pulseaudio/src/modules/bluetooth/module-bluetooth-device.c
2009-03-27 20:43:42 +02:00

2133 lines
61 KiB
C

/***
This file is part of PulseAudio.
Copyright 2008 Joao Paulo Rechi Vita
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <string.h>
#include <errno.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <linux/sockios.h>
#include <arpa/inet.h>
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulse/sample.h>
#include <pulse/i18n.h>
#include <pulsecore/module.h>
#include <pulsecore/modargs.h>
#include <pulsecore/core-util.h>
#include <pulsecore/core-error.h>
#include <pulsecore/socket-util.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/time-smoother.h>
#include <pulsecore/rtclock.h>
#include <pulsecore/namereg.h>
#include <modules/dbus-util.h>
#include "module-bluetooth-device-symdef.h"
#include "ipc.h"
#include "sbc.h"
#include "rtp.h"
#include "bluetooth-util.h"
#define MAX_BITPOOL 64
#define MIN_BITPOOL 2U
PA_MODULE_AUTHOR("Joao Paulo Rechi Vita");
PA_MODULE_DESCRIPTION("Bluetooth audio sink and source");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(
"name=<name for the card/sink/source, to be prefixed> "
"card_name=<name for the card> "
"sink_name=<name for the sink> "
"source_name=<name for the source> "
"address=<address of the device> "
"profile=<a2dp|hsp> "
"rate=<sample rate> "
"channels=<number of channels> "
"path=<device object path>");
/*
#ifdef NOKIA
"sco_sink=<SCO over PCM sink name> "
"sco_source=<SCO over PCM source name>"
#endif
*/
/* TODO: not close fd when entering suspend mode in a2dp */
static const char* const valid_modargs[] = {
"name",
"card_name",
"sink_name",
"source_name",
"address",
"profile",
"rate",
"channels",
"path",
#ifdef NOKIA
"sco_sink",
"sco_source",
#endif
NULL
};
struct a2dp_info {
sbc_capabilities_t sbc_capabilities;
sbc_t sbc; /* Codec data */
pa_bool_t sbc_initialized; /* Keep track if the encoder is initialized */
size_t codesize, frame_length; /* SBC Codesize, frame_length. We simply cache those values here */
void* buffer; /* Codec transfer buffer */
size_t buffer_size; /* Size of the buffer */
uint16_t seq_num; /* Cumulative packet sequence */
};
struct hsp_info {
pcm_capabilities_t pcm_capabilities;
#ifdef NOKIA
pa_sink *sco_sink;
pa_source *sco_source;
#endif
pa_hook_slot *sink_state_changed_slot;
pa_hook_slot *source_state_changed_slot;
};
enum profile {
PROFILE_A2DP,
PROFILE_HSP,
PROFILE_OFF
};
struct userdata {
pa_core *core;
pa_module *module;
char *address;
char *path;
const pa_bluetooth_device* device;
pa_dbus_connection *connection;
pa_card *card;
pa_sink *sink;
pa_source *source;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_rtpoll_item *rtpoll_item;
pa_thread *thread;
uint64_t read_index, write_index;
pa_usec_t started_at;
pa_smoother *read_smoother;
pa_memchunk write_memchunk;
pa_sample_spec sample_spec, requested_sample_spec;
int service_fd;
int stream_fd;
size_t link_mtu;
size_t block_size;
struct a2dp_info a2dp;
struct hsp_info hsp;
enum profile profile;
pa_modargs *modargs;
int stream_write_type, stream_read_type;
int service_write_type, service_read_type;
};
#ifdef NOKIA
#define USE_SCO_OVER_PCM(u) (u->profile == PROFILE_HSP && (u->hsp.sco_sink && u->hsp.sco_source))
#endif
static int init_bt(struct userdata *u);
static int init_profile(struct userdata *u);
static int service_send(struct userdata *u, const bt_audio_msg_header_t *msg) {
ssize_t r;
pa_assert(u);
pa_assert(u->service_fd >= 0);
pa_assert(msg);
pa_assert(msg->length > 0);
pa_log_debug("Sending %s -> %s",
pa_strnull(bt_audio_strtype(msg->type)),
pa_strnull(bt_audio_strname(msg->name)));
if ((r = pa_loop_write(u->service_fd, msg, msg->length, &u->service_write_type)) == (ssize_t) msg->length)
return 0;
if (r < 0)
pa_log_error("Error sending data to audio service: %s", pa_cstrerror(errno));
else
pa_log_error("Short write()");
return -1;
}
static int service_recv(struct userdata *u, bt_audio_msg_header_t *msg, size_t room) {
ssize_t r;
pa_assert(u);
pa_assert(u->service_fd >= 0);
pa_assert(msg);
if (room <= 0)
room = BT_SUGGESTED_BUFFER_SIZE;
pa_log_debug("Trying to receive message from audio service...");
/* First, read the header */
if ((r = pa_loop_read(u->service_fd, msg, sizeof(*msg), &u->service_read_type)) != sizeof(*msg))
goto read_fail;
if (msg->length < sizeof(*msg)) {
pa_log_error("Invalid message size.");
return -1;
}
/* Secondly, read the payload */
if (msg->length > sizeof(*msg)) {
size_t remains = msg->length - sizeof(*msg);
if ((r = pa_loop_read(u->service_fd,
(uint8_t*) msg + sizeof(*msg),
remains,
&u->service_read_type)) != (ssize_t) remains)
goto read_fail;
}
pa_log_debug("Received %s <- %s",
pa_strnull(bt_audio_strtype(msg->type)),
pa_strnull(bt_audio_strname(msg->name)));
return 0;
read_fail:
if (r < 0)
pa_log_error("Error receiving data from audio service: %s", pa_cstrerror(errno));
else
pa_log_error("Short read()");
return -1;
}
static ssize_t service_expect(struct userdata*u, bt_audio_msg_header_t *rsp, size_t room, uint8_t expected_name, size_t expected_size) {
int r;
pa_assert(u);
pa_assert(u->service_fd >= 0);
pa_assert(rsp);
if ((r = service_recv(u, rsp, room)) < 0)
return r;
if ((rsp->type != BT_INDICATION && rsp->type != BT_RESPONSE) ||
rsp->name != expected_name ||
(expected_size > 0 && rsp->length != expected_size)) {
if (rsp->type == BT_ERROR && rsp->length == sizeof(bt_audio_error_t))
pa_log_error("Received error condition: %s", pa_cstrerror(((bt_audio_error_t*) rsp)->posix_errno));
else
pa_log_error("Bogus message %s received while %s was expected",
pa_strnull(bt_audio_strname(rsp->name)),
pa_strnull(bt_audio_strname(expected_name)));
return -1;
}
return 0;
}
static int parse_caps(struct userdata *u, uint8_t seid, const struct bt_get_capabilities_rsp *rsp) {
uint16_t bytes_left;
const codec_capabilities_t *codec;
pa_assert(u);
pa_assert(rsp);
bytes_left = rsp->h.length - sizeof(*rsp);
if (bytes_left < sizeof(codec_capabilities_t)) {
pa_log_error("Packet too small to store codec information.");
return -1;
}
codec = (codec_capabilities_t *) rsp->data; /** ALIGNMENT? **/
pa_log_debug("Payload size is %lu %lu", (unsigned long) bytes_left, (unsigned long) sizeof(*codec));
