mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-11 13:30:02 -05:00
Add a log_interval parameter to control the amount of logging. Default is no logging. Like for adjust_time, the parameter is a double to allow values below 1s. If the log interval is too small, logging will occur on every iteration. Part-of: <https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/56>
1955 lines
77 KiB
C
1955 lines
77 KiB
C
/***
|
|
This file is part of PulseAudio.
|
|
|
|
Copyright 2009 Intel Corporation
|
|
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
|
|
|
|
PulseAudio is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 2.1 of the License,
|
|
or (at your option) any later version.
|
|
|
|
PulseAudio is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
|
|
***/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <pulse/xmalloc.h>
|
|
|
|
#include <pulsecore/sink-input.h>
|
|
#include <pulsecore/module.h>
|
|
#include <pulsecore/modargs.h>
|
|
#include <pulsecore/namereg.h>
|
|
#include <pulsecore/log.h>
|
|
#include <pulsecore/core-util.h>
|
|
|
|
#include <pulse/rtclock.h>
|
|
#include <pulse/timeval.h>
|
|
|
|
PA_MODULE_AUTHOR("Pierre-Louis Bossart, Georg Chini");
|
|
PA_MODULE_DESCRIPTION("Loopback from source to sink");
|
|
PA_MODULE_VERSION(PACKAGE_VERSION);
|
|
PA_MODULE_LOAD_ONCE(false);
|
|
PA_MODULE_USAGE(
|
|
"source=<source to connect to> "
|
|
"sink=<sink to connect to> "
|
|
"adjust_time=<how often to readjust rates in s> "
|
|
"latency_msec=<latency in ms> "
|
|
"max_latency_msec=<maximum latency in ms> "
|
|
"log_interval=<how often to log in s> "
|
|
"fast_adjust_threshold_msec=<threshold for fast adjust in ms> "
|
|
"adjust_threshold_usec=<threshold for latency adjustment in usec> "
|
|
"format=<sample format> "
|
|
"rate=<sample rate> "
|
|
"channels=<number of channels> "
|
|
"channel_map=<channel map> "
|
|
"sink_input_properties=<proplist> "
|
|
"source_output_properties=<proplist> "
|
|
"source_dont_move=<boolean> "
|
|
"sink_dont_move=<boolean> "
|
|
"remix=<remix channels?> ");
|
|
|
|
#define DEFAULT_LATENCY_MSEC 200
|
|
|
|
#define FILTER_PARAMETER 0.125
|
|
|
|
#define DEFAULT_ADJUST_THRESHOLD_USEC 250
|
|
|
|
#define MEMBLOCKQ_MAXLENGTH (1024*1024*32)
|
|
|
|
#define MIN_DEVICE_LATENCY (2.5*PA_USEC_PER_MSEC)
|
|
|
|
#define DEFAULT_ADJUST_TIME_USEC (1*PA_USEC_PER_SEC)
|
|
|
|
typedef struct loopback_msg loopback_msg;
|
|
|
|
struct userdata {
|
|
pa_core *core;
|
|
pa_module *module;
|
|
|
|
loopback_msg *msg;
|
|
|
|
pa_sink_input *sink_input;
|
|
pa_source_output *source_output;
|
|
|
|
pa_asyncmsgq *asyncmsgq;
|
|
pa_memblockq *memblockq;
|
|
|
|
pa_rtpoll_item *rtpoll_item_read, *rtpoll_item_write;
|
|
|
|
pa_time_event *time_event;
|
|
|
|
/* Variables used to calculate the average time between
|
|
* subsequent calls of adjust_rates() */
|
|
pa_usec_t adjust_time_stamp;
|
|
pa_usec_t real_adjust_time;
|
|
pa_usec_t real_adjust_time_sum;
|
|
|
|
/* Values from command line configuration */
|
|
pa_usec_t latency;
|
|
pa_usec_t max_latency;
|
|
pa_usec_t adjust_time;
|
|
pa_usec_t fast_adjust_threshold;
|
|
uint32_t adjust_threshold;
|
|
uint32_t log_interval;
|
|
|
|
/* Latency boundaries and current values */
|
|
pa_usec_t min_source_latency;
|
|
pa_usec_t max_source_latency;
|
|
pa_usec_t min_sink_latency;
|
|
pa_usec_t max_sink_latency;
|
|
pa_usec_t configured_sink_latency;
|
|
pa_usec_t configured_source_latency;
|
|
int64_t source_latency_offset;
|
|
int64_t sink_latency_offset;
|
|
pa_usec_t minimum_latency;
|
|
|
|
/* State variable of the latency controller */
|
|
int32_t last_latency_difference;
|
|
int64_t last_source_latency_offset;
|
|
int64_t last_sink_latency_offset;
|
|
int64_t next_latency_with_drift;
|
|
int64_t next_latency_at_optimum_rate_with_drift;
|
|
|
|
/* Filter varables used for 2nd order filter */
|
|
double drift_filter;
|
|
double drift_compensation_rate;
|
|
|
|
/* Variables for Kalman filter and error tracking*/
|
|
double latency_variance;
|
|
double kalman_variance;
|
|
double latency_error;
|
|
|
|
/* lower latency limit found by underruns */
|
|
pa_usec_t underrun_latency_limit;
|
|
|
|
/* Various counters */
|
|
uint32_t iteration_counter;
|
|
uint32_t underrun_counter;
|
|
uint32_t adjust_counter;
|
|
uint32_t target_latency_cross_counter;
|
|
uint32_t log_counter;
|
|
|
|
/* Various booleans */
|
|
bool fixed_alsa_source;
|
|
bool source_sink_changed;
|
|
bool underrun_occured;
|
|
bool source_latency_offset_changed;
|
|
bool sink_latency_offset_changed;
|
|
bool initial_adjust_pending;
|
|
|
|
/* Used for sink input and source output snapshots */
|
|
struct {
|
|
int64_t send_counter;
|
|
int64_t source_latency;
|
|
pa_usec_t source_timestamp;
|
|
|
|
int64_t recv_counter;
|
|
size_t loopback_memblockq_length;
|
|
int64_t sink_latency;
|
|
pa_usec_t sink_timestamp;
|
|
} latency_snapshot;
|
|
|
|
/* Input thread variable */
|
|
int64_t send_counter;
|
|
|
|
/* Output thread variables */
|
|
struct {
|
|
int64_t recv_counter;
|
|
pa_usec_t effective_source_latency;
|
|
|
|
/* Copied from main thread */
|
|
pa_usec_t minimum_latency;
|
|
|
|
/* Various booleans */
|
|
bool in_pop;
|
|
bool pop_called;
|
|
bool pop_adjust;
|
|
bool first_pop_done;
|
|
bool push_called;
|
|
} output_thread_info;
|
|
};
|
|
|
|
struct loopback_msg {
|
|
pa_msgobject parent;
|
|
struct userdata *userdata;
|
|
bool dead;
|
|
};
|
|
|
|
PA_DEFINE_PRIVATE_CLASS(loopback_msg, pa_msgobject);
|
|
#define LOOPBACK_MSG(o) (loopback_msg_cast(o))
|
|
|
|
static const char* const valid_modargs[] = {
|
|
"source",
|
|
"sink",
|
|
"adjust_time",
|
|
"latency_msec",
|
|
"max_latency_msec",
|
|
"log_interval",
|
|
"fast_adjust_threshold_msec",
|
|
"adjust_threshold_usec",
|
|
"format",
|
|
"rate",
|
|
"channels",
|
|
"channel_map",
|
|
"sink_input_properties",
|
|
"source_output_properties",
|
|
"source_dont_move",
|
|
"sink_dont_move",
|
|
"remix",
|
|
NULL,
|
|
};
|
|
|
|
enum {
|
|
SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX,
|
|
SINK_INPUT_MESSAGE_REWIND,
|
|
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT,
|
|
SINK_INPUT_MESSAGE_SOURCE_CHANGED,
|
|
SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY,
|
|
SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY,
|
|
SINK_INPUT_MESSAGE_FAST_ADJUST,
|
|
};
|
|
|
|
enum {
|
|
SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT = PA_SOURCE_OUTPUT_MESSAGE_MAX,
|
|
};
|
|
|
|
enum {
|
|
LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED,
|
|
LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED,
|
|
LOOPBACK_MESSAGE_UNDERRUN,
|
|
LOOPBACK_MESSAGE_ADJUST_DONE,
|
|
};
|
|
|
|
static void enable_adjust_timer(struct userdata *u, bool enable);
|
|
|
|
/* Called from main context */
|
|
static void teardown(struct userdata *u) {
|
|
pa_assert(u);
|
|
pa_assert_ctl_context();
|
|
|
|
u->adjust_time = 0;
|
|
enable_adjust_timer(u, false);
|
|
|
|
if (u->msg)
|
|
u->msg->dead = true;
|
|
|
|
/* Handling the asyncmsgq between the source output and the sink input
|
|
* requires some care. When the source output is unlinked, nothing needs
|
|
* to be done for the asyncmsgq, because the source output is the sending
|
|
* end. But when the sink input is unlinked, we should ensure that the
|
|
* asyncmsgq is emptied, because the messages in the queue hold references
|
|
* to the sink input. Also, we need to ensure that new messages won't be
|
|
* written to the queue after we have emptied it.
|
|
*
|
|
* Emptying the queue can be done in the state_change() callback of the
|
|
* sink input, when the new state is "unlinked".
