pulseaudio/src/modules/module-solaris.c
Finn Thain 1c0667de21 solaris: 0.9.15 solaris module build failure
Lennart wrote,

>
> Hmm, yes. As it seems I broke the build for non-dbus builds.

Well, you also broke the solaris module between 0.9.15-test8 and 0.9.15.

Have you considered release candidates?

Patch follows. It would be nice if API changes could be made without
breaking things when the effort to avoid that is trivial.

Finn
2009-04-18 23:54:34 +02:00

1066 lines
31 KiB
C

/***
This file is part of PulseAudio.
Copyright 2006 Lennart Poettering
Copyright 2006-2007 Pierre Ossman <ossman@cendio.se> for Cendio AB
Copyright 2009 Finn Thain
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <signal.h>
#include <stropts.h>
#include <sys/conf.h>
#include <sys/audio.h>
#include <pulse/error.h>
#include <pulse/mainloop-signal.h>
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulse/util.h>
#include <pulsecore/iochannel.h>
#include <pulsecore/sink.h>
#include <pulsecore/source.h>
#include <pulsecore/module.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/core-error.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/thread.h>
#include <pulsecore/rtclock.h>
#include "module-solaris-symdef.h"
PA_MODULE_AUTHOR("Pierre Ossman");
PA_MODULE_DESCRIPTION("Solaris Sink/Source");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"source_name=<name for the source> "
"device=<audio device file name> "
"record=<enable source?> "
"playback=<enable sink?> "
"format=<sample format> "
"channels=<number of channels> "
"rate=<sample rate> "
"buffer_length=<milliseconds> "
"channel_map=<channel map>");
PA_MODULE_LOAD_ONCE(FALSE);
struct userdata {
pa_core *core;
pa_sink *sink;
pa_source *source;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_signal_event *sig;
pa_memchunk memchunk;
uint32_t frame_size;
int32_t buffer_size;
uint64_t written_bytes, read_bytes;
char *device_name;
int mode;
int fd;
pa_rtpoll_item *rtpoll_item;
pa_module *module;
pa_bool_t sink_suspended, source_suspended;
uint32_t play_samples_msw, record_samples_msw;
uint32_t prev_playback_samples, prev_record_samples;
int32_t minimum_request;
};
static const char* const valid_modargs[] = {
"sink_name",
"source_name",
"device",
"record",
"playback",
"buffer_length",
"format",
"rate",
"channels",
"channel_map",
NULL
};
#define DEFAULT_DEVICE "/dev/audio"
#define MAX_RENDER_HZ (300)
/* This render rate limit imposes a minimum latency, but without it we waste too much CPU time. */
static uint64_t get_playback_buffered_bytes(struct userdata *u) {
audio_info_t info;
uint64_t played_bytes;
int err;
pa_assert(u->sink);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
/* Handle wrap-around of the device's sample counter, which is a uint_32. */
if (u->prev_playback_samples > info.play.samples) {
/* Unfortunately info.play.samples can sometimes go backwards, even before it wraps! */
if (u->prev_playback_samples + info.play.samples < 240000) {
++u->play_samples_msw;
} else {
pa_log_debug("play.samples went backwards %d bytes", u->prev_playback_samples - info.play.samples);
}
}
u->prev_playback_samples = info.play.samples;
played_bytes = (((uint64_t)u->play_samples_msw << 32) + info.play.samples) * u->frame_size;
return u->written_bytes - played_bytes;
}
static pa_usec_t sink_get_latency(struct userdata *u, pa_sample_spec *ss) {
pa_usec_t r = 0;
pa_assert(u);
pa_assert(ss);
if (u->fd >= 0) {
r = pa_bytes_to_usec(get_playback_buffered_bytes(u), ss);
if (u->memchunk.memblock)
r += pa_bytes_to_usec(u->memchunk.length, ss);
}
return r;
}
static uint64_t get_recorded_bytes(struct userdata *u) {
audio_info_t info;
uint64_t result;
int err;
pa_assert(u->source);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