if ((u->profile == PROFILE_A2DP && codec->transport != BT_CAPABILITIES_TRANSPORT_A2DP) ||
(u->profile == PROFILE_HSP && codec->transport != BT_CAPABILITIES_TRANSPORT_SCO)) {
pa_log_error("Got capabilities for wrong codec.");
return -1;
}
if (u->profile == PROFILE_HSP) {
if (bytes_left <= 0 || codec->length != sizeof(u->hsp.pcm_capabilities))
return -1;
pa_assert(codec->type == BT_HFP_CODEC_PCM);
if (codec->configured && seid == 0)
return codec->seid;
memcpy(&u->hsp.pcm_capabilities, codec, sizeof(u->hsp.pcm_capabilities));
} else if (u->profile == PROFILE_A2DP) {
while (bytes_left > 0) {
if ((codec->type == BT_A2DP_SBC_SINK) && !codec->lock)
break;
bytes_left -= codec->length;
codec = (const codec_capabilities_t*) ((const uint8_t*) codec + codec->length);
}
if (bytes_left <= 0 || codec->length != sizeof(u->a2dp.sbc_capabilities))
return -1;
pa_assert(codec->type == BT_A2DP_SBC_SINK);
if (codec->configured && seid == 0)
return codec->seid;
memcpy(&u->a2dp.sbc_capabilities, codec, sizeof(u->a2dp.sbc_capabilities));
}
return 0;
}
static int get_caps(struct userdata *u, uint8_t seid) {
union {
struct bt_get_capabilities_req getcaps_req;
struct bt_get_capabilities_rsp getcaps_rsp;
bt_audio_error_t error;
uint8_t buf[BT_SUGGESTED_BUFFER_SIZE];
} msg;
int ret;
pa_assert(u);
memset(&msg, 0, sizeof(msg));
msg.getcaps_req.h.type = BT_REQUEST;
msg.getcaps_req.h.name = BT_GET_CAPABILITIES;
msg.getcaps_req.h.length = sizeof(msg.getcaps_req);
msg.getcaps_req.seid = seid;
pa_strlcpy(msg.getcaps_req.object, u->path, sizeof(msg.getcaps_req.object));
if (u->profile == PROFILE_A2DP)
msg.getcaps_req.transport = BT_CAPABILITIES_TRANSPORT_A2DP;
else {
pa_assert(u->profile == PROFILE_HSP);
msg.getcaps_req.transport = BT_CAPABILITIES_TRANSPORT_SCO;
}
msg.getcaps_req.flags = BT_FLAG_AUTOCONNECT;
if (service_send(u, &msg.getcaps_req.h) < 0)
return -1;
if (service_expect(u, &msg.getcaps_rsp.h, sizeof(msg), BT_GET_CAPABILITIES, 0) < 0)
return -1;
ret = parse_caps(u, seid, &msg.getcaps_rsp);
if (ret <= 0)
return ret;
return get_caps(u, ret);
}
static uint8_t a2dp_default_bitpool(uint8_t freq, uint8_t mode) {
switch (freq) {
case BT_SBC_SAMPLING_FREQ_16000:
case BT_SBC_SAMPLING_FREQ_32000:
return 53;
case BT_SBC_SAMPLING_FREQ_44100:
switch (mode) {
case BT_A2DP_CHANNEL_MODE_MONO:
case BT_A2DP_CHANNEL_MODE_DUAL_CHANNEL:
return 31;
case BT_A2DP_CHANNEL_MODE_STEREO:
case BT_A2DP_CHANNEL_MODE_JOINT_STEREO:
return 53;
default:
pa_log_warn("Invalid channel mode %u", mode);
return 53;
}
case BT_SBC_SAMPLING_FREQ_48000:
switch (mode) {
case BT_A2DP_CHANNEL_MODE_MONO:
case BT_A2DP_CHANNEL_MODE_DUAL_CHANNEL:
return 29;
case BT_A2DP_CHANNEL_MODE_STEREO:
case BT_A2DP_CHANNEL_MODE_JOINT_STEREO:
return 51;
default:
pa_log_warn("Invalid channel mode %u", mode);
return 51;
}
default:
pa_log_warn("Invalid sampling freq %u", freq);
return 53;
}
}
static int setup_a2dp(struct userdata *u) {
sbc_capabilities_t *cap;
int i;
static const struct {
uint32_t rate;
uint8_t cap;
} freq_table[] = {
{ 16000U, BT_SBC_SAMPLING_FREQ_16000 },
{ 32000U, BT_SBC_SAMPLING_FREQ_32000 },
{ 44100U, BT_SBC_SAMPLING_FREQ_44100 },
{ 48000U, BT_SBC_SAMPLING_FREQ_48000 }
};
pa_assert(u);
pa_assert(u->profile == PROFILE_A2DP);
cap = &u->a2dp.sbc_capabilities;
/* Find the lowest freq that is at least as high as the requested
* sampling rate */
for (i = 0; (unsigned) i < PA_ELEMENTSOF(freq_table); i++)
if (freq_table[i].rate >= u->sample_spec.rate && (cap->frequency & freq_table[i].cap)) {
u->sample_spec.rate = freq_table[i].rate;
cap->frequency = freq_table[i].cap;
break;
}
if ((unsigned) i >= PA_ELEMENTSOF(freq_table)) {
for (; i >= 0; i--) {
if (cap->frequency & freq_table[i].cap) {
u->sample_spec.rate = freq_table[i].rate;
cap->frequency = freq_table[i].cap;
break;
}
}
if (i < 0) {
pa_log("Not suitable sample rate");
return -1;
}
}
if (cap->capability.configured)
return 0;
if (u->sample_spec.channels <= 1) {
if (cap->channel_mode & BT_A2DP_CHANNEL_MODE_MONO) {
cap->channel_mode = BT_A2DP_CHANNEL_MODE_MONO;
u->sample_spec.channels = 1;
} else
u->sample_spec.channels = 2;
}
if (u->sample_spec.channels >= 2) {
u->sample_spec.channels = 2;
if (cap->channel_mode & BT_A2DP_CHANNEL_MODE_JOINT_STEREO)
cap->channel_mode = BT_A2DP_CHANNEL_MODE_JOINT_STEREO;
else if (cap->channel_mode & BT_A2DP_CHANNEL_MODE_STEREO)
cap->channel_mode = BT_A2DP_CHANNEL_MODE_STEREO;
else if (cap->channel_mode & BT_A2DP_CHANNEL_MODE_DUAL_CHANNEL)
cap->channel_mode = BT_A2DP_CHANNEL_MODE_DUAL_CHANNEL;
else if (cap->channel_mode & BT_A2DP_CHANNEL_MODE_MONO) {
cap->channel_mode = BT_A2DP_CHANNEL_MODE_MONO;
u->sample_spec.channels = 1;
} else {
pa_log("No supported channel modes");
return -1;
}
}
if (cap->block_length & BT_A2DP_BLOCK_LENGTH_16)
cap->block_length = BT_A2DP_BLOCK_LENGTH_16;
else if (cap->block_length & BT_A2DP_BLOCK_LENGTH_12)
cap->block_length = BT_A2DP_BLOCK_LENGTH_12;
else if (cap->block_length & BT_A2DP_BLOCK_LENGTH_8)
cap->block_length = BT_A2DP_BLOCK_LENGTH_8;
else if (cap->block_length & BT_A2DP_BLOCK_LENGTH_4)
cap->block_length = BT_A2DP_BLOCK_LENGTH_4;
else {
pa_log_error("No supported block lengths");
return -1;
}
if (cap->subbands & BT_A2DP_SUBBANDS_8)
cap->subbands = BT_A2DP_SUBBANDS_8;
else if (cap->subbands & BT_A2DP_SUBBANDS_4)
cap->subbands = BT_A2DP_SUBBANDS_4;
else {
pa_log_error("No supported subbands");
return -1;
}
if (cap->allocation_method & BT_A2DP_ALLOCATION_LOUDNESS)
cap->allocation_method = BT_A2DP_ALLOCATION_LOUDNESS;
else if (cap->allocation_method & BT_A2DP_ALLOCATION_SNR)
cap->allocation_method = BT_A2DP_ALLOCATION_SNR;
cap->min_bitpool = (uint8_t) PA_MAX(MIN_BITPOOL, cap->min_bitpool);
cap->max_bitpool = (uint8_t) PA_MIN(a2dp_default_bitpool(cap->frequency, cap->channel_mode), cap->max_bitpool);
return 0;
}
static void setup_sbc(struct a2dp_info *a2dp) {
sbc_capabilities_t *active_capabilities;
pa_assert(a2dp);
active_capabilities = &a2dp->sbc_capabilities;
if (a2dp->sbc_initialized)
sbc_reinit(&a2dp->sbc, 0);
else
sbc_init(&a2dp->sbc, 0);
a2dp->sbc_initialized = TRUE;
switch (active_capabilities->frequency) {
case BT_SBC_SAMPLING_FREQ_16000:
