pulseaudio/src/modules/module-loopback.c
Raman Shyshniou 5864c4f976 loopback: add max_latency_msec argument
Currently loopback module indefinitely increases latency if underruns
occur. This patch allows to set up the upper limit of latency.
2018-06-21 05:50:29 +05:30

1605 lines
60 KiB
C

/***
This file is part of PulseAudio.
Copyright 2009 Intel Corporation
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <pulse/xmalloc.h>
#include <pulsecore/sink-input.h>
#include <pulsecore/module.h>
#include <pulsecore/modargs.h>
#include <pulsecore/namereg.h>
#include <pulsecore/log.h>
#include <pulsecore/core-util.h>
#include <pulse/rtclock.h>
#include <pulse/timeval.h>
PA_MODULE_AUTHOR("Pierre-Louis Bossart");
PA_MODULE_DESCRIPTION("Loopback from source to sink");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
"source=<source to connect to> "
"sink=<sink to connect to> "
"adjust_time=<how often to readjust rates in s> "
"latency_msec=<latency in ms> "
"max_latency_msec=<maximum latency in ms> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"sink_input_properties=<proplist> "
"source_output_properties=<proplist> "
"source_dont_move=<boolean> "
"sink_dont_move=<boolean> "
"remix=<remix channels?> ");
#define DEFAULT_LATENCY_MSEC 200
#define MEMBLOCKQ_MAXLENGTH (1024*1024*32)
#define MIN_DEVICE_LATENCY (2.5*PA_USEC_PER_MSEC)
#define DEFAULT_ADJUST_TIME_USEC (10*PA_USEC_PER_SEC)
typedef struct loopback_msg loopback_msg;
struct userdata {
pa_core *core;
pa_module *module;
loopback_msg *msg;
pa_sink_input *sink_input;
pa_source_output *source_output;
pa_asyncmsgq *asyncmsgq;
pa_memblockq *memblockq;
pa_rtpoll_item *rtpoll_item_read, *rtpoll_item_write;
pa_time_event *time_event;
/* Variables used to calculate the average time between
* subsequent calls of adjust_rates() */
pa_usec_t adjust_time_stamp;
pa_usec_t real_adjust_time;
pa_usec_t real_adjust_time_sum;
/* Values from command line configuration */
pa_usec_t latency;
pa_usec_t max_latency;
pa_usec_t adjust_time;
/* Latency boundaries and current values */
pa_usec_t min_source_latency;
pa_usec_t max_source_latency;
pa_usec_t min_sink_latency;
pa_usec_t max_sink_latency;
pa_usec_t configured_sink_latency;
pa_usec_t configured_source_latency;
int64_t source_latency_offset;
int64_t sink_latency_offset;
pa_usec_t minimum_latency;
/* lower latency limit found by underruns */
pa_usec_t underrun_latency_limit;
/* Various counters */
uint32_t iteration_counter;
uint32_t underrun_counter;
uint32_t adjust_counter;
bool fixed_alsa_source;
bool source_sink_changed;
/* Used for sink input and source output snapshots */
struct {
int64_t send_counter;
int64_t source_latency;
pa_usec_t source_timestamp;
int64_t recv_counter;
size_t loopback_memblockq_length;
int64_t sink_latency;
pa_usec_t sink_timestamp;
} latency_snapshot;
/* Input thread variable */
int64_t send_counter;
/* Output thread variables */
struct {
int64_t recv_counter;
pa_usec_t effective_source_latency;
/* Copied from main thread */
pa_usec_t minimum_latency;
/* Various booleans */
bool in_pop;
bool pop_called;
bool pop_adjust;
bool first_pop_done;
bool push_called;
} output_thread_info;
};
struct loopback_msg {
pa_msgobject parent;
struct userdata *userdata;
};
PA_DEFINE_PRIVATE_CLASS(loopback_msg, pa_msgobject);
#define LOOPBACK_MSG(o) (loopback_msg_cast(o))
static const char* const valid_modargs[] = {
"source",
"sink",
"adjust_time",
"latency_msec",
"max_latency_msec",
"format",
"rate",
"channels",
"channel_map",
"sink_input_properties",
"source_output_properties",
"source_dont_move",
"sink_dont_move",
"remix",
NULL,
};
enum {
SINK_INPUT_MESSAGE_POST = PA_SINK_INPUT_MESSAGE_MAX,
SINK_INPUT_MESSAGE_REWIND,
SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT,
SINK_INPUT_MESSAGE_SOURCE_CHANGED,
SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY,
SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY,
};
enum {
SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT = PA_SOURCE_OUTPUT_MESSAGE_MAX,
};
enum {
LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED,
LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED,
LOOPBACK_MESSAGE_UNDERRUN,
};
static void enable_adjust_timer(struct userdata *u, bool enable);
/* Called from main context */
static void teardown(struct userdata *u) {
pa_assert(u);
pa_assert_ctl_context();
u->adjust_time = 0;
enable_adjust_timer(u, false);
/* Handling the asyncmsgq between the source output and the sink input
* requires some care. When the source output is unlinked, nothing needs
* to be done for the asyncmsgq, because the source output is the sending
* end. But when the sink input is unlinked, we should ensure that the
* asyncmsgq is emptied, because the messages in the queue hold references
* to the sink input. Also, we need to ensure that new messages won't be
* written to the queue after we have emptied it.
*
* Emptying the queue can be done in the state_changed() callback of the
* sink input, when the new state is "unlinked".
*
* Preventing new messages from being written to the queue can be achieved
* by unlinking the source output before unlinking the sink input. There
* are no other writers for that queue, so this is sufficient. */
if (u->source_output) {
pa_source_output_unlink(u->source_output);
pa_source_output_unref(u->source_output);
u->source_output = NULL;
}
if (u->sink_input) {
pa_sink_input_unlink(u->sink_input);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
}
}
/* rate controller, called from main context
* - maximum deviation from base rate is less than 1%
* - can create audible artifacts by changing the rate too quickly
* - exhibits hunting with USB or Bluetooth sources
*/
static uint32_t rate_controller(
uint32_t base_rate,
pa_usec_t adjust_time,
int32_t latency_difference_usec) {
uint32_t new_rate;
double min_cycles;
/* Calculate best rate to correct the current latency offset, limit at
* slightly below 1% difference from base_rate */
min_cycles = (double)abs(latency_difference_usec) / adjust_time / 0.01 + 1;
new_rate = base_rate * (1.0 + (double)latency_difference_usec / min_cycles / adjust_time);
return new_rate;
}
/* Called from main thread.