|
|
*
|
|
* Preventing new messages from being written to the queue can be achieved
|
|
* by unlinking the source output before unlinking the sink input. There
|
|
* are no other writers for that queue, so this is sufficient. */
|
|
|
|
if (u->source_output) {
|
|
pa_source_output_unlink(u->source_output);
|
|
pa_source_output_unref(u->source_output);
|
|
u->source_output = NULL;
|
|
}
|
|
|
|
if (u->sink_input) {
|
|
pa_sink_input_unlink(u->sink_input);
|
|
pa_sink_input_unref(u->sink_input);
|
|
u->sink_input = NULL;
|
|
}
|
|
}
|
|
|
|
/* rate controller, called from main context
|
|
* - maximum deviation from optimum rate for P-controller is less than 1%
|
|
* - P-controller step size is limited to 2.01‰
|
|
* - will calculate an optimum rate
|
|
*/
|
|
static uint32_t rate_controller(
|
|
struct userdata *u,
|
|
uint32_t base_rate, uint32_t old_rate,
|
|
int32_t latency_difference_at_optimum_rate,
|
|
int32_t latency_difference_at_base_rate) {
|
|
|
|
double new_rate, new_rate_1, new_rate_2;
|
|
double min_cycles_1, min_cycles_2, drift_rate, latency_drift, controller_weight, min_weight;
|
|
uint32_t base_rate_with_drift;
|
|
|
|
base_rate_with_drift = (int)(base_rate + u->drift_compensation_rate);
|
|
|
|
/* If we are less than 2‰ away from the optimum rate, lower weight of the
|
|
* P-controller. The weight is determined by the fact that a correction
|
|
* of 0.5 Hz needs to be applied by the controller when the latency
|
|
* difference gets larger than the threshold. The weight follows
|
|
* from the definition of the controller. The minimum will only
|
|
* be reached when one adjust threshold away from the target. Start
|
|
* using the weight after the target latency has been reached for the
|
|
* second time to accelerate initial convergence. The second time has
|
|
* been chosen because it takes a while before the smoother returns
|
|
* reliable latencies. */
|
|
controller_weight = 1;
|
|
min_weight = PA_CLAMP(0.5 / (double)base_rate * (100.0 + (double)u->real_adjust_time / u->adjust_threshold), 0, 1.0);
|
|
if ((double)abs((int)(old_rate - base_rate_with_drift)) / base_rate_with_drift < 0.002 && u->target_latency_cross_counter >= 2)
|
|
controller_weight = PA_CLAMP((double)abs(latency_difference_at_optimum_rate) / u->adjust_threshold * min_weight, min_weight, 1.0);
|
|
|
|
/* Calculate next rate that is not more than 2‰ away from the last rate */
|
|
min_cycles_1 = (double)abs(latency_difference_at_optimum_rate) / u->real_adjust_time / 0.002 + 1;
|
|
new_rate_1 = old_rate + base_rate * (double)latency_difference_at_optimum_rate / min_cycles_1 / u->real_adjust_time;
|
|
|
|
/* Calculate best rate to correct the current latency offset, limit at
|
|
* 1% difference from base_rate */
|
|
min_cycles_2 = (double)abs(latency_difference_at_optimum_rate) / u->real_adjust_time / 0.01 + 1;
|
|
new_rate_2 = (double)base_rate * (1.0 + controller_weight * latency_difference_at_optimum_rate / min_cycles_2 / u->real_adjust_time);
|
|
|
|
/* Choose the rate that is nearer to base_rate unless we are already near
|
|
* to the desired latency and rate */
|
|
if (abs((int)(new_rate_1 - base_rate)) < abs((int)(new_rate_2 - base_rate)) && controller_weight > 0.99)
|
|
new_rate = new_rate_1;
|
|
else
|
|
new_rate = new_rate_2;
|
|
|
|
/* Calculate rate difference between source and sink. Skip calculation
|
|
* after a source/sink change, an underrun or latency offset change */
|
|
|
|
if (!u->underrun_occured && !u->source_sink_changed && !u->source_latency_offset_changed && !u->sink_latency_offset_changed) {
|
|
/* Latency difference between last iterations */
|
|
latency_drift = latency_difference_at_base_rate - u->last_latency_difference;
|
|
|
|
/* Calculate frequency difference between source and sink */
|
|
drift_rate = latency_drift * old_rate / u->real_adjust_time + old_rate - base_rate;
|
|
|
|
/* The maximum accepted sample rate difference between source and
|
|
* sink is 1% of the base rate. If the result is larger, something
|
|
* went wrong, so do not use it. Pass in 0 instead to allow the
|
|
* filter to decay. */
|
|
if (abs((int)drift_rate) > base_rate / 100)
|
|
drift_rate = 0;
|
|
|
|
/* 2nd order lowpass filter */
|
|
u->drift_filter = (1 - FILTER_PARAMETER) * u->drift_filter + FILTER_PARAMETER * drift_rate;
|
|
u->drift_compensation_rate = (1 - FILTER_PARAMETER) * u->drift_compensation_rate + FILTER_PARAMETER * u->drift_filter;
|
|
}
|
|
|
|
/* Use drift compensation. Though not likely, the rate might exceed the maximum allowed rate now. */
|
|
new_rate = new_rate + u->drift_compensation_rate + 0.5;
|
|
|
|
if (new_rate > base_rate * 101 / 100)
|
|
return base_rate * 101 / 100;
|
|
else if (new_rate < base_rate * 99 / 100)
|
|
return base_rate * 99 / 100;
|
|
else
|
|
return (int)new_rate;
|
|
}
|
|
|
|
/* Called from main thread.
|
|
* It has been a matter of discussion how to correctly calculate the minimum
|
|
* latency that module-loopback can deliver with a given source and sink.
|
|
* The calculation has been placed in a separate function so that the definition
|
|
* can easily be changed. The resulting estimate is not very exact because it
|
|
* depends on the reported latency ranges. In cases were the lower bounds of
|
|
* source and sink latency are not reported correctly (USB) the result will
|
|
* be wrong. */
|
|
static void update_minimum_latency(struct userdata *u, pa_sink *sink, bool print_msg) {
|
|
|
|
if (u->underrun_latency_limit)
|
|
/* If we already detected a real latency limit because of underruns, use it */
|
|
u->minimum_latency = u->underrun_latency_limit;
|
|
|
|
else {
|
|
/* Calculate latency limit from latency ranges */
|
|
|
|
u->minimum_latency = u->min_sink_latency;
|
|
if (u->fixed_alsa_source)
|
|
/* If we are using an alsa source with fixed latency, we will get a wakeup when
|
|
* one fragment is filled, and then we empty the source buffer, so the source
|
|
* latency never grows much beyond one fragment (assuming that the CPU doesn't
|
|
* cause a bottleneck). */
|
|
u->minimum_latency += u->core->default_fragment_size_msec * PA_USEC_PER_MSEC;
|
|
|
|
else
|
|
/* In all other cases the source will deliver new data at latest after one source latency.
|
|
* Make sure there is enough data available that the sink can keep on playing until new
|
|
* data is pushed. */
|
|
u->minimum_latency += u->min_source_latency;
|
|
|
|
/* Multiply by 1.1 as a safety margin for delays that are proportional to the buffer sizes */
|
|
u->minimum_latency *= 1.1;
|
|
|
|
/* Add 1.5 ms as a safety margin for delays not related to the buffer sizes */
|
|
u->minimum_latency += 1.5 * PA_USEC_PER_MSEC;
|
|
}
|
|
|
|
/* Add the latency offsets */
|
|
if (-(u->sink_latency_offset + u->source_latency_offset) <= (int64_t)u->minimum_latency)
|
|
u->minimum_latency += u->sink_latency_offset + u->source_latency_offset;
|
|
else
|
|
u->minimum_latency = 0;
|
|
|
|
/* If the sink is valid, send a message to update the minimum latency to
|
|
* the output thread, else set the variable directly */
|
|
if (sink)
|
|
pa_asyncmsgq_send(sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY, NULL, u->minimum_latency, NULL);
|
|
else
|
|
u->output_thread_info.minimum_latency = u->minimum_latency;
|
|
|
|
if (print_msg) {
|
|
pa_log_info("Minimum possible end to end latency: %0.2f ms", (double)u->minimum_latency / PA_USEC_PER_MSEC);
|
|
if (u->latency < u->minimum_latency)
|
|
pa_log_warn("Configured latency of %0.2f ms is smaller than minimum latency, using minimum instead", (double)u->latency / PA_USEC_PER_MSEC);
|
|
}
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void adjust_rates(struct userdata *u) {
|
|
size_t buffer;
|
|
uint32_t old_rate, base_rate, new_rate, run_hours;
|
|
int32_t latency_difference;
|
|
pa_usec_t current_buffer_latency, snapshot_delay;
|
|
int64_t current_source_sink_latency, current_latency, latency_at_optimum_rate;
|
|
pa_usec_t final_latency, now, time_passed;
|
|
double filtered_latency, current_latency_error, latency_correction, base_rate_with_drift;
|
|
|
|
pa_assert(u);
|
|
pa_assert_ctl_context();
|
|
|
|
/* Runtime and counters since last change of source or sink
|
|
* or source/sink latency */
|
|
run_hours = u->iteration_counter * u->real_adjust_time / PA_USEC_PER_SEC / 3600;
|
|
u->iteration_counter +=1;
|
|
|
|
/* If we are seeing underruns then the latency is too small */
|
|
if (u->underrun_counter > 2) {
|
|
pa_usec_t target_latency;
|
|
|
|
target_latency = PA_MAX(u->latency, u->minimum_latency) + 5 * PA_USEC_PER_MSEC;
|
|
|
|
if (u->max_latency == 0 || target_latency < u->max_latency) {
