints || x_npoints < 2 || x_npoints > FILTER_SIZE(u)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs and ys must be the same length and 2<=l<=%zd!", FILTER_SIZE(u));
dbus_error_free(&error);
return;
}else if (xs[0] != 0 || xs[x_npoints - 1] != u->fft_size / 2) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs[0] must be 0 and xs[-1]=fft_size/2");
dbus_error_free(&error);
return;
}
ys = pa_xmalloc(x_npoints * sizeof(float));
for(uint32_t i = 0; i < x_npoints; ++i) {
ys[i] = (float) _ys[i];
}
r_channel = channel == u->channels ? 0 : channel;
a_i = pa_aupdate_write_begin(u->a_H[r_channel]);
H = u->Hs[r_channel][a_i];
u->Xs[r_channel][a_i] = preamp;
interpolate(H, FILTER_SIZE(u), xs, ys, x_npoints);
fix_filter(H, u->fft_size);
if (channel == u->channels) {
for(size_t c = 1; c < u->channels; ++c) {
unsigned b_i = pa_aupdate_write_begin(u->a_H[c]);
float *H_p = u->Hs[c][b_i];
u->Xs[c][b_i] = preamp;
memcpy(H_p, H, FILTER_SIZE(u) * sizeof(float));
pa_aupdate_write_end(u->a_H[c]);
}
}
pa_aupdate_write_end(u->a_H[r_channel]);
pa_xfree(ys);
pa_dbus_send_empty_reply(conn, msg);
pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name)));
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
}
void equalizer_handle_get_filter_points(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = (struct userdata *) _u;
uint32_t *xs, channel, r_channel;
double *ys, preamp;
unsigned x_npoints, a_i;
float *H;
bool points_good=true;
DBusMessage *reply = NULL;
DBusMessageIter msg_iter;
DBusError error;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_ARRAY, DBUS_TYPE_UINT32, &xs, &x_npoints,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
for(size_t i = 0; i < x_npoints; ++i) {
if (xs[i] >= FILTER_SIZE(u)) {
points_good=false;
break;
}
}
if (x_npoints > FILTER_SIZE(u) || !points_good) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "xs indices/length must be <= %zd!", FILTER_SIZE(u));
dbus_error_free(&error);
return;
}
r_channel = channel == u->channels ? 0 : channel;
ys = pa_xmalloc(x_npoints * sizeof(double));
a_i = pa_aupdate_read_begin(u->a_H[r_channel]);
H = u->Hs[r_channel][a_i];
preamp = u->Xs[r_channel][a_i];
for(uint32_t i = 0; i < x_npoints; ++i) {
ys[i] = H[xs[i]] * u->fft_size;
}
pa_aupdate_read_end(u->a_H[r_channel]);
pa_assert_se((reply = dbus_message_new_method_return(msg)));
dbus_message_iter_init_append(reply, &msg_iter);
pa_dbus_append_basic_array(&msg_iter, DBUS_TYPE_DOUBLE, ys, x_npoints);
pa_dbus_append_basic_variant(&msg_iter, DBUS_TYPE_DOUBLE, &preamp);
pa_assert_se(dbus_connection_send(conn, reply, NULL));
dbus_message_unref(reply);
pa_xfree(ys);
}
static void get_filter(struct userdata *u, size_t channel, double **H_, double *preamp) {
float *H;
unsigned a_i;
size_t r_channel = channel == u->channels ? 0 : channel;
*H_ = pa_xnew0(double, FILTER_SIZE(u));
a_i = pa_aupdate_read_begin(u->a_H[r_channel]);
H = u->Hs[r_channel][a_i];
for(size_t i = 0;i < FILTER_SIZE(u); ++i) {
(*H_)[i] = H[i] * u->fft_size;
}
*preamp = u->Xs[r_channel][a_i];
pa_aupdate_read_end(u->a_H[r_channel]);
}
void equalizer_handle_get_filter(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
unsigned n_coefs;
uint32_t channel;
double *H_, preamp;
DBusMessage *reply = NULL;
DBusMessageIter msg_iter;
DBusError error;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
n_coefs = CHANNEL_PROFILE_SIZE(u);
pa_assert(conn);
pa_assert(msg);
get_filter(u, channel, &H_, &preamp);
pa_assert_se((reply = dbus_message_new_method_return(msg)));
dbus_message_iter_init_append(reply, &msg_iter);
pa_dbus_append_basic_array(&msg_iter, DBUS_TYPE_DOUBLE, H_, n_coefs);
pa_dbus_append_basic_variant(&msg_iter, DBUS_TYPE_DOUBLE, &preamp);
pa_assert_se(dbus_connection_send(conn, reply, NULL));
dbus_message_unref(reply);
pa_xfree(H_);
}
static void set_filter(struct userdata *u, size_t channel, double *H_, double preamp) {
unsigned a_i;
size_t r_channel = channel == u->channels ? 0 : channel;
float *H;
//all channels
a_i = pa_aupdate_write_begin(u->a_H[r_channel]);
u->Xs[r_channel][a_i] = (float) preamp;
H = u->Hs[r_channel][a_i];
for(size_t i = 0; i < FILTER_SIZE(u); ++i) {
H[i] = (float) H_[i];
}
fix_filter(H, u->fft_size);
if (channel == u->channels) {
for(size_t c = 1; c < u->channels; ++c) {
unsigned b_i = pa_aupdate_write_begin(u->a_H[c]);
u->Xs[c][b_i] = u->Xs[r_channel][a_i];
memcpy(u->Hs[c][b_i], u->Hs[r_channel][a_i], FILTER_SIZE(u) * sizeof(float));
pa_aupdate_write_end(u->a_H[c]);
}
}
pa_aupdate_write_end(u->a_H[r_channel]);
}
void equalizer_handle_set_filter(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
double *H, preamp;
uint32_t channel;
unsigned _n_coefs;
DBusMessage *message = NULL;
DBusError error;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_ARRAY, DBUS_TYPE_DOUBLE, &H, &_n_coefs,
DBUS_TYPE_DOUBLE, &preamp,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
if (_n_coefs != FILTER_SIZE(u)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "This filter takes exactly %zd coefficients, you gave %d", FILTER_SIZE(u), _n_coefs);
return;
}
set_filter(u, channel, H, preamp);
pa_dbus_send_empty_reply(conn, msg);
pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name)));