* It has been a matter of discussion how to correctly calculate the minimum
* latency that module-loopback can deliver with a given source and sink.
* The calculation has been placed in a separate function so that the definition
* can easily be changed. The resulting estimate is not very exact because it
* depends on the reported latency ranges. In cases were the lower bounds of
* source and sink latency are not reported correctly (USB) the result will
* be wrong. */
static void update_minimum_latency(struct userdata *u, pa_sink *sink, bool print_msg) {
if (u->underrun_latency_limit)
/* If we already detected a real latency limit because of underruns, use it */
u->minimum_latency = u->underrun_latency_limit;
else {
/* Calculate latency limit from latency ranges */
u->minimum_latency = u->min_sink_latency;
if (u->fixed_alsa_source)
/* If we are using an alsa source with fixed latency, we will get a wakeup when
* one fragment is filled, and then we empty the source buffer, so the source
* latency never grows much beyond one fragment (assuming that the CPU doesn't
* cause a bottleneck). */
u->minimum_latency += u->core->default_fragment_size_msec * PA_USEC_PER_MSEC;
else
/* In all other cases the source will deliver new data at latest after one source latency.
* Make sure there is enough data available that the sink can keep on playing until new
* data is pushed. */
u->minimum_latency += u->min_source_latency;
/* Multiply by 1.1 as a safety margin for delays that are proportional to the buffer sizes */
u->minimum_latency *= 1.1;
/* Add 1.5 ms as a safety margin for delays not related to the buffer sizes */
u->minimum_latency += 1.5 * PA_USEC_PER_MSEC;
}
/* Add the latency offsets */
if (-(u->sink_latency_offset + u->source_latency_offset) <= (int64_t)u->minimum_latency)
u->minimum_latency += u->sink_latency_offset + u->source_latency_offset;
else
u->minimum_latency = 0;
/* If the sink is valid, send a message to update the minimum latency to
* the output thread, else set the variable directly */
if (sink)
pa_asyncmsgq_send(sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY, NULL, u->minimum_latency, NULL);
else
u->output_thread_info.minimum_latency = u->minimum_latency;
if (print_msg) {
pa_log_info("Minimum possible end to end latency: %0.2f ms", (double)u->minimum_latency / PA_USEC_PER_MSEC);
if (u->latency < u->minimum_latency)
pa_log_warn("Configured latency of %0.2f ms is smaller than minimum latency, using minimum instead", (double)u->latency / PA_USEC_PER_MSEC);
}
}
/* Called from main context */
static void adjust_rates(struct userdata *u) {
size_t buffer;
uint32_t old_rate, base_rate, new_rate, run_hours;
int32_t latency_difference;
pa_usec_t current_buffer_latency, snapshot_delay;
int64_t current_source_sink_latency, current_latency, latency_at_optimum_rate;
pa_usec_t final_latency, now;
pa_assert(u);
pa_assert_ctl_context();
/* Runtime and counters since last change of source or sink
* or source/sink latency */
run_hours = u->iteration_counter * u->real_adjust_time / PA_USEC_PER_SEC / 3600;
u->iteration_counter +=1;
/* If we are seeing underruns then the latency is too small */
if (u->underrun_counter > 2) {
pa_usec_t target_latency;
target_latency = PA_MAX(u->latency, u->minimum_latency) + 5 * PA_USEC_PER_MSEC;
if (u->max_latency == 0 || target_latency < u->max_latency) {
u->underrun_latency_limit = PA_CLIP_SUB((int64_t)target_latency, u->sink_latency_offset + u->source_latency_offset);
pa_log_warn("Too many underruns, increasing latency to %0.2f ms", (double)target_latency / PA_USEC_PER_MSEC);
} else {
u->underrun_latency_limit = PA_CLIP_SUB((int64_t)u->max_latency, u->sink_latency_offset + u->source_latency_offset);
pa_log_warn("Too many underruns, configured maximum latency of %0.2f ms is reached", (double)u->max_latency / PA_USEC_PER_MSEC);
pa_log_warn("Consider increasing the max_latency_msec");
}
update_minimum_latency(u, u->sink_input->sink, false);
u->underrun_counter = 0;
}
/* Allow one underrun per hour */
if (u->iteration_counter * u->real_adjust_time / PA_USEC_PER_SEC / 3600 > run_hours) {
u->underrun_counter = PA_CLIP_SUB(u->underrun_counter, 1u);
pa_log_info("Underrun counter: %u", u->underrun_counter);
}
/* Calculate real adjust time */
now = pa_rtclock_now();
if (!u->source_sink_changed) {
u->adjust_counter++;
u->real_adjust_time_sum += now - u->adjust_time_stamp;
u->real_adjust_time = u->real_adjust_time_sum / u->adjust_counter;
}
u->adjust_time_stamp = now;
/* Rates and latencies */
old_rate = u->sink_input->sample_spec.rate;
base_rate = u->source_output->sample_spec.rate;
buffer = u->latency_snapshot.loopback_memblockq_length;
if (u->latency_snapshot.recv_counter <= u->latency_snapshot.send_counter)
buffer += (size_t) (u->latency_snapshot.send_counter - u->latency_snapshot.recv_counter);
else
buffer = PA_CLIP_SUB(buffer, (size_t) (u->latency_snapshot.recv_counter - u->latency_snapshot.send_counter));
current_buffer_latency = pa_bytes_to_usec(buffer, &u->sink_input->sample_spec);
snapshot_delay = u->latency_snapshot.source_timestamp - u->latency_snapshot.sink_timestamp;
current_source_sink_latency = u->latency_snapshot.sink_latency + u->latency_snapshot.source_latency - snapshot_delay;
/* Current latency */
current_latency = current_source_sink_latency + current_buffer_latency;
/* Latency at base rate */
latency_at_optimum_rate = current_source_sink_latency + current_buffer_latency * old_rate / base_rate;
final_latency = PA_MAX(u->latency, u->minimum_latency);
latency_difference = (int32_t)(latency_at_optimum_rate - final_latency);
pa_log_debug("Loopback overall latency is %0.2f ms + %0.2f ms + %0.2f ms = %0.2f ms",
(double) u->latency_snapshot.sink_latency / PA_USEC_PER_MSEC,
(double) current_buffer_latency / PA_USEC_PER_MSEC,
(double) u->latency_snapshot.source_latency / PA_USEC_PER_MSEC,
(double) current_latency / PA_USEC_PER_MSEC);
pa_log_debug("Loopback latency at base rate is %0.2f ms", (double)latency_at_optimum_rate / PA_USEC_PER_MSEC);
/* Calculate new rate */
new_rate = rate_controller(base_rate, u->real_adjust_time, latency_difference);
u->source_sink_changed = false;
/* Set rate */
pa_sink_input_set_rate(u->sink_input, new_rate);
pa_log_debug("[%s] Updated sampling rate to %lu Hz.", u->sink_input->sink->name, (unsigned long) new_rate);
}
/* Called from main context */
static void time_callback(pa_mainloop_api *a, pa_time_event *e, const struct timeval *t, void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_assert(a);