|
|
u->underrun_latency_limit = PA_CLIP_SUB((int64_t)target_latency, u->sink_latency_offset + u->source_latency_offset);
|
|
pa_log_warn("Too many underruns, increasing latency to %0.2f ms", (double)target_latency / PA_USEC_PER_MSEC);
|
|
} else {
|
|
u->underrun_latency_limit = PA_CLIP_SUB((int64_t)u->max_latency, u->sink_latency_offset + u->source_latency_offset);
|
|
pa_log_warn("Too many underruns, configured maximum latency of %0.2f ms is reached", (double)u->max_latency / PA_USEC_PER_MSEC);
|
|
pa_log_warn("Consider increasing the max_latency_msec");
|
|
}
|
|
|
|
update_minimum_latency(u, u->sink_input->sink, false);
|
|
u->underrun_counter = 0;
|
|
}
|
|
|
|
/* Allow one underrun per hour */
|
|
if (u->iteration_counter * u->real_adjust_time / PA_USEC_PER_SEC / 3600 > run_hours) {
|
|
u->underrun_counter = PA_CLIP_SUB(u->underrun_counter, 1u);
|
|
pa_log_info("Underrun counter: %u", u->underrun_counter);
|
|
}
|
|
|
|
/* Calculate real adjust time if source or sink did not change and if the system has
|
|
* not been suspended. If the time between two calls is more than 5% longer than the
|
|
* configured adjust time, we assume that the system has been sleeping and skip the
|
|
* calculation for this iteration. When source or sink changed or the system has been
|
|
* sleeping, we need to reset the parameters for drift compensation. */
|
|
now = pa_rtclock_now();
|
|
time_passed = now - u->adjust_time_stamp;
|
|
if (!u->source_sink_changed && time_passed < u->adjust_time * 1.05) {
|
|
u->adjust_counter++;
|
|
u->real_adjust_time_sum += time_passed;
|
|
u->real_adjust_time = u->real_adjust_time_sum / u->adjust_counter;
|
|
} else {
|
|
u->drift_compensation_rate = 0;
|
|
u->drift_filter = 0;
|
|
/* Ensure that source_sink_changed is set, so that the Kalman filter parameters
|
|
* will also be reset. */
|
|
u->source_sink_changed = true;
|
|
}
|
|
u->adjust_time_stamp = now;
|
|
|
|
/* Rates and latencies */
|
|
old_rate = u->sink_input->sample_spec.rate;
|
|
base_rate = u->source_output->sample_spec.rate;
|
|
|
|
buffer = u->latency_snapshot.loopback_memblockq_length;
|
|
if (u->latency_snapshot.recv_counter <= u->latency_snapshot.send_counter)
|
|
buffer += (size_t) (u->latency_snapshot.send_counter - u->latency_snapshot.recv_counter);
|
|
else
|
|
buffer = PA_CLIP_SUB(buffer, (size_t) (u->latency_snapshot.recv_counter - u->latency_snapshot.send_counter));
|
|
|
|
current_buffer_latency = pa_bytes_to_usec(buffer, &u->sink_input->sample_spec);
|
|
snapshot_delay = u->latency_snapshot.source_timestamp - u->latency_snapshot.sink_timestamp;
|
|
current_source_sink_latency = u->latency_snapshot.sink_latency + u->latency_snapshot.source_latency - snapshot_delay;
|
|
|
|
/* Current latency */
|
|
current_latency = current_source_sink_latency + current_buffer_latency;
|
|
|
|
/* Latency at optimum rate and latency difference */
|
|
latency_at_optimum_rate = current_source_sink_latency + current_buffer_latency * old_rate / (u->drift_compensation_rate + base_rate);
|
|
|
|
final_latency = PA_MAX(u->latency, u->minimum_latency);
|
|
latency_difference = (int32_t)(current_latency - final_latency);
|
|
|
|
/* Do not filter or calculate error if source or sink changed or if there was an underrun */
|
|
if (u->source_sink_changed || u->underrun_occured) {
|
|
/* Initial conditions are very unsure, so use a high variance */
|
|
u->kalman_variance = 10000000;
|
|
filtered_latency = latency_at_optimum_rate;
|
|
u->next_latency_at_optimum_rate_with_drift = latency_at_optimum_rate;
|
|
u->next_latency_with_drift = current_latency;
|
|
|
|
} else {
|
|
/* Correct predictions if one of the latency offsets changed between iterations */
|
|
u->next_latency_at_optimum_rate_with_drift += u->source_latency_offset - u->last_source_latency_offset;
|
|
u->next_latency_at_optimum_rate_with_drift += u->sink_latency_offset - u->last_sink_latency_offset;
|
|
u->next_latency_with_drift += u->source_latency_offset - u->last_source_latency_offset;
|
|
u->next_latency_with_drift += u->sink_latency_offset - u->last_sink_latency_offset;
|
|
/* Low pass filtered latency error. This value reflects how well the measured values match the prediction. */
|
|
u->latency_error = (1 - FILTER_PARAMETER) * u->latency_error + FILTER_PARAMETER * (double)abs((int32_t)(current_latency - u->next_latency_with_drift));
|
|
/* Low pass filtered latency variance */
|
|
current_latency_error = (double)abs((int32_t)(latency_at_optimum_rate - u->next_latency_at_optimum_rate_with_drift));
|
|
u->latency_variance = (1.0 - FILTER_PARAMETER) * u->latency_variance + FILTER_PARAMETER * current_latency_error * current_latency_error;
|
|
/* Kalman filter */
|
|
filtered_latency = (latency_at_optimum_rate * u->kalman_variance + u->next_latency_at_optimum_rate_with_drift * u->latency_variance) / (u->kalman_variance + u->latency_variance);
|
|
u->kalman_variance = u->kalman_variance * u->latency_variance / (u->kalman_variance + u->latency_variance) + u->latency_variance / 4 + 200;
|
|
}
|
|
|
|
/* Drop or insert samples if fast_adjust_threshold_msec was specified and the latency difference is too large. */
|
|
if (u->fast_adjust_threshold > 0 && abs(latency_difference) > u->fast_adjust_threshold) {
|
|
pa_log_debug ("Latency difference larger than %" PRIu64 " msec, skipping or inserting samples.", u->fast_adjust_threshold / PA_USEC_PER_MSEC);
|
|
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_FAST_ADJUST, NULL, current_source_sink_latency, NULL);
|
|
|
|
/* Skip real adjust time calculation and reset drift compensation parameters on next iteration. */
|
|
u->source_sink_changed = true;
|
|
|
|
/* We probably need to adjust again, reset cross_counter. */
|
|
u->target_latency_cross_counter = 0;
|
|
return;
|
|
}
|
|
|
|
/* Calculate new rate */
|
|
new_rate = rate_controller(u, base_rate, old_rate, (int32_t)(filtered_latency - final_latency), latency_difference);
|
|
|
|
/* Log every log_interval iterations if the log_interval parameter is set */
|
|
if (u->log_interval != 0) {
|
|
u->log_counter--;
|
|
if (u->log_counter == 0) {
|
|
pa_log_debug("Loopback status %s to %s:\n Source latency: %0.2f ms\n Buffer: %0.2f ms\n Sink latency: %0.2f ms\n End-to-end latency: %0.2f ms\n"
|
|
" Deviation from target latency at optimum rate: %0.2f usec\n Average prediction error: ± %0.2f usec\n Optimum rate: %0.2f Hz\n Deviation from base rate: %i Hz",
|
|
u->source_output->source->name,
|
|
u->sink_input->sink->name,
|
|
(double) u->latency_snapshot.source_latency / PA_USEC_PER_MSEC,
|
|
(double) current_buffer_latency / PA_USEC_PER_MSEC,
|
|
(double) u->latency_snapshot.sink_latency / PA_USEC_PER_MSEC,
|
|
(double) current_latency / PA_USEC_PER_MSEC,
|
|
(double) latency_at_optimum_rate - final_latency,
|
|
(double) u->latency_error,
|
|
u->drift_compensation_rate + base_rate,
|
|
(int32_t)(new_rate - base_rate));
|
|
u->log_counter = u->log_interval;
|
|
}
|
|
}
|
|
|
|
/* If the latency difference changed sign, we have crossed the target latency. */
|
|
if ((int64_t)latency_difference * u->last_latency_difference < 0)
|
|
u->target_latency_cross_counter++;
|
|
|
|
/* Save current latency difference at new rate for next cycle and reset flags */
|
|
u->last_latency_difference = current_source_sink_latency + current_buffer_latency * old_rate / new_rate - final_latency;
|
|
|
|
/* Set variables that may change between calls of adjust_rate() */
|
|
u->source_sink_changed = false;
|
|
u->underrun_occured = false;
|
|
u->last_source_latency_offset = u->source_latency_offset;
|
|
u->last_sink_latency_offset = u->sink_latency_offset;
|
|
u->source_latency_offset_changed = false;
|
|
u->sink_latency_offset_changed = false;
|
|
|
|
/* Predicton of next latency */
|
|
|
|
/* Evaluate optimum rate */
|
|
base_rate_with_drift = u->drift_compensation_rate + base_rate;
|
|
|
|
/* Latency correction on next iteration */
|
|
latency_correction = (base_rate_with_drift - new_rate) * (int64_t)u->real_adjust_time / new_rate;
|
|
|
|
if ((int)new_rate != (int)base_rate_with_drift || new_rate != old_rate) {
|
|
/* While we are correcting, the next latency is determined by the current value and the difference
|
|
* between the new sampling rate and the base rate*/
|
|
u->next_latency_with_drift = current_latency + latency_correction + ((double)old_rate / new_rate - 1) * current_buffer_latency;
|
|
u->next_latency_at_optimum_rate_with_drift = filtered_latency + latency_correction * new_rate / base_rate_with_drift;
|
|
|
|
} else {
|
|
/* We are in steady state, now only the fractional drift should matter.
