pulseaudio/src/modules/alsa/alsa-sink.c
Alper Nebi Yasak bafe545da7 alsa-ucm: Disable UCM devices when suspending
Disabling UCM devices might save some power, according to an earlier
discussion [1]. Disable them when suspending sinks/sources, and enable
them when unsuspending.

However, doing only that much introduces problems. The hardware controls
we track for volume and mute state can change as part of disabling the
UCM device. Enabling it back does not restore it to its pre-suspend
state, so the UCM-triggered changes to disable the device will show up
on user interfaces and cause confusion.

The volume/mute should not be kept in sync with hardware for inactive
UCM devices [2]. Skip the callbacks for reading/changing volume/mute
state if the UCM device is disabled. This way, the volume/mute controls
for sinks/sources are essentially detached from the hardware controls
until the UCM device is re-enabled.

Finally, sync volume and mute state for the sinks/sources just after we
re-enable the UCM devices, to restore things to the pre-suspend state.
Combined with the above, this means we can still change volume/mute
state in user interfaces while the sink/source is suspended, and its
updated value will be applied to the UCM device when it's actually going
to be used.

[1] https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/294#note_522388
[2] https://gitlab.freedesktop.org/pulseaudio/pulseaudio/-/merge_requests/772#note_1872757

Co-developed-by: Tanu Kaskinen <tanuk@iki.fi>
[Alper: Rebase, split enable/disable functions, skip volume/mute
        callbacks if disabled, sync mixer at unsuspend, edit message]
Signed-off-by: Alper Nebi Yasak <alpernebiyasak@gmail.com>
2024-09-25 15:26:09 +03:00

2994 lines
96 KiB
C

/***
This file is part of PulseAudio.
Copyright 2004-2008 Lennart Poettering
Copyright 2006 Pierre Ossman <ossman@cendio.se> for Cendio AB
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <signal.h>
#include <stdio.h>
#include <alsa/asoundlib.h>
#ifdef HAVE_VALGRIND_MEMCHECK_H
#include <valgrind/memcheck.h>
#endif
#include <pulse/rtclock.h>
#include <pulse/timeval.h>
#include <pulse/util.h>
#include <pulse/volume.h>
#include <pulse/xmalloc.h>
#include <pulse/internal.h>
#include <pulsecore/core.h>
#include <pulsecore/i18n.h>
#include <pulsecore/module.h>
#include <pulsecore/memchunk.h>
#include <pulsecore/sink.h>
#include <pulsecore/modargs.h>
#include <pulsecore/core-rtclock.h>
#include <pulsecore/core-util.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/log.h>
#include <pulsecore/macro.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#ifdef USE_SMOOTHER_2
#include <pulsecore/time-smoother_2.h>
#else
#include <pulsecore/time-smoother.h>
#endif
#include <modules/reserve-wrap.h>
#include "alsa-util.h"
#include "alsa-sink.h"
/* #define DEBUG_TIMING */
#define DEFAULT_DEVICE "default"
#define DEFAULT_TSCHED_BUFFER_USEC (2*PA_USEC_PER_SEC) /* 2s -- Overall buffer size */
#define DEFAULT_TSCHED_WATERMARK_USEC (20*PA_USEC_PER_MSEC) /* 20ms -- Fill up when only this much is left in the buffer */
#define TSCHED_WATERMARK_INC_STEP_USEC (10*PA_USEC_PER_MSEC) /* 10ms -- On underrun, increase watermark by this */
#define TSCHED_WATERMARK_DEC_STEP_USEC (5*PA_USEC_PER_MSEC) /* 5ms -- When everything's great, decrease watermark by this */
#define TSCHED_WATERMARK_VERIFY_AFTER_USEC (20*PA_USEC_PER_SEC) /* 20s -- How long after a drop out recheck if things are good now */
#define TSCHED_WATERMARK_INC_THRESHOLD_USEC (0*PA_USEC_PER_MSEC) /* 0ms -- If the buffer level ever below this threshold, increase the watermark */