pa_assert(u->time_event == e);
/* Restart timer right away */
pa_core_rttime_restart(u->core, u->time_event, pa_rtclock_now() + u->adjust_time);
/* Get sink and source latency snapshot */
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
pa_asyncmsgq_send(u->source_output->source->asyncmsgq, PA_MSGOBJECT(u->source_output), SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT, NULL, 0, NULL);
adjust_rates(u);
}
/* Called from main context
* When source or sink changes, give it a third of a second to settle down, then call adjust_rates for the first time */
static void enable_adjust_timer(struct userdata *u, bool enable) {
if (enable) {
if (!u->adjust_time)
return;
if (u->time_event)
u->core->mainloop->time_free(u->time_event);
u->time_event = pa_core_rttime_new(u->module->core, pa_rtclock_now() + 333 * PA_USEC_PER_MSEC, time_callback, u);
} else {
if (!u->time_event)
return;
u->core->mainloop->time_free(u->time_event);
u->time_event = NULL;
}
}
/* Called from main context */
static void update_adjust_timer(struct userdata *u) {
if (u->sink_input->state == PA_SINK_INPUT_CORKED || u->source_output->state == PA_SOURCE_OUTPUT_CORKED)
enable_adjust_timer(u, false);
else
enable_adjust_timer(u, true);
}
/* Called from main thread
* Calculates minimum and maximum possible latency for source and sink */
static void update_latency_boundaries(struct userdata *u, pa_source *source, pa_sink *sink) {
const char *s;
if (source) {
/* Source latencies */
u->fixed_alsa_source = false;
if (source->flags & PA_SOURCE_DYNAMIC_LATENCY)
pa_source_get_latency_range(source, &u->min_source_latency, &u->max_source_latency);
else {
u->min_source_latency = pa_source_get_fixed_latency(source);
u->max_source_latency = u->min_source_latency;
if ((s = pa_proplist_gets(source->proplist, PA_PROP_DEVICE_API))) {
if (pa_streq(s, "alsa"))
u->fixed_alsa_source = true;
}
}
/* Source offset */
u->source_latency_offset = source->port_latency_offset;
/* Latencies below 2.5 ms cause problems, limit source latency if possible */
if (u->max_source_latency >= MIN_DEVICE_LATENCY)
u->min_source_latency = PA_MAX(u->min_source_latency, MIN_DEVICE_LATENCY);
else
u->min_source_latency = u->max_source_latency;
}
if (sink) {
/* Sink latencies */
if (sink->flags & PA_SINK_DYNAMIC_LATENCY)
pa_sink_get_latency_range(sink, &u->min_sink_latency, &u->max_sink_latency);
else {
u->min_sink_latency = pa_sink_get_fixed_latency(sink);
u->max_sink_latency = u->min_sink_latency;
}
/* Sink offset */
u->sink_latency_offset = sink->port_latency_offset;
/* Latencies below 2.5 ms cause problems, limit sink latency if possible */
if (u->max_sink_latency >= MIN_DEVICE_LATENCY)
u->min_sink_latency = PA_MAX(u->min_sink_latency, MIN_DEVICE_LATENCY);
else
u->min_sink_latency = u->max_sink_latency;
}
update_minimum_latency(u, sink, true);
}
/* Called from output context
* Sets the memblockq to the configured latency corrected by latency_offset_usec */
static void memblockq_adjust(struct userdata *u, int64_t latency_offset_usec, bool allow_push) {
size_t current_memblockq_length, requested_memblockq_length, buffer_correction;
int64_t requested_buffer_latency;
pa_usec_t final_latency, requested_sink_latency;
final_latency = PA_MAX(u->latency, u->output_thread_info.minimum_latency);
/* If source or sink have some large negative latency offset, we might want to
* hold more than final_latency in the memblockq */
requested_buffer_latency = (int64_t)final_latency - latency_offset_usec;
/* Keep at least one sink latency in the queue to make sure that the sink
* never underruns initially */
requested_sink_latency = pa_sink_get_requested_latency_within_thread(u->sink_input->sink);
if (requested_buffer_latency < (int64_t)requested_sink_latency)
requested_buffer_latency = requested_sink_latency;
requested_memblockq_length = pa_usec_to_bytes(requested_buffer_latency, &u->sink_input->sample_spec);
current_memblockq_length = pa_memblockq_get_length(u->memblockq);
if (current_memblockq_length > requested_memblockq_length) {
/* Drop audio from queue */
buffer_correction = current_memblockq_length - requested_memblockq_length;
pa_log_info("Dropping %lu usec of audio from queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
pa_memblockq_drop(u->memblockq, buffer_correction);
} else if (current_memblockq_length < requested_memblockq_length && allow_push) {
/* Add silence to queue */
buffer_correction = requested_memblockq_length - current_memblockq_length;
pa_log_info("Adding %lu usec of silence to queue", pa_bytes_to_usec(buffer_correction, &u->sink_input->sample_spec));
pa_memblockq_seek(u->memblockq, (int64_t)buffer_correction, PA_SEEK_RELATIVE, true);
}
}
/* Called from input thread context */
static void source_output_push_cb(pa_source_output *o, const pa_memchunk *chunk) {
struct userdata *u;
pa_usec_t push_time;
int64_t current_source_latency;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
/* Send current source latency and timestamp with the message */
push_time = pa_rtclock_now();
current_source_latency = pa_source_get_latency_within_thread(u->source_output->source, true);
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_POST, PA_INT_TO_PTR(current_source_latency), push_time, chunk, NULL);
u->send_counter += (int64_t) chunk->length;
}
/* Called from input thread context */
static void source_output_process_rewind_cb(pa_source_output *o, size_t nbytes) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
pa_asyncmsgq_post(u->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_REWIND, NULL, (int64_t) nbytes, NULL, NULL);
u->send_counter -= (int64_t) nbytes;
}
/* Called from input thread context */
static int source_output_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE_OUTPUT(obj)->userdata;
switch (code) {
case SOURCE_OUTPUT_MESSAGE_LATENCY_SNAPSHOT: {
size_t length;
length = pa_memblockq_get_length(u->source_output->thread_info.delay_memblockq);
u->latency_snapshot.send_counter = u->send_counter;
/* Add content of delay memblockq to the source latency */
u->latency_snapshot.source_latency = pa_source_get_latency_within_thread(u->source_output->source, true) +
pa_bytes_to_usec(length, &u->source_output->source->sample_spec);
u->latency_snapshot.source_timestamp = pa_rtclock_now();
return 0;
}
}
return pa_source_output_process_msg(obj, code, data, offset, chunk);
}
/* Called from main thread.