|
|
* To make sure that we do not drift away due to errors in the fractional
|
|
* drift, use a running average of the measured and predicted values */
|
|
u->next_latency_with_drift = (filtered_latency + u->next_latency_with_drift) / 2.0 + (1.0 - (double)(int)base_rate_with_drift / base_rate_with_drift) * (int64_t)u->real_adjust_time;
|
|
|
|
/* We are at the optimum rate, so nothing to correct */
|
|
u->next_latency_at_optimum_rate_with_drift = u->next_latency_with_drift;
|
|
}
|
|
|
|
/* Set rate */
|
|
pa_sink_input_set_rate(u->sink_input, new_rate);
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
|
|
struct userdata *u = userdata;
|
|
|
|
pa_assert(u);
|
|
pa_assert(a);
|
|
pa_assert(u->time_event == e);
|
|
|
|
/* Restart timer right away */
|
|
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
|
|
|
|
/* If the initial latency adjustment has not been done yet, we have to skip
|
|
* adjust_rates(). The estimation of the optimum rate cannot be done in that
|
|
* situation */
|
|
if (u->initial_adjust_pending)
|
|
return;
|
|
|
|
/* Get sink and source latency snapshot */
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
|
|
pa_asyncmsgq_send(u->source_output->source->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
|
|
|
|
adjust_rates(u);
|
|
}
|
|
|
|
/* Called from main context
|
|
* When source or sink changes, give it a third of a second to settle down, then call adjust_rates for the first time */
|
|
static void enable_adjust_timer(struct userdata *u, bool enable) {
|
|
if (enable) {
|
|
if (!u->adjust_time)
|
|
return;
|
|
if (u->time_event)
|
|
u->core->mainloop->time_free(u->time_event);
|
|
|
|
u->time_event = pa_core_rttime_new(u->core, pa_rtclock_now() + 333 * PA_USEC_PER_MSEC, time_callback, u);
|
|
} else {
|
|
if (!u->time_event)
|
|
return;
|
|
|
|
u->core->mainloop->time_free(u->time_event);
|
|
u->time_event = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from main context */
|
|
static void update_adjust_timer(struct userdata *u) {
|
|
if (u->sink_input->state == PA_SINK_INPUT_CORKED || u->source_output->state == PA_SOURCE_OUTPUT_CORKED)
|
|
enable_adjust_timer(u, false);
|
|
else
|
|
enable_adjust_timer(u, true);
|
|
}
|
|
|
|
/* Called from main thread
|
|
* Calculates minimum and maximum possible latency for source and sink */
|
|
static void update_latency_boundaries(struct userdata *u, pa_source *source, pa_sink *sink) {
|
|
const char *s;
|
|
|
|
if (source) {
|
|
/* Source latencies */
|
|
u->fixed_alsa_source = false;
|
|
if (source->flags & PA_SOURCE_DYNAMIC_LATENCY)
|
|
pa_source_get_latency_range(source, &u->min_source_latency, &u->max_source_latency);
|
|
else {
|
|
u->min_source_latency = pa_source_get_fixed_latency(source);
|
|
u->max_source_latency = u->min_source_latency;
|
|
if ((s = pa_proplist_gets(source->proplist, PA_PROP_DEVICE_API))) {
|
|
if (pa_streq(s, "alsa"))
|
|
u->fixed_alsa_source = true;
|
|
}
|
|
}
|
|
/* Source offset */
|
|
u->source_latency_offset = source->port_latency_offset;
|
|
|
|
/* Latencies below 2.5 ms cause problems, limit source latency if possible */
|
|
if (u->max_source_latency >= MIN_DEVICE_LATENCY)
|
|
u->min_source_latency = PA_MAX(u->min_source_latency, MIN_DEVICE_LATENCY);
|
|
else
|
|
u->min_source_latency = u->max_source_latency;
|
|
}
|
|
|
|
if (sink) {
|
|
/* Sink latencies */
|
|
if (sink->flags & PA_SINK_DYNAMIC_LATENCY)
|
|
pa_sink_get_latency_range(sink, &u->min_sink_latency, &u->max_sink_latency);
|
|
else {
|
|
u->min_sink_latency = pa_sink_get_fixed_latency(sink);
|
|
u->max_sink_latency = u->min_sink_latency;
|
|
}
|
|
/* Sink offset */
|
|
u->sink_latency_offset = sink->port_latency_offset;
|
|
|
|
/* Latencies below 2.5 ms cause problems, limit sink latency if possible */
|
|
if (u->max_sink_latency >= MIN_DEVICE_LATENCY)
|
|
u->min_sink_latency = PA_MAX(u->min_sink_latency, MIN_DEVICE_LATENCY);
|
|
else
|
|
u->min_sink_latency = u->max_sink_latency;
|
|
}
|
|
|
|
update_minimum_latency(u, sink, true);
|
|
}
|
|
|
|
/* Called from output context
|
|
* Sets the memblockq to the configured latency corrected by latency_offset_usec */
|
|
static void memblockq_adjust(struct userdata *u, int64_t latency_offset_usec, bool allow_push) {
|
|
size_t current_memblockq_length, requested_memblockq_length, buffer_correction;
|
|
int64_t requested_buffer_latency;
|
|
pa_usec_t final_latency, requested_sink_latency;
|
|
|
|
final_latency = PA_MAX(u->latency, u->output_thread_info.minimum_latency);
|
|
|
|
/* If source or sink have some large negative latency offset, we might want to
|
|
* hold more than final_latency in the memblockq */
|
|
requested_buffer_latency = (int64_t)final_latency - latency_offset_usec;
|
|
|
|
/* Keep at least one sink latency in the queue to make sure that the sink
|
|
* never underruns initially */
|
|
requested_sink_latency = pa_sink_get_requested_latency_within_thread(u->sink_input->sink);
|
|
if (requested_buffer_latency < (int64_t)requested_sink_latency)
|
|
requested_buffer_latency = requested_sink_latency;
|
|
|
|
requested_memblockq_length = pa_usec_to_bytes(requested_buffer_latency, &u->sink_input->sample_spec);
|
|
current_memblockq_length = pa_memblockq_get_length(u->memblockq);
|
|
|
|
if (current_memblockq_length > requested_memblockq_length) {
|
|
/* Drop audio from queue */
|
|
buffer_correction = current_memblockq_length - requested_memblockq_length;
|
|
pa_log_info("Dropping %" PRIu64 " usec of audio from queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
|
|
pa_memblockq_drop(u->memblockq, buffer_correction);
|
|
|
|
} else if (current_memblockq_length < requested_memblockq_length && allow_push) {
|
|
/* Add silence to queue */
|
|
buffer_correction = requested_memblockq_length - current_memblockq_length;
|
|
pa_log_info("Adding %" PRIu64 " usec of silence to queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
|
|
pa_memblockq_seek(u->memblockq, (int64_t)buffer_correction, PA_SEEK_RELATIVE, true);
|
|
}
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_push_cb(pa_source_output *o, const pa_memchunk *chunk) {
|
|
struct userdata *u;
|
|
pa_usec_t push_time;
|
|
int64_t current_source_latency;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
/* Send current source latency and timestamp with the message */
|
|
push_time = pa_rtclock_now();
|
|
current_source_latency = pa_source_get_latency_within_thread(u->source_output->source, true);
|
|
current_source_latency += pa_resampler_get_delay_usec(u->source_output->thread_info.resampler);
|
|
|
|
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_POST, PA_INT_TO_PTR(current_source_latency), push_time, chunk, NULL);
|
|
u->send_counter += (int64_t) chunk->length;
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_process_rewind_cb(pa_source_output *o, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_REWIND, NULL, (int64_t) nbytes, NULL, NULL);
|
|
u->send_counter -= (int64_t) nbytes;
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static int source_output_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
|
|
struct userdata *u = PA_SOURCE_OUTPUT(obj)->userdata;
|
|
|
|
switch (code) {
|
|
|
|
case SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT: {
|
|
size_t length;
|
|
|
|
length = pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq);
|
|
|
|
u->latency_snapshot.send_counter = u->send_counter;
|
|
/* Add content of delay memblockq to the source latency */
|
|
u->latency_snapshot.source_latency = pa_source_get_latency_within_thread(u->source_output->source, true) +
|
|
pa_bytes_to_usec(length, &u->source_output->source->sample_spec);
|
|
/* Add resampler latency */
|
|
u->latency_snapshot.source_latency += pa_resampler_get_delay_usec(u->source_output->thread_info.resampler);
|
|
|
|
u->latency_snapshot.source_timestamp = pa_rtclock_now();
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return pa_source_output_process_msg(obj, code, data, offset, chunk);
|
|
}
|
|
|
|
/* Called from main thread.
|
|
* Get current effective latency of the source. If the source is in use with
|
|
* smaller latency than the configured latency, it will continue running with
|
|
* the smaller value when the source output is switched to the source. */
|
|
static void update_effective_source_latency(struct userdata *u, pa_source *source, pa_sink *sink) {
|
|
pa_usec_t effective_source_latency;
|
|
|
|
effective_source_latency = u->configured_source_latency;
|
|
|
|
if (source) {
|
|
effective_source_latency = pa_source_get_requested_latency(source);
|
|
if (effective_source_latency == 0 || effective_source_latency > u->configured_source_latency)
|
|
effective_source_latency = u->configured_source_latency;
|
|
}
|
|
|
|
/* If the sink is valid, send a message to the output thread, else set the variable directly */
|
|
if (sink)
|
|
pa_asyncmsgq_send(sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY, NULL, (int64_t)effective_source_latency, NULL);
|
|
else
|
|
u->output_thread_info.effective_source_latency = effective_source_latency;
|
|
}
|
|
|
|
/* Called from main thread.
|
|
* Set source output latency to one third of the overall latency if possible.