#define TSCHED_WATERMARK_DEC_THRESHOLD_USEC (100*PA_USEC_PER_MSEC) /* 100ms -- If the buffer level didn't drop below this threshold in the verification time, decrease the watermark */
/* Note that TSCHED_WATERMARK_INC_THRESHOLD_USEC == 0 means that we
* will increase the watermark only if we hit a real underrun. */
#define TSCHED_MIN_SLEEP_USEC (10*PA_USEC_PER_MSEC) /* 10ms -- Sleep at least 10ms on each iteration */
#define TSCHED_MIN_WAKEUP_USEC (4*PA_USEC_PER_MSEC) /* 4ms -- Wakeup at least this long before the buffer runs empty*/
#ifdef USE_SMOOTHER_2
#define SMOOTHER_WINDOW_USEC (15*PA_USEC_PER_SEC) /* 15s -- smoother windows size */
#else
#define SMOOTHER_WINDOW_USEC (10*PA_USEC_PER_SEC) /* 10s -- smoother windows size */
#define SMOOTHER_ADJUST_USEC (1*PA_USEC_PER_SEC) /* 1s -- smoother adjust time */
#define SMOOTHER_MIN_INTERVAL (2*PA_USEC_PER_MSEC) /* 2ms -- min smoother update interval */
#define SMOOTHER_MAX_INTERVAL (200*PA_USEC_PER_MSEC) /* 200ms -- max smoother update interval */
#endif
#define VOLUME_ACCURACY (PA_VOLUME_NORM/100) /* don't require volume adjustments to be perfectly correct. don't necessarily extend granularity in software unless the differences get greater than this level */
#define DEFAULT_REWIND_SAFEGUARD_BYTES (256U) /* 1.33ms @48kHz, we'll never rewind less than this */
#define DEFAULT_REWIND_SAFEGUARD_USEC (1330) /* 1.33ms, depending on channels/rate/sample we may rewind more than 256 above */
#define DEFAULT_WRITE_ITERATION_THRESHOLD 0.03 /* don't iterate write if < 3% of the buffer is available */
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
snd_pcm_t *pcm_handle;
char *paths_dir;
pa_alsa_fdlist *mixer_fdl;
pa_alsa_mixer_pdata *mixer_pd;
pa_hashmap *mixers;
snd_mixer_t *mixer_handle;
pa_alsa_path_set *mixer_path_set;
pa_alsa_path *mixer_path;
pa_cvolume hardware_volume;
pa_sample_spec verified_sample_spec;
pa_sample_format_t *supported_formats;
unsigned int *supported_rates;
struct {
size_t fragment_size;
size_t nfrags;
size_t tsched_size;
size_t tsched_watermark;
size_t rewind_safeguard;
} initial_info;
size_t
frame_size,
fragment_size,
hwbuf_size,
tsched_size,
tsched_watermark,
tsched_watermark_ref,
hwbuf_unused,
min_sleep,
min_wakeup,
watermark_inc_step,
watermark_dec_step,
watermark_inc_threshold,
watermark_dec_threshold,
rewind_safeguard;
snd_pcm_uframes_t frames_per_block;
pa_usec_t watermark_dec_not_before;
pa_usec_t min_latency_ref;
pa_usec_t tsched_watermark_usec;
pa_memchunk memchunk;
char *device_name; /* name of the PCM device */
char *control_device; /* name of the control device */
bool use_mmap:1, use_tsched:1, deferred_volume:1, fixed_latency_range:1;
bool first, after_rewind;
pa_rtpoll_item *alsa_rtpoll_item;
#ifdef USE_SMOOTHER_2
pa_smoother_2 *smoother;
#else
pa_smoother *smoother;
#endif
uint64_t write_count;
uint64_t since_start;
#ifndef USE_SMOOTHER_2
pa_usec_t smoother_interval;
pa_usec_t last_smoother_update;
#endif
pa_idxset *formats;
pa_reserve_wrapper *reserve;
pa_hook_slot *reserve_slot;
pa_reserve_monitor_wrapper *monitor;
pa_hook_slot *monitor_slot;
/* ucm context */
pa_alsa_ucm_mapping_context *ucm_context;
};
enum {
SINK_MESSAGE_SYNC_MIXER = PA_SINK_MESSAGE_MAX
};
static void userdata_free(struct userdata *u);
static int unsuspend(struct userdata *u, bool recovering);
static void sync_mixer(struct userdata *u, pa_device_port *port);
/* FIXME: Is there a better way to do this than device names? */
static bool is_iec958(struct userdata *u) {
return (strncmp("iec958", u->device_name, 6) == 0);
}
static bool is_hdmi(struct userdata *u) {