* Get current effective latency of the source. If the source is in use with
* smaller latency than the configured latency, it will continue running with
* the smaller value when the source output is switched to the source. */
static void update_effective_source_latency(struct userdata *u, pa_source *source, pa_sink *sink) {
pa_usec_t effective_source_latency;
effective_source_latency = u->configured_source_latency;
if (source) {
effective_source_latency = pa_source_get_requested_latency(source);
if (effective_source_latency == 0 || effective_source_latency > u->configured_source_latency)
effective_source_latency = u->configured_source_latency;
}
/* If the sink is valid, send a message to the output thread, else set the variable directly */
if (sink)
pa_asyncmsgq_send(sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY, NULL, (int64_t)effective_source_latency, NULL);
else
u->output_thread_info.effective_source_latency = effective_source_latency;
}
/* Called from main thread.
* Set source output latency to one third of the overall latency if possible.
* The choice of one third is rather arbitrary somewhere between the minimum
* possible latency which would cause a lot of CPU load and half the configured
* latency which would quickly lead to underruns */
static void set_source_output_latency(struct userdata *u, pa_source *source) {
pa_usec_t latency, requested_latency;
requested_latency = u->latency / 3;
/* Normally we try to configure sink and source latency equally. If the
* sink latency cannot match the requested source latency try to set the
* source latency to a smaller value to avoid underruns */
if (u->min_sink_latency > requested_latency) {
latency = PA_MAX(u->latency, u->minimum_latency);
requested_latency = (latency - u->min_sink_latency) / 2;
}
latency = PA_CLAMP(requested_latency , u->min_source_latency, u->max_source_latency);
u->configured_source_latency = pa_source_output_set_requested_latency(u->source_output, latency);
if (u->configured_source_latency != requested_latency)
pa_log_warn("Cannot set requested source latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_source_latency / PA_USEC_PER_MSEC);
}
/* Called from input thread context */
static void source_output_attach_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
u->rtpoll_item_write = pa_rtpoll_item_new_asyncmsgq_write(
o->source->thread_info.rtpoll,
PA_RTPOLL_LATE,
u->asyncmsgq);
}
/* Called from input thread context */
static void source_output_detach_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_source_output_assert_io_context(o);
pa_assert_se(u = o->userdata);
if (u->rtpoll_item_write) {
pa_rtpoll_item_free(u->rtpoll_item_write);
u->rtpoll_item_write = NULL;
}
}
/* Called from main thread */
static void source_output_kill_cb(pa_source_output *o) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
teardown(u);
pa_module_unload_request(u->module, true);
}
/* Called from main thread */
static bool source_output_may_move_to_cb(pa_source_output *o, pa_source *dest) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
if (!u->sink_input || !u->sink_input->sink)
return true;
return dest != u->sink_input->sink->monitor_source;
}
/* Called from main thread */
static void source_output_moving_cb(pa_source_output *o, pa_source *dest) {
struct userdata *u;
char *input_description;
const char *n;
if (!dest)
return;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
input_description = pa_sprintf_malloc("Loopback of %s",
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_sink_input_set_property(u->sink_input, PA_PROP_MEDIA_NAME, input_description);
pa_xfree(input_description);
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
pa_sink_input_set_property(u->sink_input, PA_PROP_DEVICE_ICON_NAME, n);
/* Set latency and calculate latency limits */
u->underrun_latency_limit = 0;
update_latency_boundaries(u, dest, u->sink_input->sink);
set_source_output_latency(u, dest);
update_effective_source_latency(u, dest, u->sink_input->sink);
/* Uncork the sink input unless the destination is suspended for other
* reasons than idle. */
if (pa_source_get_state(dest) == PA_SOURCE_SUSPENDED)
pa_sink_input_cork(u->sink_input, (dest->suspend_cause != PA_SUSPEND_IDLE));
else
pa_sink_input_cork(u->sink_input, false);
update_adjust_timer(u);
/* Reset counters */
u->iteration_counter = 0;
u->underrun_counter = 0;
u->source_sink_changed = true;
/* Send a mesage to the output thread that the source has changed.