if (u->prev_record_samples > info.record.samples)
++u->record_samples_msw;
u->prev_record_samples = info.record.samples;
result = (((uint64_t)u->record_samples_msw << 32) + info.record.samples) * u->frame_size;
return result;
}
static pa_usec_t source_get_latency(struct userdata *u, pa_sample_spec *ss) {
pa_usec_t r = 0;
audio_info_t info;
pa_assert(u);
pa_assert(ss);
if (u->fd) {
int err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
r = pa_bytes_to_usec(get_recorded_bytes(u), ss) - pa_bytes_to_usec(u->read_bytes, ss);
}
return r;
}
static void build_pollfd(struct userdata *u) {
struct pollfd *pollfd;
pa_assert(u);
pa_assert(!u->rtpoll_item);
u->rtpoll_item = pa_rtpoll_item_new(u->rtpoll, PA_RTPOLL_NEVER, 1);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->fd = u->fd;
pollfd->events = 0;
pollfd->revents = 0;
}
static int set_buffer(int fd, int buffer_size) {
audio_info_t info;
pa_assert(fd >= 0);
AUDIO_INITINFO(&info);
info.play.buffer_size = buffer_size;
info.record.buffer_size = buffer_size;
if (ioctl(fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported buffer size.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
return -1;
}
return 0;
}
static int auto_format(int fd, int mode, pa_sample_spec *ss) {
audio_info_t info;
pa_assert(fd >= 0);
pa_assert(ss);
AUDIO_INITINFO(&info);
if (mode != O_RDONLY) {
info.play.sample_rate = ss->rate;
info.play.channels = ss->channels;
switch (ss->format) {
case PA_SAMPLE_U8:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_LINEAR;
break;
case PA_SAMPLE_ALAW:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_ALAW;
break;
case PA_SAMPLE_ULAW:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_ULAW;
break;
case PA_SAMPLE_S16NE:
info.play.precision = 16;
info.play.encoding = AUDIO_ENCODING_LINEAR;
break;
default:
pa_log("AUDIO_SETINFO: Unsupported sample format.");
return -1;
}
}
if (mode != O_WRONLY) {
info.record.sample_rate = ss->rate;
info.record.channels = ss->channels;
switch (ss->format) {
case PA_SAMPLE_U8:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_LINEAR;
break;
case PA_SAMPLE_ALAW:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_ALAW;
break;
case PA_SAMPLE_ULAW:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_ULAW;
break;
case PA_SAMPLE_S16NE:
info.record.precision = 16;
info.record.encoding = AUDIO_ENCODING_LINEAR;
break;
default:
pa_log("AUDIO_SETINFO: Unsupported sample format.");
return -1;
}
}
if (ioctl(fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Failed to set sample format.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
return -1;
}
return 0;
}
static int open_audio_device(struct userdata *u, pa_sample_spec *ss) {
pa_assert(u);
pa_assert(ss);
if ((u->fd = open(u->device_name, u->mode | O_NONBLOCK)) < 0) {
pa_log_warn("open %s failed (%s)", u->device_name, pa_cstrerror(errno));
return -1;
}
pa_log_info("device opened in %s mode.", u->mode == O_WRONLY ? "O_WRONLY" : (u->mode == O_RDONLY ? "O_RDONLY" : "O_RDWR"));
if (auto_format(u->fd, u->mode, ss) < 0)
return -1;
if (set_buffer(u->fd, u->buffer_size) < 0)
return -1;
u->written_bytes = u->read_bytes = 0;
u->play_samples_msw = u->record_samples_msw = 0;
u->prev_playback_samples = u->prev_record_samples = 0;
return u->fd;
}
static int suspend(struct userdata *u) {
pa_assert(u);
pa_assert(u->fd >= 0);
pa_log_info("Suspending...");
ioctl(u->fd, AUDIO_DRAIN, NULL);
pa_close(u->fd);
u->fd = -1;
if (u->rtpoll_item) {
pa_rtpoll_item_free(u->rtpoll_item);
u->rtpoll_item = NULL;
}
pa_log_info("Device suspended.");
return 0;
}
static int unsuspend(struct userdata *u) {
pa_assert(u);
pa_assert(u->fd < 0);
pa_log_info("Resuming...");