a2dp->sbc.frequency = SBC_FREQ_16000;
break;
case BT_SBC_SAMPLING_FREQ_32000:
a2dp->sbc.frequency = SBC_FREQ_32000;
break;
case BT_SBC_SAMPLING_FREQ_44100:
a2dp->sbc.frequency = SBC_FREQ_44100;
break;
case BT_SBC_SAMPLING_FREQ_48000:
a2dp->sbc.frequency = SBC_FREQ_48000;
break;
default:
pa_assert_not_reached();
}
switch (active_capabilities->channel_mode) {
case BT_A2DP_CHANNEL_MODE_MONO:
a2dp->sbc.mode = SBC_MODE_MONO;
break;
case BT_A2DP_CHANNEL_MODE_DUAL_CHANNEL:
a2dp->sbc.mode = SBC_MODE_DUAL_CHANNEL;
break;
case BT_A2DP_CHANNEL_MODE_STEREO:
a2dp->sbc.mode = SBC_MODE_STEREO;
break;
case BT_A2DP_CHANNEL_MODE_JOINT_STEREO:
a2dp->sbc.mode = SBC_MODE_JOINT_STEREO;
break;
default:
pa_assert_not_reached();
}
switch (active_capabilities->allocation_method) {
case BT_A2DP_ALLOCATION_SNR:
a2dp->sbc.allocation = SBC_AM_SNR;
break;
case BT_A2DP_ALLOCATION_LOUDNESS:
a2dp->sbc.allocation = SBC_AM_LOUDNESS;
break;
default:
pa_assert_not_reached();
}
switch (active_capabilities->subbands) {
case BT_A2DP_SUBBANDS_4:
a2dp->sbc.subbands = SBC_SB_4;
break;
case BT_A2DP_SUBBANDS_8:
a2dp->sbc.subbands = SBC_SB_8;
break;
default:
pa_assert_not_reached();
}
switch (active_capabilities->block_length) {
case BT_A2DP_BLOCK_LENGTH_4:
a2dp->sbc.blocks = SBC_BLK_4;
break;
case BT_A2DP_BLOCK_LENGTH_8:
a2dp->sbc.blocks = SBC_BLK_8;
break;
case BT_A2DP_BLOCK_LENGTH_12:
a2dp->sbc.blocks = SBC_BLK_12;
break;
case BT_A2DP_BLOCK_LENGTH_16:
a2dp->sbc.blocks = SBC_BLK_16;
break;
default:
pa_assert_not_reached();
}
a2dp->sbc.bitpool = active_capabilities->max_bitpool;
a2dp->codesize = sbc_get_codesize(&a2dp->sbc);
a2dp->frame_length = sbc_get_frame_length(&a2dp->sbc);
}
static int set_conf(struct userdata *u) {
union {
struct bt_open_req open_req;
struct bt_open_rsp open_rsp;
struct bt_set_configuration_req setconf_req;
struct bt_set_configuration_rsp setconf_rsp;
bt_audio_error_t error;
uint8_t buf[BT_SUGGESTED_BUFFER_SIZE];
} msg;
memset(&msg, 0, sizeof(msg));
msg.open_req.h.type = BT_REQUEST;
msg.open_req.h.name = BT_OPEN;
msg.open_req.h.length = sizeof(msg.open_req);
pa_strlcpy(msg.open_req.object, u->path, sizeof(msg.open_req.object));
msg.open_req.seid = u->profile == PROFILE_A2DP ? u->a2dp.sbc_capabilities.capability.seid : BT_A2DP_SEID_RANGE + 1;
msg.open_req.lock = u->profile == PROFILE_A2DP ? BT_WRITE_LOCK : BT_READ_LOCK | BT_WRITE_LOCK;
if (service_send(u, &msg.open_req.h) < 0)
return -1;
if (service_expect(u, &msg.open_rsp.h, sizeof(msg), BT_OPEN, sizeof(msg.open_rsp)) < 0)
return -1;
if (u->profile == PROFILE_A2DP ) {
u->sample_spec.format = PA_SAMPLE_S16LE;
if (setup_a2dp(u) < 0)
return -1;
} else {
pa_assert(u->profile == PROFILE_HSP);
u->sample_spec.format = PA_SAMPLE_S16LE;
u->sample_spec.channels = 1;
u->sample_spec.rate = 8000;
}
memset(&msg, 0, sizeof(msg));
msg.setconf_req.h.type = BT_REQUEST;
msg.setconf_req.h.name = BT_SET_CONFIGURATION;
msg.setconf_req.h.length = sizeof(msg.setconf_req);
if (u->profile == PROFILE_A2DP) {
memcpy(&msg.setconf_req.codec, &u->a2dp.sbc_capabilities, sizeof(u->a2dp.sbc_capabilities));
} else {
msg.setconf_req.codec.transport = BT_CAPABILITIES_TRANSPORT_SCO;
msg.setconf_req.codec.seid = BT_A2DP_SEID_RANGE + 1;
msg.setconf_req.codec.length = sizeof(pcm_capabilities_t);
}
msg.setconf_req.h.length += msg.setconf_req.codec.length - sizeof(msg.setconf_req.codec);
if (service_send(u, &msg.setconf_req.h) < 0)
return -1;
if (service_expect(u, &msg.setconf_rsp.h, sizeof(msg), BT_SET_CONFIGURATION, sizeof(msg.setconf_rsp)) < 0)
return -1;
u->link_mtu = msg.setconf_rsp.link_mtu;
/* setup SBC encoder now we agree on parameters */
if (u->profile == PROFILE_A2DP) {
setup_sbc(&u->a2dp);
u->block_size =
((u->link_mtu - sizeof(struct rtp_header) - sizeof(struct rtp_payload))
/ u->a2dp.frame_length
* u->a2dp.codesize);
pa_log_info("SBC parameters:\n\tallocation=%u\n\tsubbands=%u\n\tblocks=%u\n\tbitpool=%u\n",
u->a2dp.sbc.allocation, u->a2dp.sbc.subbands, u->a2dp.sbc.blocks, u->a2dp.sbc.bitpool);
} else
u->block_size = u->link_mtu;
return 0;
}
/* from IO thread, except in SCO over PCM */
static int start_stream_fd(struct userdata *u) {
union {
bt_audio_msg_header_t rsp;
struct bt_start_stream_req start_req;
struct bt_start_stream_rsp start_rsp;
struct bt_new_stream_ind streamfd_ind;
bt_audio_error_t error;
uint8_t buf[BT_SUGGESTED_BUFFER_SIZE];
} msg;
struct pollfd *pollfd;
pa_assert(u);
pa_assert(u->rtpoll);
pa_assert(!u->rtpoll_item);
pa_assert(u->stream_fd < 0);
memset(msg.buf, 0, BT_SUGGESTED_BUFFER_SIZE);
msg.start_req.h.type = BT_REQUEST;
msg.start_req.h.name = BT_START_STREAM;
msg.start_req.h.length = sizeof(msg.start_req);
if (service_send(u, &msg.start_req.h) < 0)
return -1;
if (service_expect(u, &msg.rsp, sizeof(msg), BT_START_STREAM, sizeof(msg.start_rsp)) < 0)
return -1;
if (service_expect(u, &msg.rsp, sizeof(msg), BT_NEW_STREAM, sizeof(msg.streamfd_ind)) < 0)
return -1;
if ((u->stream_fd = bt_audio_service_get_data_fd(u->service_fd)) < 0) {
pa_log("Failed to get stream fd from audio service.");
return -1;
}
pa_make_fd_nonblock(u->stream_fd);
pa_make_socket_low_delay(u->stream_fd);
u->rtpoll_item = pa_rtpoll_item_new(u->rtpoll, PA_RTPOLL_NEVER, 1);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->fd = u->stream_fd;
pollfd->events = pollfd->revents = 0;
u->read_index = 0;
u->write_index = 0;
return 0;
}
/* from IO thread */
static int stop_stream_fd(struct userdata *u) {
union {
bt_audio_msg_header_t rsp;
struct bt_stop_stream_req start_req;
struct bt_stop_stream_rsp start_rsp;
bt_audio_error_t error;
uint8_t buf[BT_SUGGESTED_BUFFER_SIZE];
} msg;
int r = 0;
pa_assert(u);
pa_assert(u->rtpoll);
pa_assert(u->rtpoll_item);
pa_assert(u->stream_fd >= 0);
pa_rtpoll_item_free(u->rtpoll_item);
u->rtpoll_item = NULL;
memset(msg.buf, 0, BT_SUGGESTED_BUFFER_SIZE);
msg.start_req.h.type = BT_REQUEST;
msg.start_req.h.name = BT_STOP_STREAM;
msg.start_req.h.length = sizeof(msg.start_req);
if (service_send(u, &msg.start_req.h) < 0 ||
service_expect(u, &msg.rsp, sizeof(msg), BT_STOP_STREAM, sizeof(msg.start_rsp)) < 0)
r = -1;
pa_close(u->stream_fd);
u->stream_fd = -1;
return r;
}
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