* If the sink is invalid here during a profile switching situation
* we can safely set push_called to false directly. */
if (u->sink_input->sink)
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
else
u->output_thread_info.push_called = false;
/* The sampling rate may be far away from the default rate if we are still
* recovering from a previous source or sink change, so reset rate to
* default before moving the source. */
pa_sink_input_set_rate(u->sink_input, u->source_output->sample_spec.rate);
}
/* Called from main thread */
static void source_output_suspend_cb(pa_source_output *o, bool suspended) {
struct userdata *u;
pa_source_output_assert_ref(o);
pa_assert_ctl_context();
pa_assert_se(u = o->userdata);
/* If the source has been suspended, we need to handle this like
* a source change when the source is resumed */
if (suspended) {
if (u->sink_input->sink)
pa_asyncmsgq_send(u->sink_input->sink->asyncmsgq, PA_MSGOBJECT(u->sink_input), SINK_INPUT_MESSAGE_SOURCE_CHANGED, NULL, 0, NULL);
else
u->output_thread_info.push_called = false;
} else
/* Get effective source latency on unsuspend */
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
pa_sink_input_cork(u->sink_input, suspended);
update_adjust_timer(u);
}
/* Called from input thread context */
static void update_source_latency_range_cb(pa_source_output *i) {
struct userdata *u;
pa_source_output_assert_ref(i);
pa_source_output_assert_io_context(i);
pa_assert_se(u = i->userdata);
/* Source latency may have changed */
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED, NULL, 0, NULL, NULL);
}
/* Called from output thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
pa_assert(chunk);
/* It seems necessary to handle outstanding push messages here, though it is not clear
* why. Removing this part leads to underruns when low latencies are configured. */
u->output_thread_info.in_pop = true;
while (pa_asyncmsgq_process_one(u->asyncmsgq) > 0)
;
u->output_thread_info.in_pop = false;
/* While pop has not been called, latency adjustments in SINK_INPUT_MESSAGE_POST are
* enabled. Disable them on second pop and enable the final adjustment during the
* next push. The adjustment must be done on the next push, because there is no way
* to retrieve the source latency here. We are waiting for the second pop, because
* the first pop may be called before the sink is actually started. */
if (!u->output_thread_info.pop_called && u->output_thread_info.first_pop_done) {
u->output_thread_info.pop_adjust = true;
u->output_thread_info.pop_called = true;
}
u->output_thread_info.first_pop_done = true;
if (pa_memblockq_peek(u->memblockq, chunk) < 0) {
pa_log_info("Could not peek into queue");
return -1;
}
chunk->length = PA_MIN(chunk->length, nbytes);
pa_memblockq_drop(u->memblockq, chunk->length);
/* Adjust the memblockq to ensure that there is
* enough data in the queue to avoid underruns. */
if (!u->output_thread_info.push_called)
memblockq_adjust(u, 0, true);
return 0;
}
/* Called from output thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
pa_memblockq_rewind(u->memblockq, nbytes);
}
/* Called from output thread context */
static int sink_input_process_msg_cb(pa_msgobject *obj, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK_INPUT(obj)->userdata;
pa_sink_input_assert_io_context(u->sink_input);
switch (code) {
case PA_SINK_INPUT_MESSAGE_GET_LATENCY: {
pa_usec_t *r = data;
*r = pa_bytes_to_usec(pa_memblockq_get_length(u->memblockq), &u->sink_input->sample_spec);
/* Fall through, the default handler will add in the extra
* latency added by the resampler */
break;
}
case SINK_INPUT_MESSAGE_POST:
pa_memblockq_push_align(u->memblockq, chunk);
/* If push has not been called yet, latency adjustments in sink_input_pop_cb()
* are enabled. Disable them on first push and correct the memblockq. If pop
* has not been called yet, wait until the pop_cb() requests the adjustment */
if (u->output_thread_info.pop_called && (!u->output_thread_info.push_called || u->output_thread_info.pop_adjust)) {
int64_t time_delta;
/* This is the source latency at the time push was called */
time_delta = PA_PTR_TO_INT(data);
/* Add the time between push and post */
time_delta += pa_rtclock_now() - (pa_usec_t) offset;
/* Add the sink latency */
time_delta += pa_sink_get_latency_within_thread(u->sink_input->sink, true);
/* The source latency report includes the audio in the chunk,
* but since we already pushed the chunk to the memblockq, we need
* to subtract the chunk size from the source latency so that it
* won't be counted towards both the memblockq latency and the
* source latency.
*
* Sometimes the alsa source reports way too low latency (might
* be a bug in the alsa source code). This seems to happen when
* there's an overrun. As an attempt to detect overruns, we
* check if the chunk size is larger than the configured source
* latency. If so, we assume that the source should have pushed
* a chunk whose size equals the configured latency, so we
* modify time_delta only by that amount, which makes
* memblockq_adjust() drop more data than it would otherwise.
* This seems to work quite well, but it's possible that the
* next push also contains too much data, and in that case the
* resulting latency will be wrong. */
if (pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec) > u->output_thread_info.effective_source_latency)
time_delta -= (int64_t)u->output_thread_info.effective_source_latency;
else
time_delta -= (int64_t)pa_bytes_to_usec(chunk->length, &u->sink_input->sample_spec);
/* FIXME: We allow pushing silence here to fix up the latency. This
* might lead to a gap in the stream */
memblockq_adjust(u, time_delta, true);
u->output_thread_info.pop_adjust = false;
u->output_thread_info.push_called = true;
}
/* If pop has not been called yet, make sure the latency does not grow too much.
* Don't push any silence here, because we already have new data in the queue */
if (!u->output_thread_info.pop_called)
memblockq_adjust(u, 0, false);
/* Is this the end of an underrun? Then let's start things
* right-away */
if (u->sink_input->sink->thread_info.state != PA_SINK_SUSPENDED &&
u->sink_input->thread_info.underrun_for > 0 &&
pa_memblockq_is_readable(u->memblockq)) {
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_UNDERRUN, NULL, 0, NULL, NULL);
/* If called from within the pop callback skip the rewind */
if (!u->output_thread_info.in_pop) {
pa_log_debug("Requesting rewind due to end of underrun.");
pa_sink_input_request_rewind(u->sink_input,
(size_t) (u->sink_input->thread_info.underrun_for == (size_t) -1 ? 0 : u->sink_input->thread_info.underrun_for),
false, true, false);
}
}
u->output_thread_info.recv_counter += (int64_t) chunk->length;
return 0;
case SINK_INPUT_MESSAGE_REWIND:
/* Do not try to rewind if no data was pushed yet */
if (u->output_thread_info.push_called)
pa_memblockq_seek(u->memblockq, -offset, PA_SEEK_RELATIVE, true);
u->output_thread_info.recv_counter -= offset;
return 0;
case SINK_INPUT_MESSAGE_LATENCY_SNAPSHOT: {
size_t length;
length = pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq);
u->latency_snapshot.recv_counter = u->output_thread_info.recv_counter;
u->latency_snapshot.loopback_memblockq_length = pa_memblockq_get_length(u->memblockq);
/* Add content of render memblockq to sink latency */
u->latency_snapshot.sink_latency = pa_sink_get_latency_within_thread(u->sink_input->sink, true) +
pa_bytes_to_usec(length, &u->sink_input->sink->sample_spec);
u->latency_snapshot.sink_timestamp = pa_rtclock_now();
return 0;
}
case SINK_INPUT_MESSAGE_SOURCE_CHANGED:
u->output_thread_info.push_called = false;
return 0;
case SINK_INPUT_MESSAGE_SET_EFFECTIVE_SOURCE_LATENCY:
u->output_thread_info.effective_source_latency = (pa_usec_t)offset;
return 0;
case SINK_INPUT_MESSAGE_UPDATE_MIN_LATENCY:
u->output_thread_info.minimum_latency = (pa_usec_t)offset;
return 0;
}
return pa_sink_input_process_msg(obj, code, data, offset, chunk);
}
/* Called from main thread.