|
|
* The choice of one third is rather arbitrary somewhere between the minimum
|
|
* possible latency which would cause a lot of CPU load and half the configured
|
|
* latency which would quickly lead to underruns */
|
|
static void set_source_output_latency(struct userdata *u, pa_source *source) {
|
|
pa_usec_t latency, requested_latency;
|
|
|
|
requested_latency = u->latency / 3;
|
|
|
|
/* Normally we try to configure sink and source latency equally. If the
|
|
* sink latency cannot match the requested source latency try to set the
|
|
* source latency to a smaller value to avoid underruns */
|
|
if (u->min_sink_latency > requested_latency) {
|
|
latency = PA_MAX(u->latency, u->minimum_latency);
|
|
requested_latency = (latency - u->min_sink_latency) / 2;
|
|
}
|
|
|
|
latency = PA_CLAMP(requested_latency , u->min_source_latency, u->max_source_latency);
|
|
u->configured_source_latency = pa_source_output_set_requested_latency(u->source_output, latency);
|
|
if (u->configured_source_latency != requested_latency)
|
|
pa_log_warn("Cannot set requested source latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_source_latency / PA_USEC_PER_MSEC);
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_attach_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
u->rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
|
|
o->source->thread_info.rtpoll,
|
|
PA_RTPOLL_LATE,
|
|
u->asyncmsgq);
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void source_output_detach_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_source_output_assert_io_context(o);
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (u->rtpoll_item_write) {
|
|
pa_rtpoll_item_free(u->rtpoll_item_write);
|
|
u->rtpoll_item_write = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_kill_cb(pa_source_output *o) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
teardown(u);
|
|
pa_module_unload_request(u->module, true);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static bool source_output_may_move_to_cb(pa_source_output *o, pa_source *dest) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
if (!u->sink_input || !u->sink_input->sink)
|
|
return true;
|
|
|
|
return dest != u->sink_input->sink->monitor_source;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_moving_cb(pa_source_output *o, pa_source *dest) {
|
|
struct userdata *u;
|
|
char *input_description;
|
|
const char *n;
|
|
|
|
if (!dest)
|
|
return;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
input_description = pa_sprintf_malloc("Loopback of %s",
|
|
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
pa_sink_input_set_property(u->sink_input, PA_PROP_MEDIA_NAME, input_description);
|
|
pa_xfree(input_description);
|
|
|
|
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_sink_input_set_property(u->sink_input, PA_PROP_DEVICE_ICON_NAME, n);
|
|
|
|
/* Set latency and calculate latency limits */
|
|
u->underrun_latency_limit = 0;
|
|
u->last_source_latency_offset = dest->port_latency_offset;
|
|
u->initial_adjust_pending = true;
|
|
update_latency_boundaries(u, dest, u->sink_input->sink);
|
|
set_source_output_latency(u, dest);
|
|
update_effective_source_latency(u, dest, u->sink_input->sink);
|
|
|
|
/* Uncork the sink input unless the destination is suspended for other
|
|
* reasons than idle. */
|
|
if (dest->state == PA_SOURCE_SUSPENDED)
|
|
pa_sink_input_cork(u->sink_input, (dest->suspend_cause != PA_SUSPEND_IDLE));
|
|
else
|
|
pa_sink_input_cork(u->sink_input, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
/* Reset counters */
|
|
u->iteration_counter = 0;
|
|
u->underrun_counter = 0;
|
|
|
|
/* Reset booleans, latency error and counters */
|
|
u->source_sink_changed = true;
|
|
u->underrun_occured = false;
|
|
u->source_latency_offset_changed = false;
|
|
u->target_latency_cross_counter = 0;
|
|
u->log_counter = u->log_interval;
|
|
u->latency_error = 0;
|
|
|
|
/* Send a mesage to the output thread that the source has changed.
|
|
* If the sink is invalid here during a profile switching situation
|
|
* we can safely set push_called to false directly. */
|
|
if (u->sink_input->sink)
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
|
|
else
|
|
u->output_thread_info.push_called = false;
|
|
|
|
/* The sampling rate may be far away from the default rate if we are still
|
|
* recovering from a previous source or sink change, so reset rate to
|
|
* default before moving the source. */
|
|
pa_sink_input_set_rate(u->sink_input, u->source_output->sample_spec.rate);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void source_output_suspend_cb(pa_source_output *o, pa_source_state_t old_state, pa_suspend_cause_t old_suspend_cause) {
|
|
struct userdata *u;
|
|
bool suspended;
|
|
|
|
pa_source_output_assert_ref(o);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = o->userdata);
|
|
|
|
/* State has not changed, nothing to do */
|
|
if (old_state == o->source->state)
|
|
return;
|
|
|
|
suspended = (o->source->state == PA_SOURCE_SUSPENDED);
|
|
|
|
/* If the source has been suspended, we need to handle this like
|
|
* a source change when the source is resumed */
|
|
if (suspended) {
|
|
if (u->sink_input->sink)
|
|
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
|
|
else
|
|
u->output_thread_info.push_called = false;
|
|
|
|
} else
|
|
/* Get effective source latency on unsuspend */
|
|
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
|
|
|
|
pa_sink_input_cork(u->sink_input, suspended);
|
|
|
|
update_adjust_timer(u);
|
|
}
|
|
|
|
/* Called from input thread context */
|
|
static void update_source_latency_range_cb(pa_source_output *i) {
|
|
struct userdata *u;
|
|
|
|
pa_source_output_assert_ref(i);
|
|
pa_source_output_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
/* Source latency may have changed */
|
|
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED, NULL, 0, NULL, NULL);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
pa_assert(chunk);
|
|
|
|
/* It seems necessary to handle outstanding push messages here, though it is not clear
|
|
* why. Removing this part leads to underruns when low latencies are configured. */
|
|
u->output_thread_info.in_pop = true;
|
|
while (pa_asyncmsgq_process_one(u->asyncmsgq) > 0)
|
|
;
|
|
u->output_thread_info.in_pop = false;
|
|
|
|
/* While pop has not been called, latency adjustments in SINK_INPUT_MESSAGE_POST are
|
|
* enabled. Disable them on second pop and enable the final adjustment during the
|
|
* next push. The adjustment must be done on the next push, because there is no way
|
|
* to retrieve the source latency here. We are waiting for the second pop, because
|
|
* the first pop may be called before the sink is actually started. */
|
|
if (!u->output_thread_info.pop_called && u->output_thread_info.first_pop_done) {
|
|
u->output_thread_info.pop_adjust = true;
|
|
u->output_thread_info.pop_called = true;
|
|
}
|
|
u->output_thread_info.first_pop_done = true;
|
|
|
|
if (pa_memblockq_peek(u->memblockq, chunk) < 0) {
|
|
pa_log_info("Could not peek into queue");
|
|
return -1;
|
|
}
|
|
|
|
chunk->length = PA_MIN(chunk->length, nbytes);
|
|
pa_memblockq_drop(u->memblockq, chunk->length);
|
|
|
|
/* Adjust the memblockq to ensure that there is
|
|
* enough data in the queue to avoid underruns. */
|
|
if (!u->output_thread_info.push_called)
|
|
memblockq_adjust(u, 0, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_rewind(u->memblockq, nbytes);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static int sink_input_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
|
|
struct userdata *u = PA_SINK_INPUT(obj)->userdata;
|
|
|
|
pa_sink_input_assert_io_context(u->sink_input);
|
|
|
|
switch (code) {
|
|
|
|
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
|
|
pa_usec_t *r = data;
|
|
|
|
*r = pa_bytes_to_usec(pa_memblockq_get_length(u->memblockq), &u->sink_input->sample_spec);
|
|
|
|
/* Fall through, the default handler will add in the extra
|
|
* latency added by the resampler */
|
|
break;
|
|
}
|
|
|
|
case SINK_INPUT_MESSAGE_POST:
|
|
|
|
pa_memblockq_push_align(u->memblockq, chunk);
|
|
|
|
/* If push has not been called yet, latency adjustments in sink_input_pop_cb()
|
|
* are enabled. Disable them on first push and correct the memblockq. If pop
|
|
* has not been called yet, wait until the pop_cb() requests the adjustment */
|
|
if (u->output_thread_info.pop_called && (!u->output_thread_info.push_called || u->output_thread_info.pop_adjust)) {
|
|
int64_t time_delta;
|
|
|
|
/* This is the source latency at the time push was called */
|
|
time_delta = PA_PTR_TO_INT(data);
|
|
/* Add the time between push and post */
|
|
time_delta += pa_rtclock_now() - (pa_usec_t) offset;
|
|
/* Add the sink and resampler latency */
|
|
time_delta += pa_sink_get_latency_within_thread(u->sink_input->sink, true);
|
|
time_delta += pa_resampler_get_delay_usec(u->sink_input->thread_info.resampler);
|
|
|
|
/* The source latency report includes the audio in the chunk,
|
|
* but since we already pushed the chunk to the memblockq, we need
|
|
* to subtract the chunk size from the source latency so that it
|
|
* won't be counted towards both the memblockq latency and the
|
|
* source latency.
|
|
*
|
|
* Sometimes the alsa source reports way too low latency (might
|
|
* be a bug in the alsa source code). This seems to happen when
|
|
* there's an overrun. As an attempt to detect overruns, we
|
|
* check if the chunk size is larger than the configured source
|
|
* latency. If so, we assume that the source should have pushed
|
|
* a chunk whose size equals the configured latency, so we
|
|
* modify time_delta only by that amount, which makes
|
|
* memblockq_adjust() drop more data than it would otherwise.
|
|
* This seems to work quite well, but it's possible that the
|
|
* next push also contains too much data, and in that case the
|
|
* resulting latency will be wrong. */
|
|
if (pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec) > u->output_thread_info.effective_source_latency)
|
|
time_delta -= (int64_t)u->output_thread_info.effective_source_latency;
|
|
else
|
|
time_delta -= (int64_t)pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec);
|
|
|
|
/* FIXME: We allow pushing silence here to fix up the latency. This
|
|
* might lead to a gap in the stream */
|
|
memblockq_adjust(u, time_delta, true);
|
|
|
|
/* Notify main thread when the initial adjustment is done. */
|
|
if (u->output_thread_info.pop_called)
|
|
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_ADJUST_DONE, NULL, 0, NULL, NULL);
|
|
|
|
u->output_thread_info.pop_adjust = false;
|
|
u->output_thread_info.push_called = true;
|
|
}
|
|
|
|
/* If pop has not been called yet, make sure the latency does not grow too much.