pa_bool_t failed = FALSE;
int r;
pa_assert(u->sink == PA_SINK(o));
pa_log_debug("got message: %d", code);
switch (code) {
case PA_SINK_MESSAGE_SET_STATE:
switch ((pa_sink_state_t) PA_PTR_TO_UINT(data)) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->thread_info.state));
/* Stop the device if the source is suspended as well */
if (!u->source || u->source->state == PA_SOURCE_SUSPENDED)
/* We deliberately ignore whether stopping
* actually worked. Since the stream_fd is
* closed it doesn't really matter */
stop_stream_fd(u);
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->thread_info.state != PA_SINK_SUSPENDED)
break;
/* Resume the device if the source was suspended as well */
if (!u->source || u->source->state == PA_SOURCE_SUSPENDED)
if (start_stream_fd(u) < 0)
failed = TRUE;
u->started_at = pa_rtclock_usec();
break;
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
;
}
break;
case PA_SINK_MESSAGE_GET_LATENCY: {
*((pa_usec_t*) data) = 0;
return 0;
}
}
r = pa_sink_process_msg(o, code, data, offset, chunk);
return (r < 0 || !failed) ? r : -1;
}
static int source_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE(o)->userdata;
pa_bool_t failed = FALSE;
int r;
pa_assert(u->source == PA_SOURCE(o));
pa_log_debug("got message: %d", code);
switch (code) {
case PA_SOURCE_MESSAGE_SET_STATE:
switch ((pa_source_state_t) PA_PTR_TO_UINT(data)) {
case PA_SOURCE_SUSPENDED:
pa_assert(PA_SOURCE_IS_OPENED(u->source->thread_info.state));
/* Stop the device if the sink is suspended as well */
if (!u->sink || u->sink->state == PA_SINK_SUSPENDED)
stop_stream_fd(u);
pa_smoother_pause(u->read_smoother, pa_rtclock_usec());
break;
case PA_SOURCE_IDLE:
case PA_SOURCE_RUNNING:
if (u->source->thread_info.state != PA_SOURCE_SUSPENDED)
break;
/* Resume the device if the sink was suspended as well */
if (!u->sink || u->sink->thread_info.state == PA_SINK_SUSPENDED)
if (start_stream_fd(u) < 0)
failed = TRUE;
pa_smoother_resume(u->read_smoother, pa_rtclock_usec());
break;
case PA_SOURCE_UNLINKED:
case PA_SOURCE_INIT:
case PA_SOURCE_INVALID_STATE:
;
}
break;
case PA_SOURCE_MESSAGE_GET_LATENCY: {
*((pa_usec_t*) data) = 0;
return 0;
}
}
r = pa_source_process_msg(o, code, data, offset, chunk);
return (r < 0 || !failed) ? r : -1;
}
static int hsp_process_render(struct userdata *u) {
int ret = 0;
pa_assert(u);
pa_assert(u->profile == PROFILE_HSP);
pa_assert(u->sink);
/* First, render some data */
if (!u->write_memchunk.memblock)
pa_sink_render_full(u->sink, u->block_size, &u->write_memchunk);
pa_assert(u->write_memchunk.length == u->block_size);
for (;;) {
ssize_t l;
const void *p;
/* Now write that data to the socket. The socket is of type
* SEQPACKET, and we generated the data of the MTU size, so this
* should just work. */
p = (const uint8_t*) pa_memblock_acquire(u->write_memchunk.memblock) + u->write_memchunk.index;
l = pa_write(u->stream_fd, p, u->write_memchunk.length, &u->stream_write_type);
pa_memblock_release(u->write_memchunk.memblock);
pa_assert(l != 0);
if (l < 0) {
if (errno == EINTR)
/* Retry right away if we got interrupted */
continue;
else if (errno == EAGAIN)
/* Hmm, apparently the socket was not writable, give up for now */
break;
pa_log_error("Failed to write data to SCO socket: %s", pa_cstrerror(errno));
ret = -1;
break;
}
pa_assert((size_t) l <= u->write_memchunk.length);
if ((size_t) l != u->write_memchunk.length) {
pa_log_error("Wrote memory block to socket only partially! %llu written, wanted to write %llu.",
(unsigned long long) l,
(unsigned long long) u->write_memchunk.length);
ret = -1;
break;
}
u->write_index += (uint64_t) u->write_memchunk.length;
pa_memblock_unref(u->write_memchunk.memblock);
pa_memchunk_reset(&u->write_memchunk);
break;
}
return ret;
}
static int hsp_process_push(struct userdata *u) {
int ret = 0;
pa_memchunk memchunk;
pa_assert(u);
pa_assert(u->profile == PROFILE_HSP);
pa_assert(u->source);
memchunk.memblock = pa_memblock_new(u->core->mempool, u->block_size);
memchunk.index = memchunk.length = 0;
for (;;) {
ssize_t l;
void *p;
p = pa_memblock_acquire(memchunk.memblock);
l = pa_read(u->stream_fd, p, pa_memblock_get_length(memchunk.memblock), &u->stream_read_type);
pa_memblock_release(memchunk.memblock);
if (l <= 0) {
if (l < 0 && errno == EINTR)
/* Retry right away if we got interrupted */
continue;
else if (l < 0 && errno == EAGAIN)
/* Hmm, apparently the socket was not readable, give up for now. */
break;
pa_log_error("Failed to read data from SCO socket: %s", l < 0 ? pa_cstrerror(errno) : "EOF");
ret = -1;
break;
}
pa_assert((size_t) l <= pa_memblock_get_length(memchunk.memblock));
memchunk.length = (size_t) l;
u->read_index += (uint64_t) l;
pa_source_post(u->source, &memchunk);
break;
}
pa_memblock_unref(memchunk.memblock);
return ret;
}
static void a2dp_prepare_buffer(struct userdata *u) {
pa_assert(u);
if (u->a2dp.buffer_size >= u->link_mtu)
return;
u->a2dp.buffer_size = 2 * u->link_mtu;
pa_xfree(u->a2dp.buffer);
u->a2dp.buffer = pa_xmalloc(u->a2dp.buffer_size);
}
static int a2dp_process_render(struct userdata *u) {
struct a2dp_info *a2dp;
struct rtp_header *header;
struct rtp_payload *payload;
size_t nbytes;
void *d;
const void *p;
size_t to_write, to_encode;
unsigned frame_count;
int ret = 0;
pa_assert(u);
pa_assert(u->profile == PROFILE_A2DP);
pa_assert(u->sink);
/* First, render some data */
if (!u->write_memchunk.memblock)
pa_sink_render_full(u->sink, u->block_size, &u->write_memchunk);
pa_assert(u->write_memchunk.length == u->block_size);
a2dp_prepare_buffer(u);
a2dp = &u->a2dp;
header = a2dp->buffer;
payload = (struct rtp_payload*) ((uint8_t*) a2dp->buffer + sizeof(*header));
frame_count = 0;
/* Try to create a packet of the full MTU */
p = (const uint8_t*) pa_memblock_acquire(u->write_memchunk.memblock) + u->write_memchunk.index;
to_encode = u->write_memchunk.length;
d = (uint8_t*) a2dp->buffer + sizeof(*header) + sizeof(*payload);
to_write = a2dp->buffer_size - sizeof(*header) - sizeof(*payload);
while (PA_LIKELY(to_encode > 0 && to_write > 0)) {
size_t written;
ssize_t encoded;
encoded = sbc_encode(&a2dp->sbc,
p, to_encode,
d, to_write,
&written);
if (PA_UNLIKELY(encoded <= 0)) {