return (strncmp("hdmi", u->device_name, 4) == 0);
}
static pa_hook_result_t reserve_cb(pa_reserve_wrapper *r, void *forced, struct userdata *u) {
pa_assert(r);
pa_assert(u);
pa_log_debug("Suspending sink %s, because another application requested us to release the device.", u->sink->name);
if (pa_sink_suspend(u->sink, true, PA_SUSPEND_APPLICATION) < 0)
return PA_HOOK_CANCEL;
return PA_HOOK_OK;
}
static void reserve_done(struct userdata *u) {
pa_assert(u);
if (u->reserve_slot) {
pa_hook_slot_free(u->reserve_slot);
u->reserve_slot = NULL;
}
if (u->reserve) {
pa_reserve_wrapper_unref(u->reserve);
u->reserve = NULL;
}
}
static void reserve_update(struct userdata *u) {
const char *description;
pa_assert(u);
if (!u->sink || !u->reserve)
return;
if ((description = pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION)))
pa_reserve_wrapper_set_application_device_name(u->reserve, description);
}
static int reserve_init(struct userdata *u, const char *dname) {
char *rname;
pa_assert(u);
pa_assert(dname);
if (u->reserve)
return 0;
if (pa_in_system_mode())
return 0;
if (!(rname = pa_alsa_get_reserve_name(dname)))
return 0;
/* We are resuming, try to lock the device */
u->reserve = pa_reserve_wrapper_get(u->core, rname);
pa_xfree(rname);
if (!(u->reserve))
return -1;
reserve_update(u);
pa_assert(!u->reserve_slot);
u->reserve_slot = pa_hook_connect(pa_reserve_wrapper_hook(u->reserve), PA_HOOK_NORMAL, (pa_hook_cb_t) reserve_cb, u);
return 0;
}
static pa_hook_result_t monitor_cb(pa_reserve_monitor_wrapper *w, void* busy, struct userdata *u) {
pa_assert(w);
pa_assert(u);
if (PA_PTR_TO_UINT(busy) && !u->reserve) {
pa_log_debug("Suspending sink %s, because another application is blocking the access to the device.", u->sink->name);
pa_sink_suspend(u->sink, true, PA_SUSPEND_APPLICATION);
} else {
pa_log_debug("Resuming sink %s, because other applications aren't blocking access to the device any more.", u->sink->name);
pa_sink_suspend(u->sink, false, PA_SUSPEND_APPLICATION);
}
return PA_HOOK_OK;
}
static void monitor_done(struct userdata *u) {
pa_assert(u);
if (u->monitor_slot) {
pa_hook_slot_free(u->monitor_slot);
u->monitor_slot = NULL;
}
if (u->monitor) {
pa_reserve_monitor_wrapper_unref(u->monitor);
u->monitor = NULL;
}
}
static int reserve_monitor_init(struct userdata *u, const char *dname) {
char *rname;
pa_assert(u);
pa_assert(dname);
if (pa_in_system_mode())
return 0;
if (!(rname = pa_alsa_get_reserve_name(dname)))
return 0;
/* We are resuming, try to lock the device */
u->monitor = pa_reserve_monitor_wrapper_get(u->core, rname);
pa_xfree(rname);
if (!(u->monitor))
return -1;
pa_assert(!u->monitor_slot);
u->monitor_slot = pa_hook_connect(pa_reserve_monitor_wrapper_hook(u->monitor), PA_HOOK_NORMAL, (pa_hook_cb_t) monitor_cb, u);
return 0;
}
static void fix_min_sleep_wakeup(struct userdata *u) {
size_t max_use, max_use_2;
pa_assert(u);
pa_assert(u->use_tsched);
max_use = u->hwbuf_size - u->hwbuf_unused;
max_use_2 = pa_frame_align(max_use/2, &u->sink->sample_spec);
u->min_sleep = pa_usec_to_bytes(TSCHED_MIN_SLEEP_USEC, &u->sink->sample_spec);
u->min_sleep = PA_CLAMP(u->min_sleep, u->frame_size, max_use_2);
u->min_wakeup = pa_usec_to_bytes(TSCHED_MIN_WAKEUP_USEC, &u->sink->sample_spec);
u->min_wakeup = PA_CLAMP(u->min_wakeup, u->frame_size, max_use_2);
}
static void fix_tsched_watermark(struct userdata *u) {
size_t max_use;
pa_assert(u);
pa_assert(u->use_tsched);
max_use = u->hwbuf_size - u->hwbuf_unused;
if (u->tsched_watermark > max_use - u->min_sleep)
u->tsched_watermark = max_use - u->min_sleep;
if (u->tsched_watermark < u->min_wakeup)
