pulseaudio/src/modules/module-virtual-surround-sink.c
Georg Chini 2af10cf39b various places: Include resampler delay to latency reports and calculations
The resampler delay was not taken into account in all necessary places.
This patch adds it where required.

Part-of: <https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/708>
2022-05-28 14:30:59 +00:00

1258 lines
40 KiB
C

/***
This file is part of PulseAudio.
Copyright 2010 Intel Corporation
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
Copyright 2012 Niels Ole Salscheider <niels_ole@salscheider-online.de>
Contributor: Alexander E. Patrakov <patrakov@gmail.com>
Copyright 2020 Christopher Snowhill <kode54@gmail.com>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <math.h>
#include <fftw3.h>
#include <pulse/gccmacro.h>
#include <pulse/xmalloc.h>
#include <pulsecore/i18n.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include <pulsecore/sound-file.h>
#include <pulsecore/resampler.h>
PA_MODULE_AUTHOR("Christopher Snowhill");
PA_MODULE_DESCRIPTION(_("Virtual surround sink"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
_("sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"master=<name of sink to filter> "
"sink_master=<name of sink to filter> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"use_volume_sharing=<yes or no> "
"force_flat_volume=<yes or no> "
"hrir=/path/to/left_hrir.wav "
"hrir_left=/path/to/left_hrir.wav "
"hrir_right=/path/to/optional/right_hrir.wav "
"autoloaded=<set if this module is being loaded automatically> "
));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
#define DEFAULT_AUTOLOADED false
struct userdata {
pa_module *module;
bool autoloaded;
pa_sink *sink;
pa_sink_input *sink_input;
pa_memblockq *memblockq_sink;
bool auto_desc;
size_t fftlen;
size_t hrir_samples;
size_t inputs;
fftwf_plan *p_fw, p_bw;
fftwf_complex *f_in, *f_out, **f_ir;
float *revspace, *outspace[2], **inspace;
};
#define BLOCK_SIZE (512)
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master", /* Will be deprecated. */
"sink_master",
"format",
"rate",
"channels",
"channel_map",
"use_volume_sharing",
"force_flat_volume",
"autoloaded",
"hrir",
"hrir_left",
"hrir_right",
NULL
};
/* Vector size of 4 floats */
#define v_size 4
static void * alloc(size_t x, size_t s) {
size_t f;
float *t;
f = PA_ROUND_UP(x*s, sizeof(float)*v_size);
pa_assert_se(t = fftwf_malloc(f));
pa_memzero(t, f);
return t;
}
static size_t sink_input_samples(size_t nbytes)
{
return nbytes / 8;
}
static size_t sink_input_bytes(size_t nsamples)
{
return nsamples * 8;
}
static size_t sink_samples(const struct userdata *u, size_t nbytes)
{
return nbytes / (u->inputs * 4);
}
static size_t sink_bytes(const struct userdata *u, size_t nsamples)
{
return nsamples * (u->inputs * 4);
}
/* Mirror channels for symmetrical impulse */
static pa_channel_position_t mirror_channel(pa_channel_position_t channel) {
switch (channel) {
case PA_CHANNEL_POSITION_FRONT_LEFT:
return PA_CHANNEL_POSITION_FRONT_RIGHT;
case PA_CHANNEL_POSITION_FRONT_RIGHT:
return PA_CHANNEL_POSITION_FRONT_LEFT;
case PA_CHANNEL_POSITION_REAR_LEFT:
return PA_CHANNEL_POSITION_REAR_RIGHT;
case PA_CHANNEL_POSITION_REAR_RIGHT:
return PA_CHANNEL_POSITION_REAR_LEFT;
case PA_CHANNEL_POSITION_SIDE_LEFT:
return PA_CHANNEL_POSITION_SIDE_RIGHT;
case PA_CHANNEL_POSITION_SIDE_RIGHT:
return PA_CHANNEL_POSITION_SIDE_LEFT;
case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
case PA_CHANNEL_POSITION_TOP_FRONT_LEFT:
return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT:
return PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
case PA_CHANNEL_POSITION_TOP_REAR_LEFT:
return PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
case PA_CHANNEL_POSITION_TOP_REAR_RIGHT:
return PA_CHANNEL_POSITION_TOP_REAR_LEFT;
default:
return channel;
}
}
/* Normalize the hrir */
static void normalize_hrir(float * hrir_data, unsigned hrir_samples, unsigned hrir_channels) {
/* normalize hrir to avoid audible clipping
*
* The following heuristic tries to avoid audible clipping. It cannot avoid
* clipping in the worst case though, because the scaling factor would
* become too large resulting in a too quiet signal.