pa_log_error("SBC encoding error (%li)", (long) encoded);
pa_memblock_release(u->write_memchunk.memblock);
return -1;
}
/* pa_log_debug("SBC: encoded: %lu; written: %lu", (unsigned long) encoded, (unsigned long) written); */
/* pa_log_debug("SBC: codesize: %lu; frame_length: %lu", (unsigned long) a2dp->codesize, (unsigned long) a2dp->frame_length); */
pa_assert_fp((size_t) encoded <= to_encode);
pa_assert_fp((size_t) encoded == a2dp->codesize);
pa_assert_fp((size_t) written <= to_write);
pa_assert_fp((size_t) written == a2dp->frame_length);
p = (const uint8_t*) p + encoded;
to_encode -= encoded;
d = (uint8_t*) d + written;
to_write -= written;
frame_count++;
}
pa_memblock_release(u->write_memchunk.memblock);
pa_assert(to_encode == 0);
PA_ONCE_BEGIN {
pa_log_debug("Using SBC encoder implementation: %s", pa_strnull(sbc_get_implementation_info(&a2dp->sbc)));
} PA_ONCE_END;
/* write it to the fifo */
memset(a2dp->buffer, 0, sizeof(*header) + sizeof(*payload));
header->v = 2;
header->pt = 1;
header->sequence_number = htons(a2dp->seq_num++);
header->timestamp = htonl(u->write_index / pa_frame_size(&u->sink->sample_spec));
header->ssrc = htonl(1);
payload->frame_count = frame_count;
nbytes = (uint8_t*) d - (uint8_t*) a2dp->buffer;
for (;;) {
ssize_t l;
l = pa_write(u->stream_fd, a2dp->buffer, nbytes, &u->stream_write_type);
pa_assert(l != 0);
if (l < 0) {
if (errno == EINTR)
/* Retry right away if we got interrupted */
continue;
else if (errno == EAGAIN)
/* Hmm, apparently the socket was not writable, give up for now */
break;
pa_log_error("Failed to write data to socket: %s", pa_cstrerror(errno));
ret = -1;
break;
}
pa_assert((size_t) l <= nbytes);
if ((size_t) l != nbytes) {
pa_log_warn("Wrote memory block to socket only partially! %llu written, wanted to write %llu.",
(unsigned long long) l,
(unsigned long long) nbytes);
ret = -1;
break;
}
u->write_index += (uint64_t) u->write_memchunk.length;
pa_memblock_unref(u->write_memchunk.memblock);
pa_memchunk_reset(&u->write_memchunk);
break;
}
return ret;
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
pa_bool_t do_write = FALSE, writable = FALSE;
pa_assert(u);
pa_log_debug("IO Thread starting up");
if (u->core->realtime_scheduling)
pa_make_realtime(u->core->realtime_priority);
if (start_stream_fd(u) < 0)
goto fail;
pa_thread_mq_install(&u->thread_mq);
pa_rtpoll_install(u->rtpoll);
pa_smoother_set_time_offset(u->read_smoother, pa_rtclock_usec());
for (;;) {
struct pollfd *pollfd;
int ret;
pa_bool_t disable_timer = TRUE;
pollfd = u->rtpoll_item ? pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL) : NULL;
if (u->source && PA_SOURCE_IS_LINKED(u->source->thread_info.state)) {
if (pollfd && (pollfd->revents & POLLIN)) {
if (hsp_process_push(u) < 0)
goto fail;
/* We just read something, so we are supposed to write something, too */
do_write = TRUE;
}
}
if (u->sink && PA_SINK_IS_LINKED(u->sink->thread_info.state)) {
if (u->sink->thread_info.rewind_requested)
pa_sink_process_rewind(u->sink, 0);
if (pollfd) {
if (pollfd->revents & POLLOUT)
writable = TRUE;
if ((!u->source || !PA_SOURCE_IS_LINKED(u->source->thread_info.state)) && !do_write && writable) {
pa_usec_t time_passed;
uint64_t should_have_written;
/* Hmm, there is no input stream we could synchronize
* to. So let's do things by time */
time_passed = pa_rtclock_usec() - u->started_at;
should_have_written = pa_usec_to_bytes(time_passed, &u->sink->sample_spec);
do_write = u->write_index <= should_have_written ;
/* pa_log_debug("Time has come: %s", pa_yes_no(do_write)); */
}
if (writable && do_write) {
if (u->write_index == 0)
u->started_at = pa_rtclock_usec();
if (u->profile == PROFILE_A2DP) {
if (a2dp_process_render(u) < 0)
goto fail;
} else {
if (hsp_process_render(u) < 0)
goto fail;
}
do_write = FALSE;
writable = FALSE;
}
if ((!u->source || !PA_SOURCE_IS_LINKED(u->source->thread_info.state)) && !do_write) {
pa_usec_t time_passed, next_write_at, sleep_for;
/* Hmm, there is no input stream we could synchronize
* to. So let's estimate when we need to wake up the latest */
time_passed = pa_rtclock_usec() - u->started_at;
next_write_at = pa_bytes_to_usec(u->write_index, &u->sink->sample_spec);
sleep_for = time_passed < next_write_at ? next_write_at - time_passed : 0;
/* pa_log("Sleeping for %lu; time passed %lu, next write at %lu", (unsigned long) sleep_for, (unsigned long) time_passed, (unsigned long)next_write_at); */
pa_rtpoll_set_timer_relative(u->rtpoll, sleep_for);
disable_timer = FALSE;
}
}
}
if (disable_timer)
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Hmm, nothing to do. Let's sleep */
if (pollfd)
pollfd->events = (short) (((u->sink && PA_SINK_IS_LINKED(u->sink->thread_info.state) && !writable) ? POLLOUT : 0) |
(u->source && PA_SOURCE_IS_LINKED(u->source->thread_info.state) ? POLLIN : 0));
if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
goto fail;
if (ret == 0)
goto finish;
pollfd = u->rtpoll_item ? pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL) : NULL;
if (pollfd && (pollfd->revents & ~(POLLOUT|POLLIN))) {
pa_log_error("FD error.");
goto fail;
}
}
fail:
/* If this was no regular exit from the loop we have to continue processing messages until we receive PA_MESSAGE_SHUTDOWN */
pa_log_debug("IO thread failed");
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("IO thread shutting down");
}
static DBusHandlerResult filter_cb(DBusConnection *bus, DBusMessage *m, void *userdata) {
DBusError err;
struct userdata *u;
pa_assert(bus);
pa_assert(m);
pa_assert_se(u = userdata);
dbus_error_init(&err);
pa_log_debug("dbus: interface=%s, path=%s, member=%s\n",
dbus_message_get_interface(m),
dbus_message_get_path(m),
dbus_message_get_member(m));
if (!dbus_message_has_path(m, u->path))
goto fail;
if (dbus_message_is_signal(m, "org.bluez.Headset", "SpeakerGainChanged") ||
dbus_message_is_signal(m, "org.bluez.Headset", "MicrophoneGainChanged")) {
dbus_uint16_t gain;
pa_cvolume v;
if (!dbus_message_get_args(m, &err, DBUS_TYPE_UINT16, &gain, DBUS_TYPE_INVALID) || gain > 15) {
pa_log("Failed to parse org.bluez.Headset.{Speaker|Microphone}GainChanged: %s", err.message);
goto fail;
}
if (u->profile == PROFILE_HSP) {