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
}
void equalizer_handle_save_profile(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = (struct userdata *) _u;
char *name;
uint32_t channel, r_channel;
DBusMessage *message = NULL;
DBusError error;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_STRING, &name,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
r_channel = channel == u->channels ? 0 : channel;
save_profile(u, r_channel, name);
pa_dbus_send_empty_reply(conn, msg);
pa_assert_se((message = dbus_message_new_signal(MANAGER_PATH, MANAGER_IFACE, manager_signals[MANAGER_SIGNAL_PROFILES_CHANGED].name)));
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
}
void equalizer_handle_load_profile(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = (struct userdata *) _u;
char *name;
DBusError error;
uint32_t channel, r_channel;
const char *err_msg = NULL;
DBusMessage *message = NULL;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_STRING, &name,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
r_channel = channel == u->channels ? 0 : channel;
err_msg = load_profile(u, r_channel, name);
if (err_msg != NULL) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_FAILED, "error loading profile %s: %s", name, err_msg);
dbus_error_free(&error);
return;
}
if (channel == u->channels) {
for(uint32_t c = 1; c < u->channels; ++c) {
load_profile(u, c, name);
}
}
pa_dbus_send_empty_reply(conn, msg);
pa_assert_se((message = dbus_message_new_signal(u->dbus_path, EQUALIZER_IFACE, equalizer_signals[EQUALIZER_SIGNAL_FILTER_CHANGED].name)));
pa_dbus_protocol_send_signal(u->dbus_protocol, message);
dbus_message_unref(message);
}
void equalizer_handle_save_state(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = (struct userdata *) _u;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
save_state(u);
pa_dbus_send_empty_reply(conn, msg);
}
void equalizer_handle_get_profile_name(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u = (struct userdata *) _u;
DBusError error;
uint32_t channel, r_channel;
pa_assert(conn);
pa_assert(msg);
pa_assert(u);
dbus_error_init(&error);
if (!dbus_message_get_args(msg, &error,
DBUS_TYPE_UINT32, &channel,
DBUS_TYPE_INVALID)) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "%s", error.message);
dbus_error_free(&error);
return;
}
if (channel > u->channels) {
pa_dbus_send_error(conn, msg, DBUS_ERROR_INVALID_ARGS, "invalid channel: %d", channel);
dbus_error_free(&error);
return;
}
r_channel = channel == u->channels ? 0 : channel;
pa_assert(u->base_profiles[r_channel]);
pa_dbus_send_basic_value_reply(conn,msg, DBUS_TYPE_STRING, &u->base_profiles[r_channel]);
}
void equalizer_get_revision(DBusConnection *conn, DBusMessage *msg, void *_u) {
uint32_t rev=1;
pa_dbus_send_basic_value_reply(conn, msg, DBUS_TYPE_UINT32, &rev);
}
void equalizer_get_n_channels(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
uint32_t channels;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
channels = (uint32_t) u->channels;
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &channels);
}
void equalizer_get_n_coefs(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
uint32_t n_coefs;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u);
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &n_coefs);
}
void equalizer_get_sample_rate(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
uint32_t rate;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
rate = (uint32_t) u->sink->sample_spec.rate;
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &rate);
}
void equalizer_get_filter_rate(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
uint32_t fft_size;
pa_assert_se(u = (struct userdata *) _u);
pa_assert(conn);
pa_assert(msg);
fft_size = (uint32_t) u->fft_size;
pa_dbus_send_basic_variant_reply(conn, msg, DBUS_TYPE_UINT32, &fft_size);
}
void equalizer_get_all(DBusConnection *conn, DBusMessage *msg, void *_u) {
struct userdata *u;
DBusMessage *reply = NULL;
DBusMessageIter msg_iter, dict_iter;
uint32_t rev, n_coefs, rate, fft_size, channels;
pa_assert_se(u = _u);
pa_assert(msg);
rev = 1;
n_coefs = (uint32_t) CHANNEL_PROFILE_SIZE(u);
rate = (uint32_t) u->sink->sample_spec.rate;
fft_size = (uint32_t) u->fft_size;
channels = (uint32_t) u->channels;
pa_assert_se((reply = dbus_message_new_method_return(msg)));
dbus_message_iter_init_append(reply, &msg_iter);
pa_assert_se(dbus_message_iter_open_container(&msg_iter, DBUS_TYPE_ARRAY, "{sv}", &dict_iter));
pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_REVISION].property_name, DBUS_TYPE_UINT32, &rev);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_SAMPLERATE].property_name, DBUS_TYPE_UINT32, &rate);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_FILTERSAMPLERATE].property_name, DBUS_TYPE_UINT32, &fft_size);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_N_COEFS].property_name, DBUS_TYPE_UINT32, &n_coefs);
pa_dbus_append_basic_variant_dict_entry(&dict_iter, equalizer_handlers[EQUALIZER_HANDLER_N_CHANNELS].property_name, DBUS_TYPE_UINT32, &channels);
pa_assert_se(dbus_message_iter_close_container(&msg_iter, &dict_iter));
pa_assert_se(dbus_connection_send(conn, reply, NULL));
dbus_message_unref(reply);
}