|
|
* Don't push any silence here, because we already have new data in the queue */
|
|
if (!u->output_thread_info.pop_called)
|
|
memblockq_adjust(u, 0, false);
|
|
|
|
/* Is this the end of an underrun? Then let's start things
|
|
* right-away */
|
|
if (u->sink_input->sink->thread_info.state != PA_SINK_SUSPENDED &&
|
|
u->sink_input->thread_info.underrun_for > 0 &&
|
|
pa_memblockq_is_readable(u->memblockq) &&
|
|
u->output_thread_info.pop_called) {
|
|
|
|
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_UNDERRUN, NULL, 0, NULL, NULL);
|
|
/* If called from within the pop callback skip the rewind */
|
|
if (!u->output_thread_info.in_pop) {
|
|
pa_log_debug("Requesting rewind due to end of underrun.");
|
|
pa_sink_input_request_rewind(u->sink_input,
|
|
(size_t) (u->sink_input->thread_info.underrun_for == (size_t) -1 ? 0 : u->sink_input->thread_info.underrun_for),
|
|
false, true, false);
|
|
}
|
|
}
|
|
|
|
u->output_thread_info.recv_counter += (int64_t) chunk->length;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_REWIND:
|
|
|
|
/* Do not try to rewind if no data was pushed yet */
|
|
if (u->output_thread_info.push_called)
|
|
pa_memblockq_seek(u->memblockq, -offset, PA_SEEK_RELATIVE, true);
|
|
|
|
u->output_thread_info.recv_counter -= offset;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
|
|
size_t length;
|
|
|
|
length = pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq);
|
|
|
|
u->latency_snapshot.recv_counter = u->output_thread_info.recv_counter;
|
|
u->latency_snapshot.loopback_memblockq_length = pa_memblockq_get_length(u->memblockq);
|
|
/* Add content of render memblockq to sink latency */
|
|
u->latency_snapshot.sink_latency = pa_sink_get_latency_within_thread(u->sink_input->sink, true) +
|
|
pa_bytes_to_usec(length, &u->sink_input->sink->sample_spec);
|
|
/* Add resampler latency */
|
|
u->latency_snapshot.sink_latency += pa_resampler_get_delay_usec(u->sink_input->thread_info.resampler);
|
|
|
|
u->latency_snapshot.sink_timestamp = pa_rtclock_now();
|
|
|
|
return 0;
|
|
}
|
|
|
|
case SINK_INPUT_MESSAGE_SOURCE_CHANGED:
|
|
|
|
u->output_thread_info.push_called = false;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY:
|
|
|
|
u->output_thread_info.effective_source_latency = (pa_usec_t)offset;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY:
|
|
|
|
u->output_thread_info.minimum_latency = (pa_usec_t)offset;
|
|
|
|
return 0;
|
|
|
|
case SINK_INPUT_MESSAGE_FAST_ADJUST:
|
|
|
|
memblockq_adjust(u, offset, true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
|
|
}
|
|
/* Called from main thread.
|
|
* Set sink input latency to one third of the overall latency if possible.
|
|
* The choice of one third is rather arbitrary somewhere between the minimum
|
|
* possible latency which would cause a lot of CPU load and half the configured
|
|
* latency which would quickly lead to underruns. */
|
|
static void set_sink_input_latency(struct userdata *u, pa_sink *sink) {
|
|
pa_usec_t latency, requested_latency;
|
|
|
|
requested_latency = u->latency / 3;
|
|
|
|
/* Normally we try to configure sink and source latency equally. If the
|
|
* source latency cannot match the requested sink latency try to set the
|
|
* sink latency to a smaller value to avoid underruns */
|
|
if (u->min_source_latency > requested_latency) {
|
|
latency = PA_MAX(u->latency, u->minimum_latency);
|
|
requested_latency = (latency - u->min_source_latency) / 2;
|
|
/* In the case of a fixed alsa source, u->minimum_latency is calculated from
|
|
* the default fragment size while u->min_source_latency is the reported minimum
|
|
* of the source latency (nr_of_fragments * fragment_size). This can lead to a
|
|
* situation where u->minimum_latency < u->min_source_latency. We only fall
|
|
* back to use the fragment size instead of min_source_latency if the calculation
|
|
* above does not deliver a usable result. */
|
|
if (u->fixed_alsa_source && u->min_source_latency >= latency)
|
|
requested_latency = (latency - u->core->default_fragment_size_msec * PA_USEC_PER_MSEC) / 2;
|
|
}
|
|
|
|
latency = PA_CLAMP(requested_latency , u->min_sink_latency, u->max_sink_latency);
|
|
u->configured_sink_latency = pa_sink_input_set_requested_latency(u->sink_input, latency);
|
|
if (u->configured_sink_latency != requested_latency)
|
|
pa_log_warn("Cannot set requested sink latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_sink_latency / PA_USEC_PER_MSEC);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_attach_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
u->rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
|
|
i->sink->thread_info.rtpoll,
|
|
PA_RTPOLL_LATE,
|
|
u->asyncmsgq);
|
|
|
|
pa_memblockq_set_prebuf(u->memblockq, pa_sink_input_get_max_request(i)*2);
|
|
pa_memblockq_set_maxrewind(u->memblockq, pa_sink_input_get_max_rewind(i));
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_detach_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (u->rtpoll_item_read) {
|
|
pa_rtpoll_item_free(u->rtpoll_item_read);
|
|
u->rtpoll_item_read = NULL;
|
|
}
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_set_maxrewind(u->memblockq, nbytes);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
pa_memblockq_set_prebuf(u->memblockq, nbytes*2);
|
|
pa_log_info("Max request changed");
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_kill_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
teardown(u);
|
|
pa_module_unload_request(u->module, true);
|
|
}
|
|
|
|
/* Called from the output thread context */
|
|
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (state == PA_SINK_INPUT_UNLINKED)
|
|
pa_asyncmsgq_flush(u->asyncmsgq, false);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
|
|
struct userdata *u;
|
|
char *output_description;
|
|
const char *n;
|
|
|
|
if (!dest)
|
|
return;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
output_description = pa_sprintf_malloc("Loopback to %s",
|
|
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_NAME, output_description);
|
|
pa_xfree(output_description);
|
|
|
|
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
/* Set latency and calculate latency limits */
|
|
u->underrun_latency_limit = 0;
|
|
u->last_sink_latency_offset = dest->port_latency_offset;
|
|
u->initial_adjust_pending = true;
|
|
update_latency_boundaries(u, NULL, dest);
|
|
set_sink_input_latency(u, dest);
|
|
update_effective_source_latency(u, u->source_output->source, dest);
|
|
|
|
/* Uncork the source output unless the destination is suspended for other
|
|
* reasons than idle */
|
|
if (dest->state == PA_SINK_SUSPENDED)
|
|
pa_source_output_cork(u->source_output, (dest->suspend_cause != PA_SUSPEND_IDLE));
|
|
else
|
|
pa_source_output_cork(u->source_output, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
/* Reset counters */
|
|
u->iteration_counter = 0;
|
|
u->underrun_counter = 0;
|
|
|
|
/* Reset booleans, latency error and counters */
|
|
u->source_sink_changed = true;
|
|
u->underrun_occured = false;
|
|
u->sink_latency_offset_changed = false;
|
|
u->target_latency_cross_counter = 0;
|
|
u->log_counter = u->log_interval;
|
|
u->latency_error = 0;
|
|
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.first_pop_done = false;
|
|
|
|
/* Sample rate may be far away from the default rate if we are still
|
|
* recovering from a previous source or sink change, so reset rate to
|
|
* default before moving the sink. */
|
|
pa_sink_input_set_rate(u->sink_input, u->source_output->sample_spec.rate);
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
if (!u->source_output || !u->source_output->source)
|
|
return true;
|
|
|
|
return dest != u->source_output->source->monitor_of;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static void sink_input_suspend_cb(pa_sink_input *i, pa_sink_state_t old_state, pa_suspend_cause_t old_suspend_cause) {
|
|
struct userdata *u;
|
|
bool suspended;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_assert_ctl_context();
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
/* State has not changed, nothing to do */
|
|
if (old_state == i->sink->state)
|
|
return;
|
|
|
|
suspended = (i->sink->state == PA_SINK_SUSPENDED);
|
|
|
|
/* If the sink has been suspended, we need to handle this like
|
|
* a sink change when the sink is resumed. Because the sink
|
|
* is suspended, we can set the variables directly. */
|
|
if (suspended) {
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.first_pop_done = false;
|
|
|
|
} else
|
|
/* Set effective source latency on unsuspend */
|
|
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
|
|
|
|
pa_source_output_cork(u->source_output, suspended);
|
|
|
|
update_adjust_timer(u);
|
|
}
|
|
|
|
/* Called from output thread context */
|
|
static void update_sink_latency_range_cb(pa_sink_input *i) {
|
|
struct userdata *u;
|
|
|
|
pa_sink_input_assert_ref(i);
|
|
pa_sink_input_assert_io_context(i);
|
|
pa_assert_se(u = i->userdata);
|
|
|
|
/* Sink latency may have changed */
|
|
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED, NULL, 0, NULL, NULL);
|
|
}
|
|
|
|
/* Called from main context */
|
|
static int loopback_process_msg_cb(pa_msgobject *o, int code, void *userdata, int64_t offset, pa_memchunk *chunk) {