if (u->sink && dbus_message_is_signal(m, "org.bluez.Headset", "SpeakerGainChanged")) {
pa_cvolume_set(&v, u->sink->sample_spec.channels, (pa_volume_t) (gain * PA_VOLUME_NORM / 15));
pa_sink_volume_changed(u->sink, &v);
} else if (u->source && dbus_message_is_signal(m, "org.bluez.Headset", "MicrophoneGainChanged")) {
pa_cvolume_set(&v, u->sink->sample_spec.channels, (pa_volume_t) (gain * PA_VOLUME_NORM / 15));
pa_source_volume_changed(u->source, &v);
}
}
}
fail:
dbus_error_free(&err);
return DBUS_HANDLER_RESULT_NOT_YET_HANDLED;
}
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
DBusMessage *m;
dbus_uint16_t gain;
pa_assert(u);
if (u->profile != PROFILE_HSP)
return;
gain = (pa_cvolume_max(&s->virtual_volume) * 15) / PA_VOLUME_NORM;
if (gain > 15)
gain = 15;
pa_cvolume_set(&s->virtual_volume, u->sink->sample_spec.channels, (pa_volume_t) (gain * PA_VOLUME_NORM / 15));
pa_assert_se(m = dbus_message_new_method_call("org.bluez", u->path, "org.bluez.Headset", "SetSpeakerGain"));
pa_assert_se(dbus_message_append_args(m, DBUS_TYPE_UINT16, &gain, DBUS_TYPE_INVALID));
pa_assert_se(dbus_connection_send(pa_dbus_connection_get(u->connection), m, NULL));
dbus_message_unref(m);
}
static void source_set_volume_cb(pa_source *s) {
struct userdata *u = s->userdata;
DBusMessage *m;
dbus_uint16_t gain;
pa_assert(u);
if (u->profile != PROFILE_HSP)
return;
gain = (pa_cvolume_max(&s->virtual_volume) * 15) / PA_VOLUME_NORM;
if (gain > 15)
gain = 15;
pa_cvolume_set(&s->virtual_volume, u->source->sample_spec.channels, (pa_volume_t) (gain * PA_VOLUME_NORM / 15));
pa_assert_se(m = dbus_message_new_method_call("org.bluez", u->path, "org.bluez.Headset", "SetMicrophoneGain"));
pa_assert_se(dbus_message_append_args(m, DBUS_TYPE_UINT16, &gain, DBUS_TYPE_INVALID));
pa_assert_se(dbus_connection_send(pa_dbus_connection_get(u->connection), m, NULL));
dbus_message_unref(m);
}
static char *get_name(const char *type, pa_modargs *ma, const char *device_id, pa_bool_t *namereg_fail) {
char *t;
const char *n;
pa_assert(type);
pa_assert(ma);
pa_assert(device_id);
pa_assert(namereg_fail);
t = pa_sprintf_malloc("%s_name", type);
n = pa_modargs_get_value(ma, t, NULL);
pa_xfree(t);
if (n) {
*namereg_fail = TRUE;
return pa_xstrdup(n);
}
if ((n = pa_modargs_get_value(ma, "name", NULL)))
*namereg_fail = TRUE;
else {
n = device_id;
*namereg_fail = FALSE;
}
return pa_sprintf_malloc("bluez_%s.%s", type, n);
}
#ifdef NOKIA
static void sco_over_pcm_state_update(struct userdata *u) {
pa_assert(u);
pa_assert(USE_SCO_OVER_PCM(u));
if (PA_SINK_IS_OPENED(pa_sink_get_state(u->hsp.sco_sink)) ||
PA_SOURCE_IS_OPENED(pa_source_get_state(u->hsp.sco_source))) {
if (u->service_fd >= 0)
return;
pa_log_debug("Resuming SCO over PCM");
if ((init_bt(u) < 0) || (init_profile(u) < 0))
pa_log("Can't resume SCO over PCM");
start_stream_fd(u);
} else {
if (u->service_fd < 0)
return;
stop_stream_fd(u);
pa_log_debug("Closing SCO over PCM");
pa_close(u->service_fd);
u->service_fd = -1;
}
}
static pa_hook_result_t sink_state_changed_cb(pa_core *c, pa_sink *s, struct userdata *u) {
pa_assert(c);
pa_sink_assert_ref(s);
pa_assert(u);
if (s != u->hsp.sco_sink)
return PA_HOOK_OK;
sco_over_pcm_state_update(u);
return PA_HOOK_OK;
}
static pa_hook_result_t source_state_changed_cb(pa_core *c, pa_source *s, struct userdata *u) {
pa_assert(c);
pa_source_assert_ref(s);
pa_assert(u);
if (s != u->hsp.sco_source)
return PA_HOOK_OK;
sco_over_pcm_state_update(u);
return PA_HOOK_OK;
}
#endif
static int add_sink(struct userdata *u) {
#ifdef NOKIA
if (USE_SCO_OVER_PCM(u)) {
pa_proplist *p;
u->sink = u->hsp.sco_sink;
p = pa_proplist_new();
pa_proplist_sets(p, "bluetooth.protocol", "sco");
pa_proplist_update(u->sink->proplist, PA_UPDATE_MERGE, p);
pa_proplist_free(p);
if (!u->hsp.sink_state_changed_slot)
u->hsp.sink_state_changed_slot = pa_hook_connect(&u->core->hooks[PA_CORE_HOOK_SINK_STATE_CHANGED], PA_HOOK_NORMAL, (pa_hook_cb_t) sink_state_changed_cb, u);
} else
#endif
{
pa_sink_new_data data;
pa_bool_t b;
pa_sink_new_data_init(&data);
data.driver = __FILE__;
data.module = u->module;
pa_sink_new_data_set_sample_spec(&data, &u->sample_spec);
pa_proplist_sets(data.proplist, "bluetooth.protocol", u->profile == PROFILE_A2DP ? "a2dp" : "sco");
data.card = u->card;
data.name = get_name("sink", u->modargs, u->address, &b);
data.namereg_fail = b;
u->sink = pa_sink_new(u->core, &data, PA_SINK_HARDWARE|PA_SINK_LATENCY | (u->profile == PROFILE_HSP ? PA_SINK_HW_VOLUME_CTRL : 0));
pa_sink_new_data_done(&data);
if (!u->sink) {
pa_log_error("Failed to create sink");
return -1;
}
u->sink->userdata = u;
u->sink->parent.process_msg = sink_process_msg;
}
if (u->profile == PROFILE_HSP) {
u->sink->set_volume = sink_set_volume_cb;
u->sink->n_volume_steps = 16;
}
return 0;
}
static int add_source(struct userdata *u) {
#ifdef NOKIA
if (USE_SCO_OVER_PCM(u)) {
u->source = u->hsp.sco_source;
pa_proplist_sets(u->source->proplist, "bluetooth.protocol", "sco");
if (!u->hsp.source_state_changed_slot)
u->hsp.source_state_changed_slot = pa_hook_connect(&u->core->hooks[PA_CORE_HOOK_SOURCE_STATE_CHANGED], PA_HOOK_NORMAL, (pa_hook_cb_t) source_state_changed_cb, u);
} else
#endif
{
pa_source_new_data data;
pa_bool_t b;
pa_source_new_data_init(&data);
data.driver = __FILE__;
data.module = u->module;
pa_source_new_data_set_sample_spec(&data, &u->sample_spec);
pa_proplist_sets(data.proplist, "bluetooth.protocol", u->profile == PROFILE_A2DP ? "a2dp" : "sco");
data.card = u->card;
data.name = get_name("source", u->modargs, u->address, &b);
data.namereg_fail = b;
u->source = pa_source_new(u->core, &data, PA_SOURCE_HARDWARE|PA_SOURCE_LATENCY | (u->profile == PROFILE_HSP ? PA_SOURCE_HW_VOLUME_CTRL : 0));
pa_source_new_data_done(&data);
if (!u->source) {
pa_log_error("Failed to create source");
return -1;
}
u->source->userdata = u;
u->source->parent.process_msg = source_process_msg;
}
if (u->profile == PROFILE_HSP) {
pa_proplist_sets(u->source->proplist, "bluetooth.nrec", (u->hsp.pcm_capabilities.flags & BT_PCM_FLAG_NREC) ? "1" : "0");
u->source->set_volume = source_set_volume_cb;
u->source->n_volume_steps = 16;
}
return 0;
}
static void shutdown_bt(struct userdata *u) {
