pulseaudio/src/modules/echo-cancel/adrian-aec.h
Arun Raghavan 8305284cd2 echo-cancel: Don't overpad variable
The padding was to be 16 bytes, not 16 elements.
2011-05-16 20:22:10 +05:30

380 lines
10 KiB
C++

/* aec.h
*
* Copyright (C) DFS Deutsche Flugsicherung (2004, 2005).
* All Rights Reserved.
* Author: Andre Adrian
*
* Acoustic Echo Cancellation Leaky NLMS-pw algorithm
*
* Version 0.3 filter created with www.dsptutor.freeuk.com
* Version 0.3.1 Allow change of stability parameter delta
* Version 0.4 Leaky Normalized LMS - pre whitening algorithm
*/
#ifndef _AEC_H /* include only once */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <pulsecore/macro.h>
#include <pulse/xmalloc.h>
#define WIDEB 2
// use double if your CPU does software-emulation of float
#define REAL float
/* dB Values */
#define M0dB 1.0f
#define M3dB 0.71f
#define M6dB 0.50f
#define M9dB 0.35f
#define M12dB 0.25f
#define M18dB 0.125f
#define M24dB 0.063f
/* dB values for 16bit PCM */
/* MxdB_PCM = 32767 * 10 ^(x / 20) */
#define M10dB_PCM 10362.0f
#define M20dB_PCM 3277.0f
#define M25dB_PCM 1843.0f
#define M30dB_PCM 1026.0f
#define M35dB_PCM 583.0f
#define M40dB_PCM 328.0f
#define M45dB_PCM 184.0f
#define M50dB_PCM 104.0f
#define M55dB_PCM 58.0f
#define M60dB_PCM 33.0f
#define M65dB_PCM 18.0f
#define M70dB_PCM 10.0f
#define M75dB_PCM 6.0f
#define M80dB_PCM 3.0f
#define M85dB_PCM 2.0f
#define M90dB_PCM 1.0f
#define MAXPCM 32767.0f
/* Design constants (Change to fine tune the algorithms */
/* The following values are for hardware AEC and studio quality
* microphone */
/* NLMS filter length in taps (samples). A longer filter length gives
* better Echo Cancellation, but maybe slower convergence speed and
* needs more CPU power (Order of NLMS is linear) */
#define NLMS_LEN (100*WIDEB*8)
/* Vector w visualization length in taps (samples).
* Must match argv value for wdisplay.tcl */
#define DUMP_LEN (40*WIDEB*8)
/* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal
* to microphone ambient Noise level */
#define NoiseFloor M55dB_PCM
/* Leaky hangover in taps.
*/
#define Thold (60 * WIDEB * 8)
// Adrian soft decision DTD
// left point. X is ratio, Y is stepsize
#define STEPX1 1.0
#define STEPY1 1.0
// right point. STEPX2=2.0 is good double talk, 3.0 is good single talk.
