pulseaudio/src/modules/module-ladspa-sink.c

908 lines
28 KiB
C

/***
This file is part of PulseAudio.
Copyright 2004-2008 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
/* TODO: Some plugins cause latency, and some even report it by using a control
out port. We don't currently use the latency information. */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <pulse/xmalloc.h>
#include <pulse/i18n.h>
#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include "module-ladspa-sink-symdef.h"
#include "ladspa.h"
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION(_("Virtual LADSPA sink"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(
_("sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"master=<name of sink to filter> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"plugin=<ladspa plugin name> "
"label=<ladspa plugin label> "
"control=<comma seperated list of input control values>"));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
struct userdata {
pa_module *module;
pa_sink *sink;
pa_sink_input *sink_input;
const LADSPA_Descriptor *descriptor;
unsigned channels;
LADSPA_Handle handle[PA_CHANNELS_MAX];
LADSPA_Data *input, *output;
size_t block_size;
unsigned long input_port, output_port;
LADSPA_Data *control;
/* This is a dummy buffer. Every port must be connected, but we don't care
about control out ports. We connect them all to this single buffer. */
LADSPA_Data control_out;
pa_memblockq *memblockq;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"format",
"rate",
"channels",
"channel_map",
"plugin",
"label",
"control",
NULL
};
/* Called from I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it in that time. Also, the
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
return 0;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state_cb(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return 0;
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from main context */
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, TRUE);
}
/* Called from main context */
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
float *src, *dst;
size_t fs;
unsigned n, c;
pa_memchunk tchunk;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
pa_memchunk nchunk;
pa_sink_render(u->sink, nbytes, &nchunk);
pa_memblockq_push(u->memblockq, &nchunk);
pa_memblock_unref(nchunk.memblock);
}
tchunk.length = PA_MIN(nbytes, tchunk.length);
pa_assert(tchunk.length > 0);
fs = pa_frame_size(&i->sample_spec);
n = (unsigned) (PA_MIN(tchunk.length, u->block_size) / fs);
pa_assert(n > 0);
chunk->index = 0;
chunk->length = n*fs;
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
pa_memblockq_drop(u->memblockq, chunk->length);
src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
dst = (float*) pa_memblock_acquire(chunk->memblock);
for (c = 0; c < u->channels; c++) {
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, u->input, sizeof(float), src+c, u->channels*sizeof(float), n);
u->descriptor->run(u->handle[c], n);
pa_sample_clamp(PA_SAMPLE_FLOAT32NE, dst+c, u->channels*sizeof(float), u->output, sizeof(float), n);
}
pa_memblock_release(tchunk.memblock);
pa_memblock_release(chunk->memblock);
pa_memblock_unref(tchunk.memblock);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes + pa_memblockq_get_length(u->memblockq);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
unsigned c;
pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log_debug("Resetting plugin");
/* Reset the plugin */
if (u->descriptor->deactivate)
for (c = 0; c < u->channels; c++)
u->descriptor->deactivate(u->handle[c]);
if (u->descriptor->activate)
for (c = 0; c < u->channels; c++)
u->descriptor->activate(u->handle[c]);
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->memblockq, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_memblockq_set_maxrewind(u->memblockq, nbytes);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_max_request_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i));
pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* The order here matters! We first kill the sink input, followed
* by the sink. That means the sink callbacks must be protected
* against an unconnected sink input! */
pa_sink_input_unlink(u->sink_input);
pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_unref(u->sink);
u->sink = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
}
/* Called from main context */
static void sink_input_volume_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_volume_changed(u->sink, &i->volume);
}
/* Called from main context */
static void sink_input_mute_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_mute_changed(u->sink, i->muted);
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma;