* The idea of the heuristic is to avoid clipping when a single click is
* played back on all channels. The scaling factor describes the additional
* factor that is necessary to avoid clipping for "normal" signals.
*
* This algorithm doesn't pretend to be perfect, it's just something that
* appears to work (not too quiet, no audible clipping) on the material that
* it has been tested on. If you find a real-world example where this
* algorithm results in audible clipping, please write a patch that adjusts
* the scaling factor constants or improves the algorithm (or if you can't
* write a patch, at least report the problem to the PulseAudio mailing list
* or bug tracker). */
const float scaling_factor = 2.5;
float hrir_sum, hrir_max;
unsigned i, j;
hrir_max = 0;
for (i = 0; i < hrir_samples; i++) {
hrir_sum = 0;
for (j = 0; j < hrir_channels; j++)
hrir_sum += fabs(hrir_data[i * hrir_channels + j]);
if (hrir_sum > hrir_max)
hrir_max = hrir_sum;
}
for (i = 0; i < hrir_samples; i++) {
for (j = 0; j < hrir_channels; j++)
hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
}
}
/* Normalize a stereo hrir */
static void normalize_hrir_stereo(float * hrir_data, float * hrir_right_data, unsigned hrir_samples, unsigned hrir_channels) {
const float scaling_factor = 2.5;
float hrir_sum, hrir_max;
unsigned i, j;
hrir_max = 0;
for (i = 0; i < hrir_samples; i++) {
hrir_sum = 0;
for (j = 0; j < hrir_channels; j++) {
hrir_sum += fabs(hrir_data[i * hrir_channels + j]);
hrir_sum += fabs(hrir_right_data[i * hrir_channels + j]);
}
if (hrir_sum > hrir_max)
hrir_max = hrir_sum;
}
for (i = 0; i < hrir_samples; i++) {
for (j = 0; j < hrir_channels; j++) {
hrir_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
hrir_right_data[i * hrir_channels + j] /= hrir_max * scaling_factor;
}
}
}
/* Called from I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it in that time. Also, the
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink, true) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
/* Add resampler latency */
*((int64_t*) data) += pa_resampler_get_delay_usec(u->sink_input->thread_info.resampler);
return 0;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t state, pa_suspend_cause_t suspend_cause) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return 0;
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* When set to running or idle for the first time, request a rewind
* of the master sink to make sure we are heard immediately */
if (PA_SINK_IS_OPENED(new_state) && s->thread_info.state == PA_SINK_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(u->sink_input, 0, false, true, true);
}
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
size_t nbytes_sink, nbytes_input;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
nbytes_sink = s->thread_info.rewind_nbytes + pa_memblockq_get_length(u->memblockq_sink);
nbytes_input = sink_input_bytes(sink_samples(u, nbytes_sink));
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input, nbytes_input, true, false, false);
}
/* Called from I/O thread context */
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from main context */
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(s->state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return;
pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, true);
}
/* Called from main context */
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(s->state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->state))
return;
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
static size_t memblockq_missing(pa_memblockq *bq) {
size_t l, tlength;
pa_assert(bq);
tlength = pa_memblockq_get_tlength(bq);
if ((l = pa_memblockq_get_length(bq)) >= tlength)
return 0;
l = tlength - l;
return l >= pa_memblockq_get_minreq(bq) ? l : 0;
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes_input, pa_memchunk *chunk) {