u->tsched_watermark = u->min_wakeup;
u->tsched_watermark_usec = pa_bytes_to_usec(u->tsched_watermark, &u->sink->sample_spec);
}
static void increase_watermark(struct userdata *u) {
size_t old_watermark;
pa_usec_t old_min_latency, new_min_latency;
pa_assert(u);
pa_assert(u->use_tsched);
/* First, just try to increase the watermark */
old_watermark = u->tsched_watermark;
u->tsched_watermark = PA_MIN(u->tsched_watermark * 2, u->tsched_watermark + u->watermark_inc_step);
fix_tsched_watermark(u);
if (old_watermark != u->tsched_watermark) {
pa_log_info("Increasing wakeup watermark to %0.2f ms",
(double) u->tsched_watermark_usec / PA_USEC_PER_MSEC);
return;
}
/* Hmm, we cannot increase the watermark any further, hence let's
raise the latency, unless doing so was disabled in
configuration */
if (u->fixed_latency_range)
return;
old_min_latency = u->sink->thread_info.min_latency;
new_min_latency = PA_MIN(old_min_latency * 2, old_min_latency + TSCHED_WATERMARK_INC_STEP_USEC);
new_min_latency = PA_MIN(new_min_latency, u->sink->thread_info.max_latency);
if (old_min_latency != new_min_latency) {
pa_log_info("Increasing minimal latency to %0.2f ms",
(double) new_min_latency / PA_USEC_PER_MSEC);
pa_sink_set_latency_range_within_thread(u->sink, new_min_latency, u->sink->thread_info.max_latency);
}
/* When we reach this we're officially fucked! */
}
static void decrease_watermark(struct userdata *u) {
size_t old_watermark;
pa_usec_t now;
pa_assert(u);
pa_assert(u->use_tsched);
now = pa_rtclock_now();
if (u->watermark_dec_not_before <= 0)
goto restart;
if (u->watermark_dec_not_before > now)
return;
old_watermark = u->tsched_watermark;
if (u->tsched_watermark < u->watermark_dec_step)
u->tsched_watermark = u->tsched_watermark / 2;
else
u->tsched_watermark = PA_MAX(u->tsched_watermark / 2, u->tsched_watermark - u->watermark_dec_step);
fix_tsched_watermark(u);
if (old_watermark != u->tsched_watermark)
pa_log_info("Decreasing wakeup watermark to %0.2f ms",
(double) u->tsched_watermark_usec / PA_USEC_PER_MSEC);
/* We don't change the latency range*/
restart:
u->watermark_dec_not_before = now + TSCHED_WATERMARK_VERIFY_AFTER_USEC;
}
/* Called from IO Context on unsuspend or from main thread when creating sink */
static void reset_watermark(struct userdata *u, size_t tsched_watermark, pa_sample_spec *ss,
bool in_thread) {
u->tsched_watermark = pa_convert_size(tsched_watermark, ss, &u->sink->sample_spec);
u->watermark_inc_step = pa_usec_to_bytes(TSCHED_WATERMARK_INC_STEP_USEC, &u->sink->sample_spec);
u->watermark_dec_step = pa_usec_to_bytes(TSCHED_WATERMARK_DEC_STEP_USEC, &u->sink->sample_spec);
u->watermark_inc_threshold = pa_usec_to_bytes_round_up(TSCHED_WATERMARK_INC_THRESHOLD_USEC, &u->sink->sample_spec);
u->watermark_dec_threshold = pa_usec_to_bytes_round_up(TSCHED_WATERMARK_DEC_THRESHOLD_USEC, &u->sink->sample_spec);
fix_min_sleep_wakeup(u);
fix_tsched_watermark(u);
if (in_thread)
pa_sink_set_latency_range_within_thread(u->sink,
u->min_latency_ref,
pa_bytes_to_usec(u->hwbuf_size, ss));
else {
pa_sink_set_latency_range(u->sink,
0,
pa_bytes_to_usec(u->hwbuf_size, ss));
/* work-around assert in pa_sink_set_latency_within_thead,
keep track of min_latency and reuse it when
this routine is called from IO context */
u->min_latency_ref = u->sink->thread_info.min_latency;
}
pa_log_info("Time scheduling watermark is %0.2fms",
(double) u->tsched_watermark_usec / PA_USEC_PER_MSEC);
}
static void hw_sleep_time(struct userdata *u, pa_usec_t *sleep_usec, pa_usec_t*process_usec) {
pa_usec_t usec, wm;
pa_assert(sleep_usec);
pa_assert(process_usec);