char *t;
const char *z;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
const char *plugin, *label;
LADSPA_Descriptor_Function descriptor_func;
const char *e, *cdata;
const LADSPA_Descriptor *d;
unsigned long input_port, output_port, p, j, n_control;
unsigned c;
pa_bool_t *use_default = NULL;
pa_assert(m);
pa_assert_cc(sizeof(LADSPA_Data) == sizeof(float));
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
ss.format = PA_SAMPLE_FLOAT32;
map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
if (!(plugin = pa_modargs_get_value(ma, "plugin", NULL))) {
pa_log("Missing LADSPA plugin name");
goto fail;
}
if (!(label = pa_modargs_get_value(ma, "label", NULL))) {
pa_log("Missing LADSPA plugin label");
goto fail;
}
cdata = pa_modargs_get_value(ma, "control", NULL);
u = pa_xnew0(struct userdata, 1);
u->module = m;
m->userdata = u;
u->memblockq = pa_memblockq_new(0, MEMBLOCKQ_MAXLENGTH, 0, pa_frame_size(&ss), 1, 1, 0, NULL);
if (!(e = getenv("LADSPA_PATH")))
e = LADSPA_PATH;
/* FIXME: This is not exactly thread safe */
t = pa_xstrdup(lt_dlgetsearchpath());
lt_dlsetsearchpath(e);
m->dl = lt_dlopenext(plugin);
lt_dlsetsearchpath(t);
pa_xfree(t);
if (!m->dl) {
pa_log("Failed to load LADSPA plugin: %s", lt_dlerror());
goto fail;
}
if (!(descriptor_func = (LADSPA_Descriptor_Function) pa_load_sym(m->dl, NULL, "ladspa_descriptor"))) {
pa_log("LADSPA module lacks ladspa_descriptor() symbol.");
goto fail;
}
for (j = 0;; j++) {
if (!(d = descriptor_func(j))) {
pa_log("Failed to find plugin label '%s' in plugin '%s'.", label, plugin);
goto fail;
}
if (strcmp(d->Label, label) == 0)
break;
}
u->descriptor = d;
pa_log_debug("Module: %s", plugin);
pa_log_debug("Label: %s", d->Label);
pa_log_debug("Unique ID: %lu", d->UniqueID);
pa_log_debug("Name: %s", d->Name);
pa_log_debug("Maker: %s", d->Maker);
pa_log_debug("Copyright: %s", d->Copyright);
input_port = output_port = (unsigned long) -1;
n_control = 0;
for (p = 0; p < d->PortCount; p++) {
if (LADSPA_IS_PORT_INPUT(d->PortDescriptors[p]) && LADSPA_IS_PORT_AUDIO(d->PortDescriptors[p])) {
if (strcmp(d->PortNames[p], "Input") == 0) {
pa_assert(input_port == (unsigned long) -1);
input_port = p;
} else {
pa_log("Found audio input port on plugin we cannot handle: %s", d->PortNames[p]);
goto fail;
}
} else if (LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p]) && LADSPA_IS_PORT_AUDIO(d->PortDescriptors[p])) {
if (strcmp(d->PortNames[p], "Output") == 0) {
pa_assert(output_port == (unsigned long) -1);
output_port = p;
} else {
pa_log("Found audio output port on plugin we cannot handle: %s", d->PortNames[p]);
goto fail;
}
} else if (LADSPA_IS_PORT_INPUT(d->PortDescriptors[p]) && LADSPA_IS_PORT_CONTROL(d->PortDescriptors[p]))
n_control++;
else {
pa_assert(LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p]) && LADSPA_IS_PORT_CONTROL(d->PortDescriptors[p]));
pa_log_debug("Ignored control output port \"%s\".", d->PortNames[p]);
}
}
if ((input_port == (unsigned long) -1) || (output_port == (unsigned long) -1)) {
pa_log("Failed to identify input and output ports. "
"Right now this module can only deal with plugins which provide an 'Input' and an 'Output' audio port. "
"Patches welcome!");
goto fail;
}
u->block_size = pa_frame_align(pa_mempool_block_size_max(m->core->mempool), &ss);
u->input = (LADSPA_Data*) pa_xnew(uint8_t, (unsigned) u->block_size);
if (LADSPA_IS_INPLACE_BROKEN(d->Properties))
u->output = (LADSPA_Data*) pa_xnew(uint8_t, (unsigned) u->block_size);
else
u->output = u->input;
u->channels = ss.channels;
for (c = 0; c < ss.channels; c++) {
if (!(u->handle[c] = d->instantiate(d, ss.rate))) {
pa_log("Failed to instantiate plugin %s with label %s for channel %i", plugin, d->Label, c);
goto fail;
}
d->connect_port(u->handle[c], input_port, u->input);
d->connect_port(u->handle[c], output_port, u->output);
}
if (!cdata && n_control > 0) {
pa_log("This plugin requires specification of %lu control parameters.", n_control);
goto fail;
}
if (n_control > 0) {
const char *state = NULL;
char *k;
unsigned long h;
u->control = pa_xnew(LADSPA_Data, (unsigned) n_control);
use_default = pa_xnew(pa_bool_t, (unsigned) n_control);
p = 0;
while ((k = pa_split(cdata, ",", &state)) && p < n_control) {
double f;
if (*k == 0) {
use_default[p++] = TRUE;
pa_xfree(k);
continue;
}
if (pa_atod(k, &f) < 0) {
pa_log("Failed to parse control value '%s'", k);
pa_xfree(k);
goto fail;
}
pa_xfree(k);
use_default[p] = FALSE;
u->control[p++] = (LADSPA_Data) f;
}
/* The previous loop doesn't take the last control value into account
if it is left empty, so we do it here. */
if (*cdata == 0 || cdata[strlen(cdata) - 1] == ',') {
if (p < n_control)
use_default[p] = TRUE;
p++;
}
if (p > n_control || k) {