struct userdata *u;
float *src, *dst;
int c, ear;
size_t s, bytes_missing, fftlen;
pa_memchunk tchunk;
float fftlen_if, *revspace;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
while ((bytes_missing = memblockq_missing(u->memblockq_sink)) != 0) {
pa_memchunk nchunk;
pa_sink_render(u->sink, bytes_missing, &nchunk);
pa_memblockq_push(u->memblockq_sink, &nchunk);
pa_memblock_unref(nchunk.memblock);
}
pa_memblockq_rewind(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE));
pa_memblockq_peek_fixed_size(u->memblockq_sink, sink_bytes(u, u->fftlen), &tchunk);
pa_memblockq_drop(u->memblockq_sink, tchunk.length);
/* Now tchunk contains enough data to perform the FFT
* This should be equal to u->fftlen */
chunk->index = 0;
chunk->length = sink_input_bytes(BLOCK_SIZE);
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
src = pa_memblock_acquire_chunk(&tchunk);
for (c = 0; c < u->inputs; c++) {
for (s = 0, fftlen = u->fftlen; s < fftlen; s++) {
u->inspace[c][s] = src[s * u->inputs + c];
}
}
pa_memblock_release(tchunk.memblock);
pa_memblock_unref(tchunk.memblock);
fftlen_if = 1.0f / (float)u->fftlen;
revspace = u->revspace + u->fftlen - BLOCK_SIZE;
pa_memzero(u->outspace[0], BLOCK_SIZE * 4);
pa_memzero(u->outspace[1], BLOCK_SIZE * 4);
for (c = 0; c < u->inputs; c++) {
fftwf_complex *f_in = u->f_in;
fftwf_complex *f_out = u->f_out;
fftwf_execute(u->p_fw[c]);
for (ear = 0; ear < 2; ear++) {
fftwf_complex *f_ir = u->f_ir[c * 2 + ear];
float *outspace = u->outspace[ear];
for (s = 0, fftlen = u->fftlen / 2 + 1; s < fftlen; s++) {
float re = f_ir[s][0] * f_in[s][0] - f_ir[s][1] * f_in[s][1];
float im = f_ir[s][1] * f_in[s][0] + f_ir[s][0] * f_in[s][1];
f_out[s][0] = re;
f_out[s][1] = im;
}
fftwf_execute(u->p_bw);
for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; ++s)
outspace[s] += revspace[s] * fftlen_if;
}
}
dst = pa_memblock_acquire_chunk(chunk);
for (s = 0, fftlen = BLOCK_SIZE; s < fftlen; s++) {
float output;
float *outspace = u->outspace[0];
output = outspace[s];
if (output < -1.0) output = -1.0;
if (output > 1.0) output = 1.0;
dst[s * 2 + 0] = output;
outspace = u->outspace[1];
output = outspace[s];
if (output < -1.0) output = -1.0;
if (output > 1.0) output = 1.0;
dst[s * 2 + 1] = output;
}
pa_memblock_release(chunk->memblock);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
size_t amount = 0;
size_t nbytes_sink;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes_sink + pa_memblockq_get_length(u->memblockq_sink);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
pa_memblockq_seek(u->memblockq_sink, - (int64_t) amount, PA_SEEK_RELATIVE, true);
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->memblockq_sink, nbytes_sink);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
size_t nbytes_sink, nbytes_memblockq;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
nbytes_memblockq = sink_bytes(u, sink_input_samples(nbytes_input) + u->fftlen);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_memblockq_set_maxrewind(u->memblockq_sink, nbytes_memblockq);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes_sink);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes_input) {
struct userdata *u;
size_t nbytes_sink;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
nbytes_sink = sink_bytes(u, sink_input_samples(nbytes_input));
nbytes_sink = PA_ROUND_UP(nbytes_sink, sink_bytes(u, BLOCK_SIZE));
pa_sink_set_max_request_within_thread(u->sink, nbytes_sink);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (PA_SINK_IS_LINKED(u->sink->thread_info.state))
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
size_t max_request;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
max_request = sink_bytes(u, sink_input_samples(pa_sink_input_get_max_request(i)));
max_request = PA_ROUND_UP(max_request, sink_bytes(u, BLOCK_SIZE));
pa_sink_set_max_request_within_thread(u->sink, max_request);