pa_assert(u);
pa_assert(u->use_tsched);
usec = pa_sink_get_requested_latency_within_thread(u->sink);
if (usec == (pa_usec_t) -1)
usec = pa_bytes_to_usec(u->hwbuf_size, &u->sink->sample_spec);
wm = u->tsched_watermark_usec;
if (wm > usec)
wm = usec/2;
*sleep_usec = usec - wm;
*process_usec = wm;
#ifdef DEBUG_TIMING
pa_log_debug("Buffer time: %lu ms; Sleep time: %lu ms; Process time: %lu ms",
(unsigned long) (usec / PA_USEC_PER_MSEC),
(unsigned long) (*sleep_usec / PA_USEC_PER_MSEC),
(unsigned long) (*process_usec / PA_USEC_PER_MSEC));
#endif
}
/* Reset smoother and counters */
static void reset_vars(struct userdata *u) {
#ifdef USE_SMOOTHER_2
pa_smoother_2_reset(u->smoother, pa_rtclock_now());
#else
pa_smoother_reset(u->smoother, pa_rtclock_now(), true);
u->smoother_interval = SMOOTHER_MIN_INTERVAL;
u->last_smoother_update = 0;
#endif
u->first = true;
u->since_start = 0;
u->write_count = 0;
}
/* Called from IO context */
static void close_pcm(struct userdata *u) {
/* Let's suspend -- we don't call snd_pcm_drain() here since that might
* take awfully long with our long buffer sizes today. */
snd_pcm_close(u->pcm_handle);
u->pcm_handle = NULL;
if (u->alsa_rtpoll_item) {
pa_rtpoll_item_free(u->alsa_rtpoll_item);
u->alsa_rtpoll_item = NULL;
}
}
static int try_recover(struct userdata *u, const char *call, int err) {
pa_assert(u);
pa_assert(call);
pa_assert(err < 0);
pa_log_debug("%s: %s", call, pa_alsa_strerror(err));
pa_assert(err != -EAGAIN);
if (err == -EPIPE)
pa_log_debug("%s: Buffer underrun!", call);
if (err == -ESTRPIPE)
pa_log_debug("%s: System suspended!", call);
if ((err = snd_pcm_recover(u->pcm_handle, err, 1)) < 0) {
pa_log("%s: %s, trying to restart PCM", call, pa_alsa_strerror(err));
/* As a last measure, restart the PCM and inform the caller about it. */
close_pcm(u);
if (unsuspend(u, true) < 0)
return -1;
return 1;
}
reset_vars(u);
return 0;
}
static size_t check_left_to_play(struct userdata *u, size_t n_bytes, bool on_timeout) {
size_t left_to_play;
bool underrun = false;
/* We use <= instead of < for this check here because an underrun
* only happens after the last sample was processed, not already when
* it is removed from the buffer. This is particularly important
* when block transfer is used. */
if (n_bytes <= u->hwbuf_size)
left_to_play = u->hwbuf_size - n_bytes;
else {
/* We got a dropout. What a mess! */
left_to_play = 0;
underrun = true;
#if 0
PA_DEBUG_TRAP;
#endif
if (!u->first && !u->after_rewind)
if (pa_log_ratelimit(PA_LOG_INFO))
pa_log_info("Underrun!");
}
#ifdef DEBUG_TIMING
pa_log_debug("%0.2f ms left to play; inc threshold = %0.2f ms; dec threshold = %0.2f ms",
(double) pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) / PA_USEC_PER_MSEC,
(double) pa_bytes_to_usec(u->watermark_inc_threshold, &u->sink->sample_spec) / PA_USEC_PER_MSEC,
(double) pa_bytes_to_usec(u->watermark_dec_threshold, &u->sink->sample_spec) / PA_USEC_PER_MSEC);
#endif
if (u->use_tsched) {
bool reset_not_before = true;
if (!u->first && !u->after_rewind) {
if (underrun || left_to_play < u->watermark_inc_threshold)
increase_watermark(u);
else if (left_to_play > u->watermark_dec_threshold) {
reset_not_before = false;
/* We decrease the watermark only if have actually
* been woken up by a timeout. If something else woke
* us up it's too easy to fulfill the deadlines... */
if (on_timeout)
decrease_watermark(u);
}
}
if (reset_not_before)
u->watermark_dec_not_before = 0;
}
return left_to_play;
}
static int mmap_write(struct userdata *u, pa_usec_t *sleep_usec, bool polled, bool on_timeout) {
bool work_done = false;