* Set sink input latency to one third of the overall latency if possible.
* The choice of one third is rather arbitrary somewhere between the minimum
* possible latency which would cause a lot of CPU load and half the configured
* latency which would quickly lead to underruns. */
static void set_sink_input_latency(struct userdata *u, pa_sink *sink) {
pa_usec_t latency, requested_latency;
requested_latency = u->latency / 3;
/* Normally we try to configure sink and source latency equally. If the
* source latency cannot match the requested sink latency try to set the
* sink latency to a smaller value to avoid underruns */
if (u->min_source_latency > requested_latency) {
latency = PA_MAX(u->latency, u->minimum_latency);
requested_latency = (latency - u->min_source_latency) / 2;
}
latency = PA_CLAMP(requested_latency , u->min_sink_latency, u->max_sink_latency);
u->configured_sink_latency = pa_sink_input_set_requested_latency(u->sink_input, latency);
if (u->configured_sink_latency != requested_latency)
pa_log_warn("Cannot set requested sink latency of %0.2f ms, adjusting to %0.2f ms", (double)requested_latency / PA_USEC_PER_MSEC, (double)u->configured_sink_latency / PA_USEC_PER_MSEC);
}
/* Called from output thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
u->rtpoll_item_read = pa_rtpoll_item_new_asyncmsgq_read(
i->sink->thread_info.rtpoll,
PA_RTPOLL_LATE,
u->asyncmsgq);
pa_memblockq_set_prebuf(u->memblockq, pa_sink_input_get_max_request(i)*2);
pa_memblockq_set_maxrewind(u->memblockq, pa_sink_input_get_max_rewind(i));
}
/* Called from output thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
if (u->rtpoll_item_read) {
pa_rtpoll_item_free(u->rtpoll_item_read);
u->rtpoll_item_read = NULL;
}
}
/* Called from output thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
pa_memblockq_set_maxrewind(u->memblockq, nbytes);
}
/* Called from output thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
pa_memblockq_set_prebuf(u->memblockq, nbytes*2);
pa_log_info("Max request changed");
}
/* Called from main thread */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_ctl_context();
pa_assert_se(u = i->userdata);
teardown(u);
pa_module_unload_request(u->module, true);
}
/* Called from the output thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (state == PA_SINK_INPUT_UNLINKED)
pa_asyncmsgq_flush(u->asyncmsgq, false);
}
/* Called from main thread */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
char *output_description;
const char *n;
if (!dest)
return;
pa_sink_input_assert_ref(i);
pa_assert_ctl_context();
pa_assert_se(u = i->userdata);
output_description = pa_sprintf_malloc("Loopback to %s",
pa_strnull(pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION)));
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_NAME, output_description);
pa_xfree(output_description);
if ((n = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_ICON_NAME)))
pa_source_output_set_property(u->source_output, PA_PROP_MEDIA_ICON_NAME, n);
/* Set latency and calculate latency limits */
u->underrun_latency_limit = 0;
update_latency_boundaries(u, NULL, dest);
set_sink_input_latency(u, dest);
update_effective_source_latency(u, u->source_output->source, dest);
/* Uncork the source output unless the destination is suspended for other
* reasons than idle */
if (pa_sink_get_state(dest) == PA_SINK_SUSPENDED)
pa_source_output_cork(u->source_output, (dest->suspend_cause != PA_SUSPEND_IDLE));
else
pa_source_output_cork(u->source_output, false);
update_adjust_timer(u);
/* Reset counters */
u->iteration_counter = 0;
u->underrun_counter = 0;
u->source_sink_changed = true;
u->output_thread_info.pop_called = false;
u->output_thread_info.first_pop_done = false;
/* Sample rate may be far away from the default rate if we are still
* recovering from a previous source or sink change, so reset rate to
* default before moving the sink. */
pa_sink_input_set_rate(u->sink_input, u->source_output->sample_spec.rate);
}
/* Called from main thread */
static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_ctl_context();
pa_assert_se(u = i->userdata);
if (!u->source_output || !u->source_output->source)
return true;
return dest != u->source_output->source->monitor_of;
}
/* Called from main thread */
static void sink_input_suspend_cb(pa_sink_input *i, bool suspended) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_ctl_context();
pa_assert_se(u = i->userdata);
/* If the sink has been suspended, we need to handle this like
* a sink change when the sink is resumed. Because the sink
* is suspended, we can set the variables directly. */
if (suspended) {
u->output_thread_info.pop_called = false;
u->output_thread_info.first_pop_done = false;
} else
/* Set effective source latency on unsuspend */
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
pa_source_output_cork(u->source_output, suspended);
update_adjust_timer(u);
}
/* Called from output thread context */
static void update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_sink_input_assert_io_context(i);
pa_assert_se(u = i->userdata);
/* Sink latency may have changed */
pa_asyncmsgq_post(pa_thread_mq_get()->outq, PA_MSGOBJECT(u->msg), LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED, NULL, 0, NULL, NULL);
}
/* Called from main context */
static int loopback_process_msg_cb(pa_msgobject *o, int code, void *userdata, int64_t offset, pa_memchunk *chunk) {
struct loopback_msg *msg;
struct userdata *u;
pa_usec_t current_latency;
pa_assert(o);
pa_assert_ctl_context();
msg = LOOPBACK_MSG(o);
pa_assert_se(u = msg->userdata);
switch (code) {
case LOOPBACK_MESSAGE_SOURCE_LATENCY_RANGE_CHANGED:
update_effective_source_latency(u, u->source_output->source, u->sink_input->sink);
current_latency = pa_source_get_requested_latency(u->source_output->source);
if (current_latency > u->configured_source_latency) {
/* The minimum latency has changed to a value larger than the configured latency, so
* the source latency has been increased. The case that the minimum latency changes