pa_assert(u);
if (u->stream_fd >= 0) {
pa_close(u->stream_fd);
u->stream_fd = -1;
u->stream_write_type = 0;
u->stream_read_type = 0;
}
if (u->service_fd >= 0) {
pa_close(u->service_fd);
u->service_fd = -1;
}
if (u->write_memchunk.memblock) {
pa_memblock_unref(u->write_memchunk.memblock);
pa_memchunk_reset(&u->write_memchunk);
}
}
static int init_bt(struct userdata *u) {
pa_assert(u);
shutdown_bt(u);
u->stream_write_type = u->stream_read_type = 0;
u->service_write_type = u->service_write_type = 0;
if ((u->service_fd = bt_audio_service_open()) < 0) {
pa_log_error("Couldn't connect to bluetooth audio service");
return -1;
}
pa_log_debug("Connected to the bluetooth audio service");
return 0;
}
static int setup_bt(struct userdata *u) {
pa_assert(u);
if (get_caps(u, 0) < 0)
return -1;
pa_log_debug("Got device capabilities");
if (set_conf(u) < 0)
return -1;
pa_log_debug("Connection to the device configured");
#ifdef NOKIA
if (USE_SCO_OVER_PCM(u)) {
pa_log_debug("Configured to use SCO over PCM");
return 0;
}
#endif
pa_log_debug("Got the stream socket");
return 0;
}
static int init_profile(struct userdata *u) {
int r = 0;
pa_assert(u);
pa_assert(u->profile != PROFILE_OFF);
if (setup_bt(u) < 0)
return -1;
if (u->profile == PROFILE_A2DP ||
u->profile == PROFILE_HSP)
if (add_sink(u) < 0)
r = -1;
if (u->profile == PROFILE_HSP)
if (add_source(u) < 0)
r = -1;
return r;
}
static void stop_thread(struct userdata *u) {
pa_assert(u);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
u->thread = NULL;
}
if (u->rtpoll_item) {
pa_rtpoll_item_free(u->rtpoll_item);
u->rtpoll_item = NULL;
}
if (u->hsp.sink_state_changed_slot) {
pa_hook_slot_free(u->hsp.sink_state_changed_slot);
u->hsp.sink_state_changed_slot = NULL;
}
if (u->hsp.source_state_changed_slot) {
pa_hook_slot_free(u->hsp.source_state_changed_slot);
u->hsp.source_state_changed_slot = NULL;
}
if (u->sink) {
pa_sink_unref(u->sink);
u->sink = NULL;
}
if (u->source) {
pa_source_unref(u->source);
u->source = NULL;
}
if (u->rtpoll) {
pa_thread_mq_done(&u->thread_mq);
pa_rtpoll_free(u->rtpoll);
u->rtpoll = NULL;
}
}
static int start_thread(struct userdata *u) {
pa_assert(u);
pa_assert(!u->thread);
pa_assert(!u->rtpoll);
pa_assert(!u->rtpoll_item);
u->rtpoll = pa_rtpoll_new();
pa_thread_mq_init(&u->thread_mq, u->core->mainloop, u->rtpoll);
#ifdef NOKIA
if (USE_SCO_OVER_PCM(u)) {
if (start_stream_fd(u) < 0)
return -1;
pa_sink_ref(u->sink);
pa_source_ref(u->source);
/* FIXME: monitor stream_fd error */
return 0;
}
#endif
if (!(u->thread = pa_thread_new(thread_func, u))) {
pa_log_error("Failed to create IO thread");
stop_thread(u);
return -1;
}
if (u->sink) {
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
pa_sink_put(u->sink);
if (u->sink->set_volume)
u->sink->set_volume(u->sink);
}
if (u->source) {
pa_source_set_asyncmsgq(u->source, u->thread_mq.inq);
pa_source_set_rtpoll(u->source, u->rtpoll);
pa_source_put(u->source);
if (u->source->set_volume)
u->source->set_volume(u->source);
}
return 0;
}
static int card_set_profile(pa_card *c, pa_card_profile *new_profile) {
struct userdata *u;
enum profile *d;
pa_queue *inputs = NULL, *outputs = NULL;
pa_assert(c);
pa_assert(new_profile);
pa_assert_se(u = c->userdata);
d = PA_CARD_PROFILE_DATA(new_profile);
if (u->device->headset_connected <= 0 && *d == PROFILE_HSP) {
pa_log_warn("HSP is not connected, refused to switch profile");
return -1;
}
else if (u->device->audio_sink_connected <= 0 && *d == PROFILE_A2DP) {
pa_log_warn("A2DP is not connected, refused to switch profile");
return -1;
}
if (u->sink) {
inputs = pa_sink_move_all_start(u->sink);
#ifdef NOKIA
if (!USE_SCO_OVER_PCM(u))
#endif
pa_sink_unlink(u->sink);
}
if (u->source) {
outputs = pa_source_move_all_start(u->source);
#ifdef NOKIA
if (!USE_SCO_OVER_PCM(u))
#endif
pa_source_unlink(u->source);
}
stop_thread(u);
shutdown_bt(u);
u->profile = *d;
u->sample_spec = u->requested_sample_spec;
init_bt(u);
if (u->profile != PROFILE_OFF)
init_profile(u);
if (u->sink || u->source)
start_thread(u);
if (inputs) {
if (u->sink)
pa_sink_move_all_finish(u->sink, inputs, FALSE);
else
pa_sink_move_all_fail(inputs);
}
if (outputs) {
if (u->source)
pa_source_move_all_finish(u->source, outputs, FALSE);
else
pa_source_move_all_fail(outputs);
}
return 0;
}
static int add_card(struct userdata *u, const char *default_profile, const pa_bluetooth_device *device) {
pa_card_new_data data;
pa_bool_t b;
pa_card_profile *p;
enum profile *d;
const char *ff;
char *n;
pa_card_new_data_init(&data);
data.driver = __FILE__;
data.module = u->module;
n = pa_bluetooth_cleanup_name(device->name);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_DESCRIPTION, n);
pa_xfree(n);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_STRING, device->address);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_API, "bluez");
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_CLASS, "sound");
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_BUS, "bluetooth");
if ((ff = pa_bluetooth_get_form_factor(device->class)))
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_FORM_FACTOR, ff);
pa_proplist_sets(data.proplist, "bluez.path", device->path);
pa_proplist_setf(data.proplist, "bluez.class", "0x%06x", (unsigned) device->class);
pa_proplist_sets(data.proplist, "bluez.name", device->name);
data.name = get_name("card", u->modargs, device->address, &b);
data.namereg_fail = b;
data.profiles = pa_hashmap_new(pa_idxset_string_hash_func, pa_idxset_string_compare_func);
if (device->audio_sink_info_valid > 0) {
p = pa_card_profile_new("a2dp", _("High Fidelity Playback (A2DP)"), sizeof(enum profile));
p->priority = 10;
p->n_sinks = 1;
p->n_sources = 0;
p->max_sink_channels = 2;
p->max_source_channels = 0;
d = PA_CARD_PROFILE_DATA(p);
*d = PROFILE_A2DP;
pa_hashmap_put(data.profiles, p->name, p);
}
if (device->headset_info_valid > 0) {
p = pa_card_profile_new("hsp", _("Telephony Duplex (HSP/HFP)"), sizeof(enum profile));
p->priority = 20;
p->n_sinks = 1;
p->n_sources = 1;
p->max_sink_channels = 1;
p->max_source_channels = 1;
d = PA_CARD_PROFILE_DATA(p);
*d = PROFILE_HSP;
pa_hashmap_put(data.profiles, p->name, p);
}