pa_usec_t max_sleep_usec = 0, process_usec = 0;
size_t left_to_play, input_underrun;
unsigned j = 0;
pa_assert(u);
pa_sink_assert_ref(u->sink);
if (u->use_tsched)
hw_sleep_time(u, &max_sleep_usec, &process_usec);
for (;;) {
snd_pcm_sframes_t n;
size_t n_bytes;
int r;
bool after_avail = true;
/* First we determine how many samples are missing to fill the
* buffer up to 100% */
if (PA_UNLIKELY((n = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) {
if ((r = try_recover(u, "snd_pcm_avail", (int) n)) >= 0)
continue;
return r;
}
n_bytes = (size_t) n * u->frame_size;
#ifdef DEBUG_TIMING
pa_log_debug("avail: %lu", (unsigned long) n_bytes);
#endif
left_to_play = check_left_to_play(u, n_bytes, on_timeout);
on_timeout = false;
if (u->use_tsched)
/* We won't fill up the playback buffer before at least
* half the sleep time is over because otherwise we might
* ask for more data from the clients then they expect. We
* need to guarantee that clients only have to keep around
* a single hw buffer length. */
if (!polled &&
pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) > process_usec+max_sleep_usec/2) {
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because too early.");
#endif
break;
}
if (PA_UNLIKELY(n_bytes <= u->hwbuf_unused)) {
if (polled)
PA_ONCE_BEGIN {
char *dn = pa_alsa_get_driver_name_by_pcm(u->pcm_handle);
pa_log(_("ALSA woke us up to write new data to the device, but there was actually nothing to write.\n"
"Most likely this is a bug in the ALSA driver '%s'. Please report this issue to the ALSA developers.\n"
"We were woken up with POLLOUT set -- however a subsequent snd_pcm_avail() returned 0 or another value < min_avail."),
pa_strnull(dn));
pa_xfree(dn);
} PA_ONCE_END;
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because not necessary.");
#endif
break;
}
j++;
if (j > 10) {
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because already too many iterations.");
#endif
break;
} else if (j >= 2 && (n_bytes < (DEFAULT_WRITE_ITERATION_THRESHOLD * (u->hwbuf_size - u->hwbuf_unused)))) {
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because <%g%% available.", DEFAULT_WRITE_ITERATION_THRESHOLD * 100);
#endif
break;
}
n_bytes -= u->hwbuf_unused;
polled = false;
#ifdef DEBUG_TIMING
pa_log_debug("Filling up");
#endif
for (;;) {
pa_memchunk chunk;
void *p;
int err;
const snd_pcm_channel_area_t *areas;
snd_pcm_uframes_t offset, frames;
snd_pcm_sframes_t sframes;
size_t written;
frames = (snd_pcm_uframes_t) (n_bytes / u->frame_size);
/* pa_log_debug("%lu frames to write", (unsigned long) frames); */
if (PA_UNLIKELY((err = pa_alsa_safe_mmap_begin(u->pcm_handle, &areas, &offset, &frames, u->hwbuf_size, &u->sink->sample_spec)) < 0)) {
if (!after_avail && err == -EAGAIN)
break;
if ((r = try_recover(u, "snd_pcm_mmap_begin", err)) == 0)
continue;
if (r == 1)
break;
return r;
}
/* Make sure that if these memblocks need to be copied they will fit into one slot */
frames = PA_MIN(frames, u->frames_per_block);
if (!after_avail && frames == 0)
break;
pa_assert(frames > 0);
after_avail = false;
/* Check these are multiples of 8 bit */
pa_assert((areas[0].first & 7) == 0);
pa_assert((areas[0].step & 7) == 0);
/* We assume a single interleaved memory buffer */
pa_assert((areas[0].first >> 3) == 0);
pa_assert((areas[0].step >> 3) == u->frame_size);
p = (uint8_t*) areas[0].addr + (offset * u->frame_size);
written = frames * u->frame_size;
chunk.memblock = pa_memblock_new_fixed(u->core->mempool, p, written, true);
chunk.length = pa_memblock_get_length(chunk.memblock);
chunk.index = 0;
pa_sink_render_into_full(u->sink, &chunk);