/* FIXME: Too small max_rewind:
* https://bugs.freedesktop.org/show_bug.cgi?id=53709 */
pa_sink_set_max_rewind_within_thread(u->sink, sink_bytes(u, sink_input_samples(pa_sink_input_get_max_rewind(i))));
pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* The order here matters! We first kill the sink input, followed
* by the sink. That means the sink callbacks must be protected
* against an unconnected sink input! */
pa_sink_input_cork(u->sink_input, true);
pa_sink_input_unlink(u->sink_input);
pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_unref(u->sink);
u->sink = NULL;
pa_module_unload_request(u->module, true);
}
/* Called from main context */
static bool sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->autoloaded)
return false;
return u->sink != dest;
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
if (u->auto_desc && dest) {
const char *z;
pa_proplist *pl;
pl = pa_proplist_new();
z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s",
pa_proplist_gets(u->sink->proplist, "device.vsurroundsink.name"), z ? z : dest->name);
pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl);
pa_proplist_free(pl);
}
}
/* Called from main context */
static void sink_input_volume_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_volume_changed(u->sink, &i->volume);
}
/* Called from main context */
static void sink_input_mute_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_mute_changed(u->sink, i->muted);
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss_input, ss_output;
pa_channel_map map_output;
pa_modargs *ma;
const char *master_name;
const char *hrir_left_file;
const char *hrir_right_file;
pa_sink *master=NULL;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
bool use_volume_sharing = true;
bool force_flat_volume = false;
pa_memchunk silence;
const char* z;
unsigned i, j, ear, found_channel_left, found_channel_right;
pa_sample_spec ss;
pa_channel_map map;
float *hrir_data=NULL, *hrir_right_data=NULL;
float *hrir_temp_data;
size_t hrir_samples;
size_t hrir_copied_length, hrir_total_length;
int hrir_channels;
int fftlen;
float *impulse_temp=NULL;
unsigned *mapping_left=NULL;
unsigned *mapping_right=NULL;
fftwf_plan p;
pa_channel_map hrir_map, hrir_right_map;
pa_sample_spec hrir_left_temp_ss;
pa_memchunk hrir_left_temp_chunk, hrir_left_temp_chunk_resampled;
pa_resampler *resampler;
pa_sample_spec hrir_right_temp_ss;
pa_memchunk hrir_right_temp_chunk, hrir_right_temp_chunk_resampled;
pa_assert(m);
hrir_left_temp_chunk.memblock = NULL;
hrir_left_temp_chunk_resampled.memblock = NULL;
hrir_right_temp_chunk.memblock = NULL;
hrir_right_temp_chunk_resampled.memblock = NULL;
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
master_name = pa_modargs_get_value(ma, "sink_master", NULL);
if (!master_name) {
master_name = pa_modargs_get_value(ma, "master", NULL);
if (master_name)
pa_log_warn("The 'master' module argument is deprecated and may be removed in the future, "
"please use the 'sink_master' argument instead.");
}
if (!(master = pa_namereg_get(m->core, master_name, PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
hrir_left_file = pa_modargs_get_value(ma, "hrir_left", NULL);
if (!hrir_left_file) {
hrir_left_file = pa_modargs_get_value(ma, "hrir", NULL);
if (!hrir_left_file) {
pa_log("Either the 'hrir' or 'hrir_left' module arguments are required.");
goto fail;
}
}
hrir_right_file = pa_modargs_get_value(ma, "hrir_right", NULL);
pa_assert(master);
if (pa_sound_file_load(master->core->mempool, hrir_left_file, &hrir_left_temp_ss, &hrir_map, &hrir_left_temp_chunk, NULL) < 0) {
pa_log("Cannot load hrir file.");
goto fail;
}
if (hrir_right_file) {
if (pa_sound_file_load(master->core->mempool, hrir_right_file, &hrir_right_temp_ss, &hrir_right_map, &hrir_right_temp_chunk, NULL) < 0) {
pa_log("Cannot load hrir_right file.");
goto fail;
}