pa_assert(!pa_hashmap_isempty(data.profiles));
p = pa_card_profile_new("off", _("Off"), sizeof(enum profile));
d = PA_CARD_PROFILE_DATA(p);
*d = PROFILE_OFF;
pa_hashmap_put(data.profiles, p->name, p);
if (default_profile) {
if (pa_hashmap_get(data.profiles, default_profile))
pa_card_new_data_set_profile(&data, default_profile);
else
pa_log_warn("Profile '%s' not valid or not supported by device.", default_profile);
}
u->card = pa_card_new(u->core, &data);
pa_card_new_data_done(&data);
if (!u->card) {
pa_log("Failed to allocate card.");
return -1;
}
u->card->userdata = u;
u->card->set_profile = card_set_profile;
d = PA_CARD_PROFILE_DATA(u->card->active_profile);
u->profile = *d;
return 0;
}
static const pa_bluetooth_device* find_device(struct userdata *u, pa_bluetooth_discovery *y, const char *address, const char *path) {
const pa_bluetooth_device *d = NULL;
pa_assert(u);
pa_assert(y);
if (!address && !path) {
pa_log_error("Failed to get device address/path from module arguments.");
return NULL;
}
if (path) {
if (!(d = pa_bluetooth_discovery_get_by_path(y, path))) {
pa_log_error("%s is not a valid BlueZ audio device.", path);
return NULL;
}
if (address && !(pa_streq(d->address, address))) {
pa_log_error("Passed path %s and address %s don't match.", path, address);
return NULL;
}
} else {
if (!(d = pa_bluetooth_discovery_get_by_address(y, address))) {
pa_log_error("%s is not known.", address);
return NULL;
}
}
if (d) {
u->address = pa_xstrdup(d->address);
u->path = pa_xstrdup(d->path);
}
return d;
}
static int setup_dbus(struct userdata *u) {
DBusError err;
dbus_error_init(&err);
u->connection = pa_dbus_bus_get(u->core, DBUS_BUS_SYSTEM, &err);
if (dbus_error_is_set(&err) || !u->connection) {
pa_log("Failed to get D-Bus connection: %s", err.message);
dbus_error_free(&err);
return -1;
}
return 0;
}
int pa__init(pa_module* m) {
pa_modargs *ma;
uint32_t channels;
struct userdata *u;
const char *address, *path;
pa_bluetooth_discovery *y = NULL;
DBusError err;
char *mike, *speaker;
pa_assert(m);
dbus_error_init(&err);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log_error("Failed to parse module arguments");
goto fail;
}
m->userdata = u = pa_xnew0(struct userdata, 1);
u->module = m;
u->core = m->core;
u->service_fd = -1;
u->stream_fd = -1;
u->read_smoother = pa_smoother_new(PA_USEC_PER_SEC, PA_USEC_PER_SEC*2, TRUE, 10);
u->sample_spec = m->core->default_sample_spec;
u->modargs = ma;
#ifdef NOKIA
if (pa_modargs_get_value(ma, "sco_sink", NULL) &&
!(u->hsp.sco_sink = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sco_sink", NULL), PA_NAMEREG_SINK))) {
pa_log("SCO sink not found");
goto fail;
}
if (pa_modargs_get_value(ma, "sco_source", NULL) &&
!(u->hsp.sco_source = pa_namereg_get(m->core, pa_modargs_get_value(ma, "sco_source", NULL), PA_NAMEREG_SOURCE))) {
pa_log("SCO source not found");
goto fail;
}
#endif
if (pa_modargs_get_value_u32(ma, "rate", &u->sample_spec.rate) < 0 ||
u->sample_spec.rate <= 0 || u->sample_spec.rate > PA_RATE_MAX) {
pa_log_error("Failed to get rate from module arguments");
goto fail;
}
channels = u->sample_spec.channels;
if (pa_modargs_get_value_u32(ma, "channels", &channels) < 0 ||
channels <= 0 || channels > PA_CHANNELS_MAX) {
pa_log_error("Failed to get channels from module arguments");
goto fail;
}
u->sample_spec.channels = (uint8_t) channels;
u->requested_sample_spec = u->sample_spec;
address = pa_modargs_get_value(ma, "address", NULL);
path = pa_modargs_get_value(ma, "path", NULL);
if (setup_dbus(u) < 0)
goto fail;
if (!(y = pa_bluetooth_discovery_get(m->core)))
goto fail;
if (!(u->device = find_device(u, y, address, path))) /* should discovery ref be kept? */
goto fail;
/* Add the card structure. This will also initialize the default profile */
if (add_card(u, pa_modargs_get_value(ma, "profile", NULL), u->device) < 0)
goto fail;
pa_bluetooth_discovery_unref(y);
y = NULL;
/* Connect to the BT service and query capabilities */
if (init_bt(u) < 0)
goto fail;
if (!dbus_connection_add_filter(pa_dbus_connection_get(u->connection), filter_cb, u, NULL)) {
pa_log_error("Failed to add filter function");
goto fail;
}
speaker = pa_sprintf_malloc("type='signal',sender='org.bluez',interface='org.bluez.Headset',member='SpeakerGainChanged',path='%s'", u->path);
mike = pa_sprintf_malloc("type='signal',sender='org.bluez',interface='org.bluez.Headset',member='MicrophoneGainChanged',path='%s'", u->path);
if (pa_dbus_add_matches(
pa_dbus_connection_get(u->connection), &err,
speaker,
mike,
NULL) < 0) {
pa_xfree(speaker);
pa_xfree(mike);
pa_log("Failed to add D-Bus matches: %s", err.message);
goto fail;
}
pa_xfree(speaker);
pa_xfree(mike);
if (u->profile != PROFILE_OFF)
if (init_profile(u) < 0)
goto fail;
if (u->sink || u->source)
if (start_thread(u) < 0)
goto fail;
return 0;
fail:
if (y)
pa_bluetooth_discovery_unref(y);
pa__done(m);
dbus_error_free(&err);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return
(u->sink ? pa_sink_linked_by(u->sink) : 0) +
(u->source ? pa_source_linked_by(u->source) : 0);
}
void pa__done(pa_module *m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink
#ifdef NOKIA
&& !USE_SCO_OVER_PCM(u)
#endif
)
pa_sink_unlink(u->sink);
if (u->source
#ifdef NOKIA
&& !USE_SCO_OVER_PCM(u)
#endif
)
pa_source_unlink(u->source);
stop_thread(u);
if (u->connection) {
if (u->path) {
char *speaker, *mike;
speaker = pa_sprintf_malloc("type='signal',sender='org.bluez',interface='org.bluez.Headset',member='SpeakerGainChanged',path='%s'", u->path);
mike = pa_sprintf_malloc("type='signal',sender='org.bluez',interface='org.bluez.Headset',member='MicrophoneGainChanged',path='%s'", u->path);
pa_dbus_remove_matches(pa_dbus_connection_get(u->connection),
speaker,
mike,
NULL);
pa_xfree(speaker);
pa_xfree(mike);
}
dbus_connection_remove_filter(pa_dbus_connection_get(u->connection), filter_cb, u);
pa_dbus_connection_unref(u->connection);
}
if (u->card)
pa_card_free(u->card);
if (u->read_smoother)
pa_smoother_free(u->read_smoother);
shutdown_bt(u);
if (u->a2dp.buffer)
pa_xfree(u->a2dp.buffer);
sbc_finish(&u->a2dp.sbc);
if (u->modargs)
pa_modargs_free(u->modargs);
pa_xfree(u->address);
pa_xfree(u->path);
pa_xfree(u);
}