* back to a smaller value is not handled because this never happens with the current
* source implementations. */
pa_log_warn("Source minimum latency increased to %0.2f ms", (double)current_latency / PA_USEC_PER_MSEC);
u->configured_source_latency = current_latency;
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
/* We re-start counting when the latency has changed */
u->iteration_counter = 0;
u->underrun_counter = 0;
}
return 0;
case LOOPBACK_MESSAGE_SINK_LATENCY_RANGE_CHANGED:
current_latency = pa_sink_get_requested_latency(u->sink_input->sink);
if (current_latency > u->configured_sink_latency) {
/* The minimum latency has changed to a value larger than the configured latency, so
* the sink latency has been increased. The case that the minimum latency changes back
* to a smaller value is not handled because this never happens with the current sink
* implementations. */
pa_log_warn("Sink minimum latency increased to %0.2f ms", (double)current_latency / PA_USEC_PER_MSEC);
u->configured_sink_latency = current_latency;
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
/* We re-start counting when the latency has changed */
u->iteration_counter = 0;
u->underrun_counter = 0;
}
return 0;
case LOOPBACK_MESSAGE_UNDERRUN:
u->underrun_counter++;
pa_log_debug("Underrun detected, counter incremented to %u", u->underrun_counter);
return 0;
}
return 0;
}
static pa_hook_result_t sink_port_latency_offset_changed_cb(pa_core *core, pa_sink *sink, struct userdata *u) {
if (sink != u->sink_input->sink)
return PA_HOOK_OK;
u->sink_latency_offset = sink->port_latency_offset;
update_minimum_latency(u, sink, true);
return PA_HOOK_OK;
}
static pa_hook_result_t source_port_latency_offset_changed_cb(pa_core *core, pa_source *source, struct userdata *u) {
if (source != u->source_output->source)
return PA_HOOK_OK;
u->source_latency_offset = source->port_latency_offset;
update_minimum_latency(u, u->sink_input->sink, true);
return PA_HOOK_OK;
}
int pa__init(pa_module *m) {
pa_modargs *ma = NULL;
struct userdata *u;
pa_sink *sink = NULL;
pa_sink_input_new_data sink_input_data;
bool sink_dont_move;
pa_source *source = NULL;
pa_source_output_new_data source_output_data;
bool source_dont_move;
uint32_t latency_msec;
uint32_t max_latency_msec;
pa_sample_spec ss;
pa_channel_map map;
bool format_set = false;
bool rate_set = false;
bool channels_set = false;
pa_memchunk silence;
uint32_t adjust_time_sec;
const char *n;
bool remix = true;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments");
goto fail;
}
n = pa_modargs_get_value(ma, "source", NULL);
if (n && !(source = pa_namereg_get(m->core, n, PA_NAMEREG_SOURCE))) {
pa_log("No such source.");
goto fail;
}
n = pa_modargs_get_value(ma, "sink", NULL);
if (n && !(sink = pa_namereg_get(m->core, n, PA_NAMEREG_SINK))) {
pa_log("No such sink.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "remix", &remix) < 0) {
pa_log("Invalid boolean remix parameter");
goto fail;
}
if (sink) {
ss = sink->sample_spec;
map = sink->channel_map;
format_set = true;
rate_set = true;
channels_set = true;
} else if (source) {
ss = source->sample_spec;
map = source->channel_map;
format_set = true;
rate_set = true;
channels_set = true;
} else {
/* FIXME: Dummy stream format, needed because pa_sink_input_new()
* requires valid sample spec and channel map even when all the FIX_*
* stream flags are specified. pa_sink_input_new() should be changed
* to ignore the sample spec and channel map when the FIX_* flags are
* present. */
ss.format = PA_SAMPLE_U8;
ss.rate = 8000;
ss.channels = 1;
map.channels = 1;
map.map[0] = PA_CHANNEL_POSITION_MONO;
}
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
if (ss.rate < 4000 || ss.rate > PA_RATE_MAX) {
pa_log("Invalid rate specification, valid range is 4000 Hz to %i Hz", PA_RATE_MAX);
goto fail;
}
if (pa_modargs_get_value(ma, "format", NULL))
format_set = true;
if (pa_modargs_get_value(ma, "rate", NULL))
rate_set = true;
if (pa_modargs_get_value(ma, "channels", NULL) || pa_modargs_get_value(ma, "channel_map", NULL))
channels_set = true;
latency_msec = DEFAULT_LATENCY_MSEC;
if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 30000) {
pa_log("Invalid latency specification");
goto fail;
}
max_latency_msec = 0;
if (pa_modargs_get_value_u32(ma, "max_latency_msec", &max_latency_msec) < 0) {
pa_log("Invalid maximum latency specification");
goto fail;
}
if (max_latency_msec > 0 && max_latency_msec < latency_msec) {
pa_log_warn("Configured maximum latency is smaller than latency, using latency instead");
max_latency_msec = latency_msec;
}
m->userdata = u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;
u->max_latency = (pa_usec_t) max_latency_msec * PA_USEC_PER_MSEC;
u->output_thread_info.pop_called = false;
u->output_thread_info.pop_adjust = false;
u->output_thread_info.push_called = false;
u->iteration_counter = 0;
u->underrun_counter = 0;
u->underrun_latency_limit = 0;
u->source_sink_changed = true;
u->real_adjust_time_sum = 0;
u->adjust_counter = 0;
adjust_time_sec = DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC;
if (pa_modargs_get_value_u32(ma, "adjust_time", &adjust_time_sec) < 0) {
pa_log("Failed to parse adjust_time value");
goto fail;
}
if (adjust_time_sec != DEFAULT_ADJUST_TIME_USEC / PA_USEC_PER_SEC)
u->adjust_time = adjust_time_sec * PA_USEC_PER_SEC;
else
u->adjust_time = DEFAULT_ADJUST_TIME_USEC;
u->real_adjust_time = u->adjust_time;
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
if (sink)
pa_sink_input_new_data_set_sink(&sink_input_data, sink, false, true);
if (pa_modargs_get_proplist(ma, "sink_input_properties", sink_input_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Failed to parse the sink_input_properties value.");
pa_sink_input_new_data_done(&sink_input_data);
goto fail;
}
if (!pa_proplist_contains(sink_input_data.proplist, PA_PROP_MEDIA_ROLE))
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map);
sink_input_data.flags = PA_SINK_INPUT_VARIABLE_RATE | PA_SINK_INPUT_START_CORKED;