if (!pa_sample_spec_equal(&hrir_left_temp_ss, &hrir_right_temp_ss)) {
pa_log("Both hrir_left and hrir_right must have the same sample format");
goto fail;
}
if (!pa_channel_map_equal(&hrir_map, &hrir_right_map)) {
pa_log("Both hrir_left and hrir_right must have the same channel layout");
goto fail;
}
}
ss_input.format = PA_SAMPLE_FLOAT32NE;
ss_input.rate = master->sample_spec.rate;
ss_input.channels = hrir_left_temp_ss.channels;
ss = ss_input;
map = hrir_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
ss.format = PA_SAMPLE_FLOAT32NE;
ss_input.rate = ss.rate;
ss_input.channels = ss.channels;
ss_output = ss_input;
ss_output.channels = 2;
if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) {
pa_log("use_volume_sharing= expects a boolean argument");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "force_flat_volume", &force_flat_volume) < 0) {
pa_log("force_flat_volume= expects a boolean argument");
goto fail;
}
if (use_volume_sharing && force_flat_volume) {
pa_log("Flat volume can't be forced when using volume sharing.");
goto fail;
}
pa_channel_map_init_stereo(&map_output);
u = pa_xnew0(struct userdata, 1);
u->module = m;
m->userdata = u;
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.vsurroundsink", master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &ss_input);
pa_sink_new_data_set_channel_map(&sink_data, &map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
pa_proplist_sets(sink_data.proplist, "device.vsurroundsink.name", sink_data.name);
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
u->autoloaded = DEFAULT_AUTOLOADED;
if (pa_modargs_get_value_boolean(ma, "autoloaded", &u->autoloaded) < 0) {
pa_log("Failed to parse autoloaded value");
goto fail;
}
if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s", sink_data.name, z ? z : master->name);
}
u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY))
| (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg_cb;
u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->request_rewind = sink_request_rewind_cb;
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
if (!use_volume_sharing) {
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_enable_decibel_volume(u->sink, true);
}
/* Normally this flag would be enabled automatically but we can force it. */
if (force_flat_volume)
u->sink->flags |= PA_SINK_FLAT_VOLUME;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
pa_sink_input_new_data_set_sink(&sink_input_data, master, false, true);
sink_input_data.origin_sink = u->sink;
pa_proplist_setf(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Virtual Surround Sink Stream from %s", pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION));
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss_output);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &map_output);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
u->sink_input->volume_changed = use_volume_sharing ? NULL : sink_input_volume_changed_cb;
u->sink_input->mute_changed = sink_input_mute_changed_cb;
u->sink_input->userdata = u;
u->sink->input_to_master = u->sink_input;
pa_sink_input_get_silence(u->sink_input, &silence);
resampler = pa_resampler_new(u->sink->core->mempool, &hrir_left_temp_ss, &hrir_map, &ss_input, &hrir_map, u->sink->core->lfe_crossover_freq,
PA_RESAMPLER_SRC_SINC_BEST_QUALITY, PA_RESAMPLER_NO_REMAP);
hrir_samples = hrir_left_temp_chunk.length / pa_frame_size(&hrir_left_temp_ss) * ss_input.rate / hrir_left_temp_ss.rate;
hrir_total_length = hrir_samples * pa_frame_size(&ss_input);
hrir_channels = ss_input.channels;
hrir_data = (float *) pa_xmalloc(hrir_total_length);
hrir_copied_length = 0;
u->hrir_samples = hrir_samples;
u->inputs = hrir_channels;
/* add silence to the hrir until we get enough samples out of the resampler */
while (hrir_copied_length < hrir_total_length) {
pa_resampler_run(resampler, &hrir_left_temp_chunk, &hrir_left_temp_chunk_resampled);