if (open_audio_device(u, u->sink ? &u->sink->sample_spec : &u->source->sample_spec) < 0)
return -1;
build_pollfd(u);
pa_log_info("Device resumed.");
return 0;
}
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
*((pa_usec_t*) data) = sink_get_latency(u, &PA_SINK(o)->sample_spec);
return 0;
case PA_SINK_MESSAGE_SET_STATE:
switch ((pa_sink_state_t) PA_PTR_TO_UINT(data)) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->thread_info.state));
if (!u->source || u->source_suspended) {
if (suspend(u) < 0)
return -1;
}
u->sink_suspended = TRUE;
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->thread_info.state == PA_SINK_SUSPENDED) {
if (!u->source || u->source_suspended) {
if (unsuspend(u) < 0)
return -1;
u->sink->get_volume(u->sink);
u->sink->get_mute(u->sink);
}
u->sink_suspended = FALSE;
}
break;
case PA_SINK_INVALID_STATE:
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
;
}
break;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
static int source_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE(o)->userdata;
switch (code) {
case PA_SOURCE_MESSAGE_GET_LATENCY:
*((pa_usec_t*) data) = source_get_latency(u, &PA_SOURCE(o)->sample_spec);
return 0;
case PA_SOURCE_MESSAGE_SET_STATE:
switch ((pa_source_state_t) PA_PTR_TO_UINT(data)) {
case PA_SOURCE_SUSPENDED:
pa_assert(PA_SOURCE_IS_OPENED(u->source->thread_info.state));
if (!u->sink || u->sink_suspended) {
if (suspend(u) < 0)
return -1;
}
u->source_suspended = TRUE;
break;
case PA_SOURCE_IDLE:
case PA_SOURCE_RUNNING:
if (u->source->thread_info.state == PA_SOURCE_SUSPENDED) {
if (!u->sink || u->sink_suspended) {
if (unsuspend(u) < 0)
return -1;
u->source->get_volume(u->source);
}
u->source_suspended = FALSE;
}
break;
case PA_SOURCE_UNLINKED:
case PA_SOURCE_INIT:
case PA_SOURCE_INVALID_STATE:
;
}
break;
}
return pa_source_process_msg(o, code, data, offset, chunk);
}
static void sink_set_volume(pa_sink *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.play.gain = pa_cvolume_max(&s->virtual_volume) * AUDIO_MAX_GAIN / PA_VOLUME_NORM;
assert(info.play.gain <= AUDIO_MAX_GAIN);
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported volume.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
}
static void sink_get_volume(pa_sink *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
pa_cvolume_set(&s->virtual_volume, s->sample_spec.channels,
info.play.gain * PA_VOLUME_NORM / AUDIO_MAX_GAIN);
}
}
static void source_set_volume(pa_source *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.play.gain = pa_cvolume_max(&s->virtual_volume) * AUDIO_MAX_GAIN / PA_VOLUME_NORM;
assert(info.play.gain <= AUDIO_MAX_GAIN);
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported volume.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
}
static void source_get_volume(pa_source *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
pa_cvolume_set(&s->virtual_volume, s->sample_spec.channels,
info.play.gain * PA_VOLUME_NORM / AUDIO_MAX_GAIN);
}
}
static void sink_set_mute(pa_sink *s) {
struct userdata *u = s->userdata;
audio_info_t info;
pa_assert(u);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.output_muted = !!s->muted;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
static void sink_get_mute(pa_sink *s) {
struct userdata *u = s->userdata;
audio_info_t info;
pa_assert(u);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
s->muted = !!info.output_muted;
}
}
static void process_rewind(struct userdata *u) {
size_t rewind_nbytes;
pa_assert(u);
/* Figure out how much we shall rewind and reset the counter */
rewind_nbytes = u->sink->thread_info.rewind_nbytes;
u->sink->thread_info.rewind_nbytes = 0;
if (rewind_nbytes > 0) {
pa_log_debug("Requested to rewind %lu bytes.", (unsigned long) rewind_nbytes);