if (!remix)
sink_input_data.flags |= PA_SINK_INPUT_NO_REMIX;
if (!format_set)
sink_input_data.flags |= PA_SINK_INPUT_FIX_FORMAT;
if (!rate_set)
sink_input_data.flags |= PA_SINK_INPUT_FIX_RATE;
if (!channels_set)
sink_input_data.flags |= PA_SINK_INPUT_FIX_CHANNELS;
sink_dont_move = false;
if (pa_modargs_get_value_boolean(ma, "sink_dont_move", &sink_dont_move) < 0) {
pa_log("sink_dont_move= expects a boolean argument.");
goto fail;
}
if (sink_dont_move)
sink_input_data.flags |= PA_SINK_INPUT_DONT_MOVE;
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
/* If format, rate or channels were originally unset, they are set now
* after the pa_sink_input_new() call. */
ss = u->sink_input->sample_spec;
map = u->sink_input->channel_map;
u->sink_input->parent.process_msg = sink_input_process_msg_cb;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
u->sink_input->suspend = sink_input_suspend_cb;
u->sink_input->update_sink_latency_range = update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = update_sink_latency_range_cb;
u->sink_input->userdata = u;
pa_source_output_new_data_init(&source_output_data);
source_output_data.driver = __FILE__;
source_output_data.module = m;
if (source)
pa_source_output_new_data_set_source(&source_output_data, source, false, true);
if (pa_modargs_get_proplist(ma, "source_output_properties", source_output_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Failed to parse the source_output_properties value.");
pa_source_output_new_data_done(&source_output_data);
goto fail;
}
if (!pa_proplist_contains(source_output_data.proplist, PA_PROP_MEDIA_ROLE))
pa_proplist_sets(source_output_data.proplist, PA_PROP_MEDIA_ROLE, "abstract");
pa_source_output_new_data_set_sample_spec(&source_output_data, &ss);
pa_source_output_new_data_set_channel_map(&source_output_data, &map);
source_output_data.flags = PA_SOURCE_OUTPUT_START_CORKED;
if (!remix)
source_output_data.flags |= PA_SOURCE_OUTPUT_NO_REMIX;
source_dont_move = false;
if (pa_modargs_get_value_boolean(ma, "source_dont_move", &source_dont_move) < 0) {
pa_log("source_dont_move= expects a boolean argument.");
goto fail;
}
if (source_dont_move)
source_output_data.flags |= PA_SOURCE_OUTPUT_DONT_MOVE;
pa_source_output_new(&u->source_output, m->core, &source_output_data);
pa_source_output_new_data_done(&source_output_data);
if (!u->source_output)
goto fail;
u->source_output->parent.process_msg = source_output_process_msg_cb;
u->source_output->push = source_output_push_cb;
u->source_output->process_rewind = source_output_process_rewind_cb;
u->source_output->kill = source_output_kill_cb;
u->source_output->attach = source_output_attach_cb;
u->source_output->detach = source_output_detach_cb;
u->source_output->may_move_to = source_output_may_move_to_cb;
u->source_output->moving = source_output_moving_cb;
u->source_output->suspend = source_output_suspend_cb;
u->source_output->update_source_latency_range = update_source_latency_range_cb;
u->source_output->update_source_fixed_latency = update_source_latency_range_cb;
u->source_output->userdata = u;
update_latency_boundaries(u, u->source_output->source, u->sink_input->sink);
set_sink_input_latency(u, u->sink_input->sink);
set_source_output_latency(u, u->source_output->source);
pa_sink_input_get_silence(u->sink_input, &silence);
u->memblockq = pa_memblockq_new(
"module-loopback memblockq",
0, /* idx */
MEMBLOCKQ_MAXLENGTH, /* maxlength */
MEMBLOCKQ_MAXLENGTH, /* tlength */
&ss, /* sample_spec */
0, /* prebuf */
0, /* minreq */
0, /* maxrewind */
&silence); /* silence frame */
pa_memblock_unref(silence.memblock);
/* Fill the memblockq with silence */
pa_memblockq_seek(u->memblockq, pa_usec_to_bytes(u->latency, &u->sink_input->sample_spec), PA_SEEK_RELATIVE, true);
u->asyncmsgq = pa_asyncmsgq_new(0);
if (!u->asyncmsgq) {
pa_log("pa_asyncmsgq_new() failed.");
goto fail;
}
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_NAME))
pa_proplist_setf(u->source_output->proplist, PA_PROP_MEDIA_NAME, "Loopback to %s",
pa_strnull(pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)));
if (!pa_proplist_contains(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME)
&& (n = pa_proplist_gets(u->sink_input->sink->proplist, PA_PROP_DEVICE_ICON_NAME)))
pa_proplist_sets(u->source_output->proplist, PA_PROP_MEDIA_ICON_NAME, n);
if (!pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_NAME))
pa_proplist_setf(u->sink_input->proplist, PA_PROP_MEDIA_NAME, "Loopback from %s",
pa_strnull(pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_DESCRIPTION)));
if (source && !pa_proplist_contains(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME)
&& (n = pa_proplist_gets(u->source_output->source->proplist, PA_PROP_DEVICE_ICON_NAME)))
pa_proplist_sets(u->sink_input->proplist, PA_PROP_MEDIA_ICON_NAME, n);
/* Hooks to track changes of latency offsets */
pa_module_hook_connect(m, &m->core->hooks[PA_CORE_HOOK_SINK_PORT_LATENCY_OFFSET_CHANGED],
PA_HOOK_NORMAL, (pa_hook_cb_t) sink_port_latency_offset_changed_cb, u);
pa_module_hook_connect(m, &m->core->hooks[PA_CORE_HOOK_SOURCE_PORT_LATENCY_OFFSET_CHANGED],
PA_HOOK_NORMAL, (pa_hook_cb_t) source_port_latency_offset_changed_cb, u);
/* Setup message handler for main thread */
u->msg = pa_msgobject_new(loopback_msg);
u->msg->parent.process_msg = loopback_process_msg_cb;
u->msg->userdata = u;
/* The output thread is not yet running, set effective_source_latency directly */
update_effective_source_latency(u, u->source_output->source, NULL);
pa_sink_input_put(u->sink_input);
pa_source_output_put(u->source_output);
if (pa_source_get_state(u->source_output->source) != PA_SOURCE_SUSPENDED)
pa_sink_input_cork(u->sink_input, false);
if (pa_sink_get_state(u->sink_input->sink) != PA_SINK_SUSPENDED)
pa_source_output_cork(u->source_output, false);
update_adjust_timer(u);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
teardown(u);
if (u->memblockq)
pa_memblockq_free(u->memblockq);
if (u->asyncmsgq)
pa_asyncmsgq_unref(u->asyncmsgq);
pa_xfree(u);
}