if (hrir_left_temp_chunk.memblock != hrir_left_temp_chunk_resampled.memblock) {
/* Silence input block */
pa_silence_memblock(hrir_left_temp_chunk.memblock, &hrir_left_temp_ss);
}
if (hrir_left_temp_chunk_resampled.memblock) {
/* Copy hrir data */
hrir_temp_data = (float *) pa_memblock_acquire(hrir_left_temp_chunk_resampled.memblock);
if (hrir_total_length - hrir_copied_length >= hrir_left_temp_chunk_resampled.length) {
memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_left_temp_chunk_resampled.length);
hrir_copied_length += hrir_left_temp_chunk_resampled.length;
} else {
memcpy(hrir_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length);
hrir_copied_length = hrir_total_length;
}
pa_memblock_release(hrir_left_temp_chunk_resampled.memblock);
pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock);
hrir_left_temp_chunk_resampled.memblock = NULL;
}
}
pa_memblock_unref(hrir_left_temp_chunk.memblock);
hrir_left_temp_chunk.memblock = NULL;
if (hrir_right_file) {
pa_resampler_reset(resampler);
hrir_right_data = (float *) pa_xmalloc(hrir_total_length);
hrir_copied_length = 0;
while (hrir_copied_length < hrir_total_length) {
pa_resampler_run(resampler, &hrir_right_temp_chunk, &hrir_right_temp_chunk_resampled);
if (hrir_right_temp_chunk.memblock != hrir_right_temp_chunk_resampled.memblock) {
/* Silence input block */
pa_silence_memblock(hrir_right_temp_chunk.memblock, &hrir_right_temp_ss);
}
if (hrir_right_temp_chunk_resampled.memblock) {
/* Copy hrir data */
hrir_temp_data = (float *) pa_memblock_acquire(hrir_right_temp_chunk_resampled.memblock);
if (hrir_total_length - hrir_copied_length >= hrir_right_temp_chunk_resampled.length) {
memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_right_temp_chunk_resampled.length);
hrir_copied_length += hrir_right_temp_chunk_resampled.length;
} else {
memcpy(hrir_right_data + hrir_copied_length, hrir_temp_data, hrir_total_length - hrir_copied_length);
hrir_copied_length = hrir_total_length;
}
pa_memblock_release(hrir_right_temp_chunk_resampled.memblock);
pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock);
hrir_right_temp_chunk_resampled.memblock = NULL;
}
}
pa_memblock_unref(hrir_right_temp_chunk.memblock);
hrir_right_temp_chunk.memblock = NULL;
}
pa_resampler_free(resampler);
if (hrir_right_data)
normalize_hrir_stereo(hrir_data, hrir_right_data, hrir_samples, hrir_channels);
else
normalize_hrir(hrir_data, hrir_samples, hrir_channels);
/* create mapping between hrir and input */
mapping_left = (unsigned *) pa_xnew0(unsigned, hrir_channels);
mapping_right = (unsigned *) pa_xnew0(unsigned, hrir_channels);
for (i = 0; i < map.channels; i++) {
found_channel_left = 0;
found_channel_right = 0;
for (j = 0; j < hrir_map.channels; j++) {
if (hrir_map.map[j] == map.map[i]) {
mapping_left[i] = j;
found_channel_left = 1;
}
if (hrir_map.map[j] == mirror_channel(map.map[i])) {
mapping_right[i] = j;
found_channel_right = 1;
}
}
if (!found_channel_left) {
pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(map.map[i]));
goto fail;
}
if (!found_channel_right) {
pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(mirror_channel(map.map[i])));
goto fail;
}
}
fftlen = (hrir_samples + BLOCK_SIZE + 1); /* Grow a bit for overlap */
{
/* Round up to a power of two */
int pow = 1;
while (fftlen > 2) { pow++; fftlen /= 2; }
fftlen = 2 << pow;
}
u->fftlen = fftlen;
u->f_in = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
u->f_out = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
u->f_ir = (fftwf_complex**) alloc(sizeof(fftwf_complex*), (hrir_channels*2));
for (i = 0, j = hrir_channels*2; i < j; i++)
u->f_ir[i] = (fftwf_complex*) alloc(sizeof(fftwf_complex), (fftlen/2+1));
u->revspace = (float*) alloc(sizeof(float), fftlen);
u->outspace[0] = (float*) alloc(sizeof(float), BLOCK_SIZE);
u->outspace[1] = (float*) alloc(sizeof(float), BLOCK_SIZE);