|
|
struct loopback_msg *msg;
|
|
struct userdata *u;
|
|
pa_usec_t current_latency;
|
|
|
|
pa_assert(o);
|
|
pa_assert_ctl_context();
|
|
|
|
msg = LOOPBACK_MSG(o);
|
|
|
|
/* If messages are processed after a module unload request, they
|
|
* must be ignored. */
|
|
if (msg->dead)
|
|
return 0;
|
|
|
|
pa_assert_se(u = msg->userdata);
|
|
|
|
switch (code) {
|
|
|
|
case LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED:
|
|
|
|
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
|
|
current_latency = pa_source_get_requested_latency(u->source_output->source);
|
|
if (current_latency > u->configured_source_latency) {
|
|
/* The minimum latency has changed to a value larger than the configured latency, so
|
|
* the source latency has been increased. The case that the minimum latency changes
|
|
* back to a smaller value is not handled because this never happens with the current
|
|
* source implementations. */
|
|
pa_log_warn("Source minimum latency increased to %0.2f ms", (double)current_latency / PA_USEC_PER_MSEC);
|
|
u->configured_source_latency = current_latency;
|
|
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
|
|
/* We re-start counting when the latency has changed */
|
|
u->iteration_counter = 0;
|
|
u->underrun_counter = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
case LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED:
|
|
|
|
current_latency = pa_sink_get_requested_latency(u->sink_input->sink);
|
|
if (current_latency > u->configured_sink_latency) {
|
|
/* The minimum latency has changed to a value larger than the configured latency, so
|
|
* the sink latency has been increased. The case that the minimum latency changes back
|
|
* to a smaller value is not handled because this never happens with the current sink
|
|
* implementations. */
|
|
pa_log_warn("Sink minimum latency increased to %0.2f ms", (double)current_latency / PA_USEC_PER_MSEC);
|
|
u->configured_sink_latency = current_latency;
|
|
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
|
|
/* We re-start counting when the latency has changed */
|
|
u->iteration_counter = 0;
|
|
u->underrun_counter = 0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
case LOOPBACK_MESSAGE_UNDERRUN:
|
|
|
|
u->underrun_counter++;
|
|
u->underrun_occured = true;
|
|
u->target_latency_cross_counter = 0;
|
|
pa_log_debug("Underrun detected, counter incremented to %u", u->underrun_counter);
|
|
|
|
return 0;
|
|
|
|
case LOOPBACK_MESSAGE_ADJUST_DONE:
|
|
|
|
u->initial_adjust_pending = false;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static pa_hook_result_t sink_port_latency_offset_changed_cb(pa_core *core, pa_sink *sink, struct userdata *u) {
|
|
|
|
if (sink != u->sink_input->sink)
|
|
return PA_HOOK_OK;
|
|
|
|
if (!u->sink_latency_offset_changed)
|
|
u->last_sink_latency_offset = u->sink_latency_offset;
|
|
u->sink_latency_offset_changed = true;
|
|
u->sink_latency_offset = sink->port_latency_offset;
|
|
update_minimum_latency(u, sink, true);
|
|
|
|
/* We might need to adjust again, reset counter */
|
|
u->target_latency_cross_counter = 0;
|
|
|
|
return PA_HOOK_OK;
|
|
}
|
|
|
|
/* Called from main thread */
|
|
static pa_hook_result_t source_port_latency_offset_changed_cb(pa_core *core, pa_source *source, struct userdata *u) {
|
|
|
|
if (source != u->source_output->source)
|
|
return PA_HOOK_OK;
|
|
|
|
if (!u->source_latency_offset_changed)
|
|
u->last_source_latency_offset = u->source_latency_offset;
|
|
u->source_latency_offset_changed = true;
|
|
u->source_latency_offset = source->port_latency_offset;
|
|
update_minimum_latency(u, u->sink_input->sink, true);
|
|
|
|
/* We might need to adjust again, reset counter */
|
|
u->target_latency_cross_counter = 0;
|
|
|
|
return PA_HOOK_OK;
|
|
}
|
|
|
|
int pa__init(pa_module *m) {
|
|
pa_modargs *ma = NULL;
|
|
struct userdata *u;
|
|
pa_sink *sink = NULL;
|
|
pa_sink_input_new_data sink_input_data;
|
|
bool sink_dont_move;
|
|
pa_source *source = NULL;
|
|
pa_source_output_new_data source_output_data;
|
|
bool source_dont_move;
|
|
uint32_t latency_msec;
|
|
uint32_t max_latency_msec;
|
|
uint32_t fast_adjust_threshold;
|
|
uint32_t adjust_threshold;
|
|
pa_sample_spec ss;
|
|
pa_channel_map map;
|
|
bool format_set = false;
|
|
bool rate_set = false;
|
|
bool channels_set = false;
|
|
pa_memchunk silence;
|
|
double adjust_time_sec;
|
|
double log_interval_sec;
|
|
const char *n;
|
|
bool remix = true;
|
|
|
|
pa_assert(m);
|
|
|
|
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
|
|
pa_log("Failed to parse module arguments");
|
|
goto fail;
|
|
}
|
|
|
|
n = pa_modargs_get_value(ma, "source", NULL);
|
|
if (n && !(source = pa_namereg_get(m->core, n, PA_NAMEREG_SOURCE))) {
|
|
pa_log("No such source.");
|
|
goto fail;
|
|
}
|
|
|
|
n = pa_modargs_get_value(ma, "sink", NULL);
|
|
if (n && !(sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK))) {
|
|
pa_log("No such sink.");
|
|
goto fail;
|
|
}
|
|
|
|
if (pa_modargs_get_value_boolean(ma, "remix", &remix) < 0) {
|
|
pa_log("Invalid boolean remix parameter");
|
|
goto fail;
|
|
}
|
|
|
|
if (source) {
|
|
ss = source->sample_spec;
|
|
map = source->channel_map;
|
|
format_set = true;
|
|
rate_set = true;
|
|
channels_set = true;
|
|
} else if (sink) {
|
|
ss = sink->sample_spec;
|
|
map = sink->channel_map;
|
|
format_set = true;
|
|
rate_set = true;
|
|
channels_set = true;
|
|
} else {
|
|
/* FIXME: Dummy stream format, needed because pa_sink_input_new()
|
|
* requires valid sample spec and channel map even when all the FIX_*
|
|
* stream flags are specified. pa_sink_input_new() should be changed
|
|
* to ignore the sample spec and channel map when the FIX_* flags are
|
|
* present. */
|
|
ss.format = PA_SAMPLE_U8;
|
|
ss.rate = 8000;
|
|
ss.channels = 1;
|
|
map.channels = 1;
|
|
map.map[0] = PA_CHANNEL_POSITION_MONO;
|
|
}
|
|
|
|
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
|
|
pa_log("Invalid sample format specification or channel map");
|
|
goto fail;
|
|
}
|
|
|
|
if (ss.rate < 4000 || ss.rate > PA_RATE_MAX) {
|
|
pa_log("Invalid rate specification, valid range is 4000 Hz to %i Hz", PA_RATE_MAX);
|
|
goto fail;
|
|
}
|
|
|
|
if (pa_modargs_get_value(ma, "format", NULL))
|
|
format_set = true;
|
|
|
|
if (pa_modargs_get_value(ma, "rate", NULL))
|
|
rate_set = true;
|
|
|
|
if (pa_modargs_get_value(ma, "channels", NULL) || pa_modargs_get_value(ma, "channel_map", NULL))
|
|
channels_set = true;
|
|
|
|
adjust_threshold = DEFAULT_ADJUST_THRESHOLD_USEC;
|
|
if (pa_modargs_get_value_u32(ma, "adjust_threshold_usec", &adjust_threshold) < 0 || adjust_threshold < 1 || adjust_threshold > 10000) {
|
|
pa_log_info("Invalid adjust threshold specification");
|
|
goto fail;
|
|
}
|
|
|
|
latency_msec = DEFAULT_LATENCY_MSEC;
|
|
if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 30000) {
|
|
pa_log("Invalid latency specification");
|
|
goto fail;
|
|
}
|
|
|
|
fast_adjust_threshold = 0;
|
|
if (pa_modargs_get_value_u32(ma, "fast_adjust_threshold_msec", &fast_adjust_threshold) < 0 || (fast_adjust_threshold != 0 && fast_adjust_threshold < 100)) {
|
|
pa_log("Invalid fast adjust threshold specification");
|
|
goto fail;
|
|
}
|
|
|
|
max_latency_msec = 0;
|
|
if (pa_modargs_get_value_u32(ma, "max_latency_msec", &max_latency_msec) < 0) {
|
|
pa_log("Invalid maximum latency specification");
|
|
goto fail;
|
|
}
|
|
|
|
if (max_latency_msec > 0 && max_latency_msec < latency_msec) {
|
|
pa_log_warn("Configured maximum latency is smaller than latency, using latency instead");
|
|
max_latency_msec = latency_msec;
|
|
}
|
|
|
|
m->userdata = u = pa_xnew0(struct userdata, 1);
|
|
u->core = m->core;
|
|
u->module = m;
|
|
u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;
|
|
u->max_latency = (pa_usec_t) max_latency_msec * PA_USEC_PER_MSEC;
|
|
u->output_thread_info.pop_called = false;
|
|
u->output_thread_info.pop_adjust = false;
|
|
u->output_thread_info.push_called = false;
|
|
u->iteration_counter = 0;
|
|
u->underrun_counter = 0;
|
|
u->underrun_latency_limit = 0;
|
|
u->source_sink_changed = true;
|
|
u->real_adjust_time_sum = 0;
|
|
u->adjust_counter = 0;
|
|
u->fast_adjust_threshold = fast_adjust_threshold * PA_USEC_PER_MSEC;
|
|
u->underrun_occured = false;
|
|
u->source_latency_offset_changed = false;
|
|
u->sink_latency_offset_changed = false;
|
|
u->latency_error = 0;
|
|
u->adjust_threshold = adjust_threshold;
|
|
u->target_latency_cross_counter = 0;
|
|
u->initial_adjust_pending = true;
|
|
|
|
adjust_time_sec = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
|
|
if (pa_modargs_get_value_double(ma, "adjust_time", &adjust_time_sec) < 0) {
|
|
pa_log("Failed to parse adjust_time value");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allow values >= 0.1 and also 0 which means no adjustment */
|
|
if (adjust_time_sec < 0.1) {
|
|
if (adjust_time_sec < 0 || adjust_time_sec > 0) {
|
|
pa_log("Failed to parse adjust_time value");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
u->adjust_time = adjust_time_sec * PA_USEC_PER_SEC;
|
|
u->real_adjust_time = u->adjust_time;
|
|
|
|
pa_source_output_new_data_init(&source_output_data);
|
|
source_output_data.driver = __FILE__;