pa_memblock_unref_fixed(chunk.memblock);
if (PA_UNLIKELY((sframes = snd_pcm_mmap_commit(u->pcm_handle, offset, frames)) < 0)) {
if ((int) sframes == -EAGAIN)
break;
if ((r = try_recover(u, "snd_pcm_mmap_commit", (int) sframes)) == 0)
continue;
if (r == 1)
break;
return r;
}
work_done = true;
u->write_count += written;
u->since_start += written;
#ifdef DEBUG_TIMING
pa_log_debug("Wrote %lu bytes (of possible %lu bytes)", (unsigned long) written, (unsigned long) n_bytes);
#endif
if (written >= n_bytes)
break;
n_bytes -= written;
}
}
input_underrun = pa_sink_process_input_underruns(u->sink, left_to_play);
if (u->use_tsched) {
pa_usec_t underrun_sleep = pa_bytes_to_usec_round_up(input_underrun, &u->sink->sample_spec);
*sleep_usec = pa_bytes_to_usec(left_to_play, &u->sink->sample_spec);
process_usec = u->tsched_watermark_usec;
if (*sleep_usec > process_usec)
*sleep_usec -= process_usec;
else
*sleep_usec = 0;
*sleep_usec = PA_MIN(*sleep_usec, underrun_sleep);
} else
*sleep_usec = 0;
return work_done ? 1 : 0;
}
static int unix_write(struct userdata *u, pa_usec_t *sleep_usec, bool polled, bool on_timeout) {
bool work_done = false;
pa_usec_t max_sleep_usec = 0, process_usec = 0;
size_t left_to_play, input_underrun;
unsigned j = 0;
pa_assert(u);
pa_sink_assert_ref(u->sink);
if (u->use_tsched)
hw_sleep_time(u, &max_sleep_usec, &process_usec);
for (;;) {
snd_pcm_sframes_t n;
size_t n_bytes;
int r;
bool after_avail = true;
if (PA_UNLIKELY((n = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) {
if ((r = try_recover(u, "snd_pcm_avail", (int) n)) >= 0)
continue;
return r;
}
n_bytes = (size_t) n * u->frame_size;
#ifdef DEBUG_TIMING
pa_log_debug("avail: %lu", (unsigned long) n_bytes);
#endif
left_to_play = check_left_to_play(u, n_bytes, on_timeout);
on_timeout = false;
if (u->use_tsched)
/* We won't fill up the playback buffer before at least
* half the sleep time is over because otherwise we might
* ask for more data from the clients then they expect. We
* need to guarantee that clients only have to keep around
* a single hw buffer length. */
if (!polled &&
pa_bytes_to_usec(left_to_play, &u->sink->sample_spec) > process_usec+max_sleep_usec/2)
break;
if (PA_UNLIKELY(n_bytes <= u->hwbuf_unused)) {
if (polled)
PA_ONCE_BEGIN {
char *dn = pa_alsa_get_driver_name_by_pcm(u->pcm_handle);
pa_log(_("ALSA woke us up to write new data to the device, but there was actually nothing to write.\n"
"Most likely this is a bug in the ALSA driver '%s'. Please report this issue to the ALSA developers.\n"
"We were woken up with POLLOUT set -- however a subsequent snd_pcm_avail() returned 0 or another value < min_avail."),
pa_strnull(dn));
pa_xfree(dn);
} PA_ONCE_END;
break;
}
j++;
if (j > 10) {
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because already too many iterations.");
#endif
break;
} else if (j >= 2 && (n_bytes < (DEFAULT_WRITE_ITERATION_THRESHOLD * (u->hwbuf_size - u->hwbuf_unused)))) {
#ifdef DEBUG_TIMING
pa_log_debug("Not filling up, because <%g%% available.", DEFAULT_WRITE_ITERATION_THRESHOLD * 100);
#endif
break;
}
n_bytes -= u->hwbuf_unused;
polled = false;
for (;;) {
snd_pcm_sframes_t frames;
void *p;
size_t written;
/* pa_log_debug("%lu frames to write", (unsigned long) frames); */
if (u->memchunk.length <= 0)
pa_sink_render(u->sink, n_bytes, &u->memchunk);
pa_assert(u->memchunk.length > 0);
frames = (snd_pcm_sframes_t) (u->memchunk.length / u->frame_size);
if (frames > (snd_pcm_sframes_t) (n_bytes/u->frame_size))
frames = (snd_pcm_sframes_t) (n_bytes/u->frame_size);
p = pa_memblock_acquire(u->memchunk.memblock);