rewind_nbytes = PA_MIN(u->memchunk.length, rewind_nbytes);
u->memchunk.length -= rewind_nbytes;
pa_log_debug("Rewound %lu bytes.", (unsigned long) rewind_nbytes);
}
pa_sink_process_rewind(u->sink, rewind_nbytes);
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
unsigned short revents = 0;
int ret, err;
audio_info_t info;
pa_assert(u);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_make_realtime(u->core->realtime_priority);
pa_thread_mq_install(&u->thread_mq);
pa_rtpoll_install(u->rtpoll);
for (;;) {
/* Render some data and write it to the dsp */
if (u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
pa_usec_t xtime0;
uint64_t buffered_bytes;
if (u->sink->thread_info.rewind_requested)
process_rewind(u);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
if (err < 0) {
pa_log("AUDIO_GETINFO ioctl failed: %s", pa_cstrerror(errno));
goto fail;
}
if (info.play.error) {
pa_log_debug("buffer under-run!");
AUDIO_INITINFO(&info);
info.play.error = 0;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
for (;;) {
void *p;
ssize_t w;
size_t len;
/*
* Since we cannot modify the size of the output buffer we fake it
* by not filling it more than u->buffer_size.
*/
xtime0 = pa_rtclock_usec();
buffered_bytes = get_playback_buffered_bytes(u);
if (buffered_bytes >= (uint64_t)u->buffer_size)
break;
len = u->buffer_size - buffered_bytes;
len -= len % u->frame_size;
if (len < (size_t) u->minimum_request)
break;
if (u->memchunk.length < len)
pa_sink_render(u->sink, u->sink->thread_info.max_request, &u->memchunk);
p = pa_memblock_acquire(u->memchunk.memblock);
w = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, NULL);
pa_memblock_release(u->memchunk.memblock);
if (w <= 0) {
switch (errno) {
case EINTR:
continue;
case EAGAIN:
/* If the buffer_size is too big, we get EAGAIN. Avoiding that limit by trial and error
* is not ideal, but I don't know how to get the system to tell me what the limit is.
*/
u->buffer_size = u->buffer_size * 18 / 25;
u->buffer_size -= u->buffer_size % u->frame_size;
u->buffer_size = PA_MAX(u->buffer_size, 2 * u->minimum_request);
pa_sink_set_max_request_within_thread(u->sink, u->buffer_size);
pa_sink_set_max_rewind_within_thread(u->sink, u->buffer_size);
pa_log("EAGAIN. Buffer size is now %u bytes (%llu buffered)", u->buffer_size, buffered_bytes);
break;
default:
pa_log("Failed to write data to DSP: %s", pa_cstrerror(errno));
goto fail;
}
} else {
pa_assert(w % u->frame_size == 0);
u->written_bytes += w;
u->memchunk.length -= w;
u->memchunk.index += w;
if (u->memchunk.length <= 0) {
pa_memblock_unref(u->memchunk.memblock);
pa_memchunk_reset(&u->memchunk);
}
}
}
pa_rtpoll_set_timer_absolute(u->rtpoll, xtime0 + pa_bytes_to_usec(buffered_bytes / 2, &u->sink->sample_spec));
} else
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Try to read some data and pass it on to the source driver */
if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state) && (revents & POLLIN)) {
pa_memchunk memchunk;
void *p;
ssize_t r;
size_t len;
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
if (info.record.error) {
pa_log_debug("buffer overflow!");
AUDIO_INITINFO(&info);
info.record.error = 0;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
err = ioctl(u->fd, I_NREAD, &len);
pa_assert(err >= 0);
if (len > 0) {
memchunk.memblock = pa_memblock_new(u->core->mempool, len);
pa_assert(memchunk.memblock);
p = pa_memblock_acquire(memchunk.memblock);
r = pa_read(u->fd, p, len, NULL);
pa_memblock_release(memchunk.memblock);
if (r < 0) {
pa_memblock_unref(memchunk.memblock);
if (errno == EAGAIN)
break;
else {
pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
goto fail;
}
} else {
u->read_bytes += r;
memchunk.index = 0;
memchunk.length = r;