pa_log("Too many control values passed, %lu expected.", n_control);
pa_xfree(k);
goto fail;
}
if (p < n_control) {
pa_log("Not enough control values passed, %lu expected, %lu passed.", n_control, p);
goto fail;
}
h = 0;
for (p = 0; p < d->PortCount; p++) {
LADSPA_PortRangeHintDescriptor hint = d->PortRangeHints[p].HintDescriptor;
if (!LADSPA_IS_PORT_CONTROL(d->PortDescriptors[p]))
continue;
if (LADSPA_IS_PORT_OUTPUT(d->PortDescriptors[p])) {
for (c = 0; c < ss.channels; c++)
d->connect_port(u->handle[c], p, &u->control_out);
continue;
}
pa_assert(h < n_control);
if (use_default[h]) {
LADSPA_Data lower, upper;
if (!LADSPA_IS_HINT_HAS_DEFAULT(hint)) {
pa_log("Control port value left empty but plugin defines no default.");
goto fail;
}
lower = d->PortRangeHints[p].LowerBound;
upper = d->PortRangeHints[p].UpperBound;
if (LADSPA_IS_HINT_SAMPLE_RATE(hint)) {
lower *= (LADSPA_Data) ss.rate;
upper *= (LADSPA_Data) ss.rate;
}
switch (hint & LADSPA_HINT_DEFAULT_MASK) {
case LADSPA_HINT_DEFAULT_MINIMUM:
u->control[h] = lower;
break;
case LADSPA_HINT_DEFAULT_MAXIMUM:
u->control[h] = upper;
break;
case LADSPA_HINT_DEFAULT_LOW:
if (LADSPA_IS_HINT_LOGARITHMIC(hint))
u->control[h] = (LADSPA_Data) exp(log(lower) * 0.75 + log(upper) * 0.25);
else
u->control[h] = (LADSPA_Data) (lower * 0.75 + upper * 0.25);
break;
case LADSPA_HINT_DEFAULT_MIDDLE:
if (LADSPA_IS_HINT_LOGARITHMIC(hint))
u->control[h] = (LADSPA_Data) exp(log(lower) * 0.5 + log(upper) * 0.5);
else
u->control[h] = (LADSPA_Data) (lower * 0.5 + upper * 0.5);
break;
case LADSPA_HINT_DEFAULT_HIGH:
if (LADSPA_IS_HINT_LOGARITHMIC(hint))
u->control[h] = (LADSPA_Data) exp(log(lower) * 0.25 + log(upper) * 0.75);
else
u->control[h] = (LADSPA_Data) (lower * 0.25 + upper * 0.75);
break;
case LADSPA_HINT_DEFAULT_0:
u->control[h] = 0;
break;
case LADSPA_HINT_DEFAULT_1:
u->control[h] = 1;
break;
case LADSPA_HINT_DEFAULT_100:
u->control[h] = 100;
break;
case LADSPA_HINT_DEFAULT_440:
u->control[h] = 440;
break;
default:
pa_assert_not_reached();
}
}
if (LADSPA_IS_HINT_INTEGER(hint))
u->control[h] = roundf(u->control[h]);
pa_log_debug("Binding %f to port %s", u->control[h], d->PortNames[p]);
for (c = 0; c < ss.channels; c++)
d->connect_port(u->handle[c], p, &u->control[h]);
h++;
}
pa_assert(h == n_control);
}
if (d->activate)
for (c = 0; c < u->channels; c++)
d->activate(u->handle[c]);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.ladspa", master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "LADSPA Plugin %s on %s", d->Name, z ? z : master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
pa_proplist_sets(sink_data.proplist, "device.ladspa.module", plugin);
pa_proplist_sets(sink_data.proplist, "device.ladspa.label", d->Label);
pa_proplist_sets(sink_data.proplist, "device.ladspa.name", d->Name);
pa_proplist_sets(sink_data.proplist, "device.ladspa.maker", d->Maker);
pa_proplist_sets(sink_data.proplist, "device.ladspa.copyright", d->Copyright);
pa_proplist_setf(sink_data.proplist, "device.ladspa.unique_id", "%lu", (unsigned long) d->UniqueID);
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_data,
PA_SINK_HW_MUTE_CTRL|PA_SINK_HW_VOLUME_CTRL|PA_SINK_DECIBEL_VOLUME|
(master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY)));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg_cb;
u->sink->set_state = sink_set_state_cb;
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->request_rewind = sink_request_rewind_cb;
u->sink->set_volume = sink_set_volume_cb;
u->sink->set_mute = sink_set_mute_cb;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
sink_input_data.sink = master;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "LADSPA Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
u->sink_input->volume_changed = sink_input_volume_changed_cb;
u->sink_input->mute_changed = sink_input_mute_changed_cb;
u->sink_input->userdata = u;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
pa_xfree(use_default);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa_xfree(use_default);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
unsigned c;
pa_assert(m);
if (!(u = m->userdata))
return;
/* See comments in sink_input_kill_cb() above regarding
* destruction order! */
if (u->sink_input)
pa_sink_input_unlink(u->sink_input);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->sink_input)
pa_sink_input_unref(u->sink_input);
if (u->sink)
pa_sink_unref(u->sink);
for (c = 0; c < u->channels; c++)
if (u->handle[c]) {
if (u->descriptor->deactivate)
u->descriptor->deactivate(u->handle[c]);
u->descriptor->cleanup(u->handle[c]);
}
if (u->output != u->input)
pa_xfree(u->output);
if (u->memblockq)
pa_memblockq_free(u->memblockq);
pa_xfree(u->input);
pa_xfree(u->control);
pa_xfree(u);
}