u->inspace = (float**) alloc(sizeof(float*), hrir_channels);
for (i = 0; i < hrir_channels; i++)
u->inspace[i] = (float*) alloc(sizeof(float), fftlen);
u->p_fw = (fftwf_plan*) alloc(sizeof(fftwf_plan), hrir_channels);
for (i = 0; i < hrir_channels; i++)
pa_assert_se(u->p_fw[i] = fftwf_plan_dft_r2c_1d(fftlen, u->inspace[i], u->f_in, FFTW_ESTIMATE));
pa_assert_se(u->p_bw = fftwf_plan_dft_c2r_1d(fftlen, u->f_out, u->revspace, FFTW_ESTIMATE));
impulse_temp = (float*) alloc(sizeof(float), fftlen);
if (hrir_right_data) {
for (i = 0; i < hrir_channels; i++) {
for (ear = 0; ear < 2; ear++) {
size_t index = i * 2 + ear;
size_t impulse_index = mapping_left[i];
float *impulse = (ear == 0) ? hrir_data : hrir_right_data;
for (j = 0; j < hrir_samples; j++) {
impulse_temp[j] = impulse[j * hrir_channels + impulse_index];
}
p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE);
if (p) {
fftwf_execute(p);
fftwf_destroy_plan(p);
} else {
pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i);
goto fail;
}
}
}
} else {
for (i = 0; i < hrir_channels; i++) {
for (ear = 0; ear < 2; ear++) {
size_t index = i * 2 + ear;
size_t impulse_index = (ear == 0) ? mapping_left[i] : mapping_right[i];
for (j = 0; j < hrir_samples; j++) {
impulse_temp[j] = hrir_data[j * hrir_channels + impulse_index];
}
p = fftwf_plan_dft_r2c_1d(fftlen, impulse_temp, u->f_ir[index], FFTW_ESTIMATE);
if (p) {
fftwf_execute(p);
fftwf_destroy_plan(p);
} else {
pa_log("fftw plan creation failed for %s ear speaker index %d", (ear == 0) ? "left" : "right", i);
goto fail;
}
}
}
}
pa_xfree(impulse_temp);
pa_xfree(hrir_data);
if (hrir_right_data)
pa_xfree(hrir_right_data);
pa_xfree(mapping_left);
pa_xfree(mapping_right);
u->memblockq_sink = pa_memblockq_new("module-virtual-surround-sink memblockq (input)", 0, MEMBLOCKQ_MAXLENGTH, sink_bytes(u, BLOCK_SIZE), &ss_input, 0, 0, sink_bytes(u, u->fftlen), &silence);
pa_memblock_unref(silence.memblock);
pa_memblockq_seek(u->memblockq_sink, sink_bytes(u, u->fftlen - BLOCK_SIZE), PA_SEEK_RELATIVE, false);
pa_memblockq_flush_read(u->memblockq_sink);
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
return 0;
fail:
if (impulse_temp)
pa_xfree(impulse_temp);
if (mapping_left)
pa_xfree(mapping_left);
if (mapping_right)
pa_xfree(mapping_right);
if (hrir_data)
pa_xfree(hrir_data);
if (hrir_right_data)
pa_xfree(hrir_right_data);
if (hrir_left_temp_chunk.memblock)
pa_memblock_unref(hrir_left_temp_chunk.memblock);
if (hrir_left_temp_chunk_resampled.memblock)
pa_memblock_unref(hrir_left_temp_chunk_resampled.memblock);
if (hrir_right_temp_chunk.memblock)
pa_memblock_unref(hrir_right_temp_chunk.memblock);
if (hrir_right_temp_chunk_resampled.memblock)
pa_memblock_unref(hrir_right_temp_chunk_resampled.memblock);
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
size_t i, j;
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
/* See comments in sink_input_kill_cb() above regarding
* destruction order! */
if (u->sink_input)
pa_sink_input_unlink(u->sink_input);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->sink_input)
pa_sink_input_unref(u->sink_input);
if (u->sink)
pa_sink_unref(u->sink);
if (u->memblockq_sink)
pa_memblockq_free(u->memblockq_sink);
if (u->p_fw) {
for (i = 0, j = u->inputs; i < j; i++) {
if (u->p_fw[i])
fftwf_destroy_plan(u->p_fw[i]);
}
fftwf_free(u->p_fw);
}
if (u->p_bw)
fftwf_destroy_plan(u->p_bw);
if (u->f_ir) {
for (i = 0, j = u->inputs * 2; i < j; i++) {
if (u->f_ir[i])
fftwf_free(u->f_ir[i]);
}
fftwf_free(u->f_ir);
}
if (u->f_out)
fftwf_free(u->f_out);
if (u->f_in)
fftwf_free(u->f_in);
if (u->revspace)
fftwf_free(u->revspace);
if (u->outspace[0])
fftwf_free(u->outspace[0]);
if (u->outspace[1])
fftwf_free(u->outspace[1]);
if (u->inspace) {
for (i = 0, j = u->inputs; i < j; i++) {
if (u->inspace[i])
fftwf_free(u->inspace[i]);
}
fftwf_free(u->inspace);
}
pa_xfree(u);
}