pa_source_post(u->source, &memchunk);
pa_memblock_unref(memchunk.memblock);
revents &= ~POLLIN;
}
}
}
if (u->rtpoll_item) {
struct pollfd *pollfd;
pa_assert(u->fd >= 0);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->events = (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) ? POLLIN : 0;
}
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
goto fail;
if (ret == 0)
goto finish;
if (u->rtpoll_item) {
struct pollfd *pollfd;
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
if (pollfd->revents & ~(POLLOUT|POLLIN)) {
pa_log("DSP shutdown.");
goto fail;
}
revents = pollfd->revents;
} else
revents = 0;
}
fail:
/* We have to continue processing messages until we receive the
* SHUTDOWN message */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static void sig_callback(pa_mainloop_api *api, pa_signal_event*e, int sig, void *userdata) {
struct userdata *u = userdata;
assert(u);
pa_log_debug("caught signal");
if (u->sink) {
pa_sink_get_volume(u->sink, TRUE, FALSE);
pa_sink_get_mute(u->sink, TRUE);
}
if (u->source)
pa_source_get_volume(u->source, TRUE);
}
int pa__init(pa_module *m) {
struct userdata *u = NULL;
pa_bool_t record = TRUE, playback = TRUE;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma = NULL;
uint32_t buffer_length_msec;
int fd;
pa_sink_new_data sink_new_data;
pa_source_new_data source_new_data;
char const *name;
char *name_buf;
pa_bool_t namereg_fail;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) {
pa_log("record= and playback= expect a boolean argument.");
goto fail;
}
if (!playback && !record) {
pa_log("neither playback nor record enabled for device.");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
/*
* For a process (or several processes) to use the same audio device for both
* record and playback at the same time, the device's mixer must be enabled.
* See mixerctl(1). It may be turned off for playback only or record only.
*/
u->mode = (playback && record) ? O_RDWR : (playback ? O_WRONLY : (record ? O_RDONLY : 0));
ss = m->core->default_sample_spec;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("failed to parse sample specification");
goto fail;
}
u->frame_size = pa_frame_size(&ss);
u->minimum_request = pa_usec_to_bytes(PA_USEC_PER_SEC / MAX_RENDER_HZ, &ss);
buffer_length_msec = 100;
if (pa_modargs_get_value_u32(ma, "buffer_length", &buffer_length_msec) < 0) {
pa_log("failed to parse buffer_length argument");
goto fail;
}
u->buffer_size = pa_usec_to_bytes(1000 * buffer_length_msec, &ss);
if (u->buffer_size < 2 * u->minimum_request) {
pa_log("supplied buffer size argument is too small");
goto fail;
}
u->device_name = pa_xstrdup(pa_modargs_get_value(ma, "device", DEFAULT_DEVICE));
if ((fd = open_audio_device(u, &ss)) < 0)
goto fail;
u->core = m->core;
u->module = m;
m->userdata = u;
pa_memchunk_reset(&u->memchunk);
u->rtpoll = pa_rtpoll_new();
pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll);
u->rtpoll_item = NULL;
build_pollfd(u);
if (u->mode != O_WRONLY) {
name_buf = NULL;
namereg_fail = TRUE;
if (!(name = pa_modargs_get_value(ma, "source_name", NULL))) {
name = name_buf = pa_sprintf_malloc("solaris_input.%s", pa_path_get_filename(u->device_name));
namereg_fail = FALSE;
}
pa_source_new_data_init(&source_new_data);
source_new_data.driver = __FILE__;
source_new_data.module = m;
pa_source_new_data_set_name(&source_new_data, name);
source_new_data.namereg_fail = namereg_fail;
pa_source_new_data_set_sample_spec(&source_new_data, &ss);
pa_source_new_data_set_channel_map(&source_new_data, &map);
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_STRING, u->device_name);
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_API, "solaris");