#define STEPX2 2.5
#define STEPY2 0
#define ALPHAFAST (1.0f / 100.0f)
#define ALPHASLOW (1.0f / 20000.0f)
/* Ageing multiplier for LMS memory vector w */
#define Leaky 0.9999f
/* Double Talk Detector Speaker/Microphone Threshold. Range <=1
* Large value (M0dB) is good for Single-Talk Echo cancellation,
* small value (M12dB) is good for Doulbe-Talk AEC */
#define GeigelThreshold M6dB
/* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good
* for Double-Talk, small value (M12dB) is good for Single-Talk */
#define NLPAttenuation M12dB
/* Below this line there are no more design constants */
typedef struct IIR_HP IIR_HP;
/* Exponential Smoothing or IIR Infinite Impulse Response Filter */
struct IIR_HP {
REAL x;
};
static IIR_HP* IIR_HP_init(void) {
IIR_HP *i = pa_xnew(IIR_HP, 1);
i->x = 0.0f;
return i;
}
static REAL IIR_HP_highpass(IIR_HP *i, REAL in) {
const REAL a0 = 0.01f; /* controls Transfer Frequency */
/* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */
i->x += a0 * (in - i->x);
return in - i->x;
};
typedef struct FIR_HP_300Hz FIR_HP_300Hz;
#if WIDEB==1
/* 17 taps FIR Finite Impulse Response filter
* Coefficients calculated with
* www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
*/
class FIR_HP_300Hz {
REAL z[18];
public:
FIR_HP_300Hz() {
memset(this, 0, sizeof(FIR_HP_300Hz));
}
REAL highpass(REAL in) {
const REAL a[18] = {
// Kaiser Window FIR Filter, Filter type: High pass
// Passband: 300.0 - 4000.0 Hz, Order: 16
// Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB
-0.034870606, -0.039650206, -0.044063766, -0.04800318,
-0.051370874, -0.054082647, -0.056070227, -0.057283327,
0.8214126, -0.057283327, -0.056070227, -0.054082647,
-0.051370874, -0.04800318, -0.044063766, -0.039650206,
-0.034870606, 0.0
};
memmove(z + 1, z, 17 * sizeof(REAL));
z[0] = in;
REAL sum0 = 0.0, sum1 = 0.0;
int j;
for (j = 0; j < 18; j += 2) {
// optimize: partial loop unrolling
sum0 += a[j] * z[j];
sum1 += a[j + 1] * z[j + 1];
}
return sum0 + sum1;
}
};
#else
/* 35 taps FIR Finite Impulse Response filter
* Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz
* sample rate.
* Coefficients calculated with
* www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
*/
struct FIR_HP_300Hz {
REAL z[36];
};
static FIR_HP_300Hz* FIR_HP_300Hz_init(void) {
FIR_HP_300Hz *ret = pa_xnew(FIR_HP_300Hz, 1);
memset(ret, 0, sizeof(FIR_HP_300Hz));
return ret;
}
static REAL FIR_HP_300Hz_highpass(FIR_HP_300Hz *f, REAL in) {
REAL sum0 = 0.0, sum1 = 0.0;
int j;
const REAL a[36] = {
// Kaiser Window FIR Filter, Filter type: High pass
// Passband: 150.0 - 4000.0 Hz, Order: 34
// Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB
-0.016165324, -0.017454365, -0.01871232, -0.019931411,
-0.021104068, -0.022222936, -0.02328091, -0.024271343,
-0.025187887, -0.02602462, -0.026776174, -0.027437767,
-0.028004972, -0.028474221, -0.028842418, -0.029107114,
-0.02926664, 0.8524841, -0.02926664, -0.029107114,
-0.028842418, -0.028474221, -0.028004972, -0.027437767,
-0.026776174, -0.02602462, -0.025187887, -0.024271343,
-0.02328091, -0.022222936, -0.021104068, -0.019931411,
-0.01871232, -0.017454365, -0.016165324, 0.0
};
memmove(f->z + 1, f->z, 35 * sizeof(REAL));
f->z[0] = in;
for (j = 0; j < 36; j += 2) {
// optimize: partial loop unrolling
sum0 += a[j] * f->z[j];
sum1 += a[j + 1] * f->z[j + 1];
}
return sum0 + sum1;
}
#endif
typedef struct IIR1 IIR1;
/* Recursive single pole IIR Infinite Impulse response High-pass filter
*
* Reference: The Scientist and Engineer's Guide to Digital Processing
*
* output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
*
* X = exp(-2.0 * pi * Fc)
* A0 = (1 + X) / 2
* A1 = -(1 + X) / 2
* B1 = X
* Fc = cutoff freq / sample rate