|
|
source_output_data.module = m;
|
|
if (source)
|
|
pa_source_output_new_data_set_source(&source_output_data, source, false, true);
|
|
|
|
if (pa_modargs_get_proplist(ma, "source_output_properties", source_output_data.proplist, PA_UPDATE_REPLACE) < 0) {
|
|
pa_log("Failed to parse the source_output_properties value.");
|
|
pa_source_output_new_data_done(&source_output_data);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(source_output_data.proplist, PA_PROP_MEDIA_ROLE))
|
|
pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
|
|
|
|
pa_source_output_new_data_set_sample_spec(&source_output_data, &ss);
|
|
pa_source_output_new_data_set_channel_map(&source_output_data, &map);
|
|
source_output_data.flags = PA_SOURCE_OUTPUT_START_CORKED;
|
|
|
|
if (!remix)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_NO_REMIX;
|
|
|
|
if (!format_set)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_FIX_FORMAT;
|
|
|
|
if (!rate_set)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_FIX_RATE;
|
|
|
|
if (!channels_set)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_FIX_CHANNELS;
|
|
|
|
source_dont_move = false;
|
|
if (pa_modargs_get_value_boolean(ma, "source_dont_move", &source_dont_move) < 0) {
|
|
pa_log("source_dont_move= expects a boolean argument.");
|
|
goto fail;
|
|
}
|
|
|
|
if (source_dont_move)
|
|
source_output_data.flags |= PA_SOURCE_OUTPUT_DONT_MOVE;
|
|
|
|
pa_source_output_new(&u->source_output, m->core, &source_output_data);
|
|
pa_source_output_new_data_done(&source_output_data);
|
|
|
|
if (!u->source_output)
|
|
goto fail;
|
|
|
|
u->source_output->parent.process_msg = source_output_process_msg_cb;
|
|
u->source_output->push = source_output_push_cb;
|
|
u->source_output->process_rewind = source_output_process_rewind_cb;
|
|
u->source_output->kill = source_output_kill_cb;
|
|
u->source_output->attach = source_output_attach_cb;
|
|
u->source_output->detach = source_output_detach_cb;
|
|
u->source_output->may_move_to = source_output_may_move_to_cb;
|
|
u->source_output->moving = source_output_moving_cb;
|
|
u->source_output->suspend = source_output_suspend_cb;
|
|
u->source_output->update_source_latency_range = update_source_latency_range_cb;
|
|
u->source_output->update_source_fixed_latency = update_source_latency_range_cb;
|
|
u->source_output->userdata = u;
|
|
|
|
/* If format, rate or channels were originally unset, they are set now
|
|
* after the pa_source_output_new() call. */
|
|
ss = u->source_output->sample_spec;
|
|
map = u->source_output->channel_map;
|
|
|
|
/* Get log interval, default is 0, which means no logging */
|
|
log_interval_sec = 0;
|
|
if (pa_modargs_get_value_double(ma, "log_interval", &log_interval_sec) < 0) {
|
|
pa_log_info("Invalid log interval specification");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allow values >= 0.1 and also 0 */
|
|
if (log_interval_sec < 0.1) {
|
|
if (log_interval_sec < 0 || log_interval_sec > 0) {
|
|
pa_log("Failed to parse log_interval value");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Estimate number of iterations for logging. */
|
|
u->log_interval = 0;
|
|
if (u->adjust_time != 0 && log_interval_sec != 0) {
|
|
u->log_interval = (int)(log_interval_sec * PA_USEC_PER_SEC / u->adjust_time + 0.5);
|
|
/* Logging was specified, but log interval parameter was too small,
|
|
* therefore log on every iteration */
|
|
if (u->log_interval == 0)
|
|
u->log_interval = 1;
|
|
}
|
|
u->log_counter = u->log_interval;
|
|
|
|
pa_sink_input_new_data_init(&sink_input_data);
|
|
sink_input_data.driver = __FILE__;
|
|
sink_input_data.module = m;
|
|
|
|
if (sink)
|
|
pa_sink_input_new_data_set_sink(&sink_input_data, sink, false, true);
|
|
|
|
if (pa_modargs_get_proplist(ma, "sink_input_properties", sink_input_data.proplist, PA_UPDATE_REPLACE) < 0) {
|
|
pa_log("Failed to parse the sink_input_properties value.");
|
|
pa_sink_input_new_data_done(&sink_input_data);
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(sink_input_data.proplist, PA_PROP_MEDIA_ROLE))
|
|
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
|
|
|
|
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
|
|
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
|
|
sink_input_data.flags = PA_SINK_INPUT_VARIABLE_RATE | PA_SINK_INPUT_START_CORKED;
|
|
|
|
if (!remix)
|
|
sink_input_data.flags |= PA_SINK_INPUT_NO_REMIX;
|
|
|
|
sink_dont_move = false;
|
|
if (pa_modargs_get_value_boolean(ma, "sink_dont_move", &sink_dont_move) < 0) {
|
|
pa_log("sink_dont_move= expects a boolean argument.");
|
|
goto fail;
|
|
}
|
|
|
|
if (sink_dont_move)
|
|
sink_input_data.flags |= PA_SINK_INPUT_DONT_MOVE;
|
|
|
|
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
|
|
pa_sink_input_new_data_done(&sink_input_data);
|
|
|
|
if (!u->sink_input)
|
|
goto fail;
|
|
|
|
u->sink_input->parent.process_msg = sink_input_process_msg_cb;
|
|
u->sink_input->pop = sink_input_pop_cb;
|
|
u->sink_input->process_rewind = sink_input_process_rewind_cb;
|
|
u->sink_input->kill = sink_input_kill_cb;
|
|
u->sink_input->state_change = sink_input_state_change_cb;
|
|
u->sink_input->attach = sink_input_attach_cb;
|
|
u->sink_input->detach = sink_input_detach_cb;
|
|
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
|
|
u->sink_input->update_max_request = sink_input_update_max_request_cb;
|
|
u->sink_input->may_move_to = sink_input_may_move_to_cb;
|
|
u->sink_input->moving = sink_input_moving_cb;
|
|
u->sink_input->suspend = sink_input_suspend_cb;
|
|
u->sink_input->update_sink_latency_range = update_sink_latency_range_cb;
|
|
u->sink_input->update_sink_fixed_latency = update_sink_latency_range_cb;
|
|
u->sink_input->userdata = u;
|
|
|
|
u->last_source_latency_offset = u->source_output->source->port_latency_offset;
|
|
u->last_sink_latency_offset = u->sink_input->sink->port_latency_offset;
|
|
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
|
|
set_sink_input_latency(u, u->sink_input->sink);
|
|
set_source_output_latency(u, u->source_output->source);
|
|
|
|
pa_sink_input_get_silence(u->sink_input, &silence);
|
|
u->memblockq = pa_memblockq_new(
|
|
"module-loopback memblockq",
|
|
0, /* idx */
|
|
MEMBLOCKQ_MAXLENGTH, /* maxlength */
|
|
MEMBLOCKQ_MAXLENGTH, /* tlength */
|
|
&ss, /* sample_spec */
|
|
0, /* prebuf */
|
|
0, /* minreq */
|
|
0, /* maxrewind */
|
|
&silence); /* silence frame */
|
|
pa_memblock_unref(silence.memblock);
|
|
/* Fill the memblockq with silence */
|
|
pa_memblockq_seek(u->memblockq, pa_usec_to_bytes(u->latency, &u->sink_input->sample_spec), PA_SEEK_RELATIVE, true);
|
|
|
|
u->asyncmsgq = pa_asyncmsgq_new(0);
|
|
if (!u->asyncmsgq) {
|
|
pa_log("pa_asyncmsgq_new() failed.");
|
|
goto fail;
|
|
}
|
|
|
|
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_NAME))
|
|
pa_proplist_setf(u->source_output->proplist, PA_PROP_MEDIA_NAME, "Loopback to %s",
|
|
pa_strnull(pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
|
|
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME)
|
|
&& (n = pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_proplist_sets(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
if (!pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_NAME))
|
|
pa_proplist_setf(u->sink_input->proplist, PA_PROP_MEDIA_NAME, "Loopback from %s",
|
|
pa_strnull(pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_DESCRIPTION)));
|
|
|
|
if (source && !pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME)
|
|
&& (n = pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_ICON_NAME)))
|
|
pa_proplist_sets(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME, n);
|
|
|
|
/* Hooks to track changes of latency offsets */
|
|
pa_module_hook_connect(m, &m->core->hooks[PA_CORE_HOOK_SINK_PORT_LATENCY_OFFSET_CHANGED],
|
|
PA_HOOK_NORMAL, (pa_hook_cb_t) sink_port_latency_offset_changed_cb, u);
|
|
pa_module_hook_connect(m, &m->core->hooks[PA_CORE_HOOK_SOURCE_PORT_LATENCY_OFFSET_CHANGED],
|
|
PA_HOOK_NORMAL, (pa_hook_cb_t) source_port_latency_offset_changed_cb, u);
|
|
|
|
/* Setup message handler for main thread */
|
|
u->msg = pa_msgobject_new(loopback_msg);
|
|
u->msg->parent.process_msg = loopback_process_msg_cb;
|
|
u->msg->userdata = u;
|
|
u->msg->dead = false;
|
|
|
|
/* The output thread is not yet running, set effective_source_latency directly */
|
|
update_effective_source_latency(u, u->source_output->source, NULL);
|
|
|
|
pa_sink_input_put(u->sink_input);
|
|
pa_source_output_put(u->source_output);
|
|
|
|
if (u->source_output->source->state != PA_SOURCE_SUSPENDED)
|
|
pa_sink_input_cork(u->sink_input, false);
|
|
|
|
if (u->sink_input->sink->state != PA_SINK_SUSPENDED)
|
|
pa_source_output_cork(u->source_output, false);
|
|
|
|
update_adjust_timer(u);
|
|
|
|
pa_modargs_free(ma);
|
|
return 0;
|
|
|
|
fail:
|
|
if (ma)
|
|
pa_modargs_free(ma);
|
|
|
|
pa__done(m);
|
|
|
|
return -1;
|
|
}
|
|
|
|
void pa__done(pa_module*m) {
|
|
struct userdata *u;
|
|
|
|
pa_assert(m);
|
|
|
|
if (!(u = m->userdata))
|
|
return;
|
|
|
|
teardown(u);
|
|
|
|
if (u->memblockq)
|
|
pa_memblockq_free(u->memblockq);
|
|
|
|
if (u->asyncmsgq)
|
|
pa_asyncmsgq_unref(u->asyncmsgq);
|
|
|
|
if (u->msg)
|
|
loopback_msg_unref(u->msg);
|
|
|
|
pa_xfree(u);
|
|
}
|