pa_proplist_setf(source_new_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Solaris PCM source");
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_ACCESS_MODE, "serial");
pa_proplist_setf(source_new_data.proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%lu", (unsigned long) u->buffer_size);
u->source = pa_source_new(m->core, &source_new_data, PA_SOURCE_HARDWARE|PA_SOURCE_LATENCY|PA_SOURCE_HW_VOLUME_CTRL);
pa_source_new_data_done(&source_new_data);
pa_xfree(name_buf);
if (!u->source) {
pa_log("Failed to create source object");
goto fail;
}
u->source->userdata = u;
u->source->parent.process_msg = source_process_msg;
pa_source_set_asyncmsgq(u->source, u->thread_mq.inq);
pa_source_set_rtpoll(u->source, u->rtpoll);
u->source->get_volume = source_get_volume;
u->source->set_volume = source_set_volume;
u->source->refresh_volume = TRUE;
} else
u->source = NULL;
if (u->mode != O_RDONLY) {
name_buf = NULL;
namereg_fail = TRUE;
if (!(name = pa_modargs_get_value(ma, "sink_name", NULL))) {
name = name_buf = pa_sprintf_malloc("solaris_output.%s", pa_path_get_filename(u->device_name));
namereg_fail = FALSE;
}
pa_sink_new_data_init(&sink_new_data);
sink_new_data.driver = __FILE__;
sink_new_data.module = m;
pa_sink_new_data_set_name(&sink_new_data, name);
sink_new_data.namereg_fail = namereg_fail;
pa_sink_new_data_set_sample_spec(&sink_new_data, &ss);
pa_sink_new_data_set_channel_map(&sink_new_data, &map);
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_STRING, u->device_name);
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_API, "solaris");
pa_proplist_setf(sink_new_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Solaris PCM sink");
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_ACCESS_MODE, "serial");
u->sink = pa_sink_new(m->core, &sink_new_data, PA_SINK_HARDWARE|PA_SINK_LATENCY|PA_SINK_HW_VOLUME_CTRL|PA_SINK_HW_MUTE_CTRL);
pa_sink_new_data_done(&sink_new_data);
pa_assert(u->sink);
u->sink->userdata = u;
u->sink->parent.process_msg = sink_process_msg;
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
u->sink->get_volume = sink_get_volume;
u->sink->set_volume = sink_set_volume;
u->sink->get_mute = sink_get_mute;
u->sink->set_mute = sink_set_mute;
u->sink->refresh_volume = u->sink->refresh_muted = TRUE;
pa_sink_set_max_request(u->sink, u->buffer_size);
pa_sink_set_max_rewind(u->sink, u->buffer_size);
} else
u->sink = NULL;
pa_assert(u->source || u->sink);
u->sig = pa_signal_new(SIGPOLL, sig_callback, u);
if (u->sig)
ioctl(u->fd, I_SETSIG, S_MSG);
else
pa_log_warn("Could not register SIGPOLL handler");
if (!(u->thread = pa_thread_new(thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
/* Read mixer settings */
if (u->sink) {
if (sink_new_data.volume_is_set)
u->sink->set_volume(u->sink);
else
u->sink->get_volume(u->sink);
if (sink_new_data.muted_is_set)
u->sink->set_mute(u->sink);
else
u->sink->get_mute(u->sink);
pa_sink_put(u->sink);
}
if (u->source) {
if (source_new_data.volume_is_set)
u->source->set_volume(u->source);
else
u->source->get_volume(u->source);
pa_source_put(u->source);
}
pa_modargs_free(ma);
return 0;
fail:
if (u)
pa__done(m);
else if (fd >= 0)
close(fd);
if (ma)
pa_modargs_free(ma);
return -1;
}
void pa__done(pa_module *m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sig) {
ioctl(u->fd, I_SETSIG, 0);
pa_signal_free(u->sig);
}
if (u->sink)
pa_sink_unlink(u->sink);
if (u->source)
pa_source_unlink(u->source);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->source)
pa_source_unref(u->source);
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
if (u->rtpoll_item)
pa_rtpoll_item_free(u->rtpoll_item);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->fd >= 0)
close(u->fd);
pa_xfree(u->device_name);
pa_xfree(u);
}