*/
struct IIR1 {
REAL in0, out0;
REAL a0, a1, b1;
};
#if 0
IIR1() {
memset(this, 0, sizeof(IIR1));
}
#endif
static IIR1* IIR1_init(REAL Fc) {
IIR1 *i = pa_xnew(IIR1, 1);
i->b1 = expf(-2.0f * M_PI * Fc);
i->a0 = (1.0f + i->b1) / 2.0f;
i->a1 = -(i->a0);
i->in0 = 0.0f;
i->out0 = 0.0f;
return i;
}
static REAL IIR1_highpass(IIR1 *i, REAL in) {
REAL out = i->a0 * in + i->a1 * i->in0 + i->b1 * i->out0;
i->in0 = in;
i->out0 = out;
return out;
}
#if 0
/* Recursive two pole IIR Infinite Impulse Response filter
* Coefficients calculated with
* http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html
*/
class IIR2 {
REAL x[2], y[2];
public:
IIR2() {
memset(this, 0, sizeof(IIR2));
}
REAL highpass(REAL in) {
// Butterworth IIR filter, Filter type: HP
// Passband: 2000 - 4000.0 Hz, Order: 2
const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f };
const REAL b[] = { 1.3007072E-16f, 0.17157288f };
REAL out =
a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1];
x[1] = x[0];
x[0] = in;
y[1] = y[0];
y[0] = out;
return out;
}
};
#endif
// Extention in taps to reduce mem copies
#define NLMS_EXT (10*8)
// block size in taps to optimize DTD calculation
#define DTD_LEN 16
typedef struct AEC AEC;
struct AEC {
// Time domain Filters
IIR_HP *acMic, *acSpk; // DC-level remove Highpass)
FIR_HP_300Hz *cutoff; // 150Hz cut-off Highpass
REAL gain; // Mic signal amplify
IIR1 *Fx, *Fe; // pre-whitening Highpass for x, e
// Adrian soft decision DTD (Double Talk Detector)
REAL dfast, xfast;
REAL dslow, xslow;
// NLMS-pw
REAL x[NLMS_LEN + NLMS_EXT]; // tap delayed loudspeaker signal
REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal
REAL w_arr[NLMS_LEN + (16 / sizeof(REAL))]; // tap weights
REAL *w; // this will be a 16-byte aligned pointer into w_arr
int j; // optimize: less memory copies
double dotp_xf_xf; // double to avoid loss of precision
float delta; // noise floor to stabilize NLMS
// AES
float aes_y2; // not in use!
// w vector visualization
REAL ws[DUMP_LEN]; // tap weights sums
int fdwdisplay; // TCP file descriptor
int dumpcnt; // wdisplay output counter
// variables are public for visualization
int hangover;
float stepsize;
// vfuncs that are picked based on processor features available
REAL (*dotp) (REAL[], REAL[]);
};
/* Double-Talk Detector
*
* in d: microphone sample (PCM as REALing point value)
* in x: loudspeaker sample (PCM as REALing point value)
* return: from 0 for doubletalk to 1.0 for single talk
*/
static float AEC_dtd(AEC *a, REAL d, REAL x);
static void AEC_leaky(AEC *a);
/* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw)
* The LMS algorithm was developed by Bernard Widrow
* book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002
*
* in d: microphone sample (16bit PCM value)
* in x_: loudspeaker sample (16bit PCM value)
* in stepsize: NLMS adaptation variable
* return: echo cancelled microphone sample
*/
static REAL AEC_nlms_pw(AEC *a, REAL d, REAL x_, float stepsize);
AEC* AEC_init(int RATE, int have_vector);
/* Acoustic Echo Cancellation and Suppression of one sample
* in d: microphone signal with echo
* in x: loudspeaker signal
* return: echo cancelled microphone signal
*/
int AEC_doAEC(AEC *a, int d_, int x_);
PA_GCC_UNUSED static float AEC_getambient(AEC *a) {
return a->dfast;
};
static void AEC_setambient(AEC *a, float Min_xf) {
a->dotp_xf_xf -= a->delta; // subtract old delta
a->delta = (NLMS_LEN-1) * Min_xf * Min_xf;
a->dotp_xf_xf += a->delta; // add new delta
};
PA_GCC_UNUSED static void AEC_setgain(AEC *a, float gain_) {
a->gain = gain_;
};
#if 0
void AEC_openwdisplay(AEC *a);
#endif
PA_GCC_UNUSED static void AEC_setaes(AEC *a, float aes_y2_) {
a->aes_y2 = aes_y2_;
};
#define _AEC_H
#endif