frames = snd_pcm_writei(u->pcm_handle, (const uint8_t*) p + u->memchunk.index, (snd_pcm_uframes_t) frames);
pa_memblock_release(u->memchunk.memblock);
if (PA_UNLIKELY(frames < 0)) {
if (!after_avail && (int) frames == -EAGAIN)
break;
if ((r = try_recover(u, "snd_pcm_writei", (int) frames)) == 0)
continue;
if (r == 1)
break;
return r;
}
if (!after_avail && frames == 0)
break;
pa_assert(frames > 0);
after_avail = false;
written = frames * u->frame_size;
u->memchunk.index += written;
u->memchunk.length -= written;
if (u->memchunk.length <= 0) {
pa_memblock_unref(u->memchunk.memblock);
pa_memchunk_reset(&u->memchunk);
}
work_done = true;
u->write_count += written;
u->since_start += written;
/* pa_log_debug("wrote %lu frames", (unsigned long) frames); */
if (written >= n_bytes)
break;
n_bytes -= written;
}
}
input_underrun = pa_sink_process_input_underruns(u->sink, left_to_play);
if (u->use_tsched) {
pa_usec_t underrun_sleep = pa_bytes_to_usec_round_up(input_underrun, &u->sink->sample_spec);
*sleep_usec = pa_bytes_to_usec(left_to_play, &u->sink->sample_spec);
process_usec = u->tsched_watermark_usec;
if (*sleep_usec > process_usec)
*sleep_usec -= process_usec;
else
*sleep_usec = 0;
*sleep_usec = PA_MIN(*sleep_usec, underrun_sleep);
} else
*sleep_usec = 0;
return work_done ? 1 : 0;
}
static void update_smoother(struct userdata *u) {
snd_pcm_sframes_t delay = 0;
int64_t position;
int err;
pa_usec_t now1 = 0;
#ifndef USE_SMOOTHER_2
pa_usec_t now2;
#endif
snd_pcm_status_t *status;
snd_htimestamp_t htstamp = { 0, 0 };
snd_pcm_status_alloca(&status);
pa_assert(u);
pa_assert(u->pcm_handle);
/* Let's update the time smoother */
if (PA_UNLIKELY((err = pa_alsa_safe_delay(u->pcm_handle, status, &delay, u->hwbuf_size, &u->sink->sample_spec, false)) < 0)) {
pa_log_warn("Failed to query DSP status data: %s", pa_alsa_strerror(err));
return;
}
snd_pcm_status_get_htstamp(status, &htstamp);
now1 = pa_timespec_load(&htstamp);
/* Hmm, if the timestamp is 0, then it wasn't set and we take the current time */
if (now1 <= 0)
now1 = pa_rtclock_now();
position = (int64_t) u->write_count - ((int64_t) delay * (int64_t) u->frame_size);
#ifdef USE_SMOOTHER_2
pa_smoother_2_put(u->smoother, now1, position);
#else
/* check if the time since the last update is bigger than the interval */
if (u->last_smoother_update > 0)
if (u->last_smoother_update + u->smoother_interval > now1)
return;
if (PA_UNLIKELY(position < 0))
position = 0;
now2 = pa_bytes_to_usec((uint64_t) position, &u->sink->sample_spec);
pa_smoother_put(u->smoother, now1, now2);
u->last_smoother_update = now1;
/* exponentially increase the update interval up to the MAX limit */
u->smoother_interval = PA_MIN (u->smoother_interval * 2, SMOOTHER_MAX_INTERVAL);
#endif
}
static int64_t sink_get_latency(struct userdata *u) {
int64_t delay;
pa_usec_t now1;
#ifndef USE_SMOOTHER_2
pa_usec_t now2;
#endif
pa_assert(u);
now1 = pa_rtclock_now();
#ifdef USE_SMOOTHER_2
delay = pa_smoother_2_get_delay(u->smoother, now1, u->write_count);
#else
now2 = pa_smoother_get(u->smoother, now1);
delay = (int64_t) pa_bytes_to_usec(u->write_count, &u->sink->sample_spec) - (int64_t) now2;
#endif
if (u->memchunk.memblock)
delay += pa_bytes_to_usec(u->memchunk.length, &u->sink->sample_spec);
return delay;
}
static int build_pollfd(struct userdata *u) {
pa_assert(u);
pa_assert(u->pcm_handle);
if (u->alsa_rtpoll_item)
pa_rtpoll_item_free(u->alsa_rtpoll_item);
if (!(u->alsa_rtpoll_item = pa_alsa_build_pollfd(u->pcm_handle, u->rtpoll)))
return -1;
return 0;
}
/* Called from IO context */
static void suspend(struct userdata *u) {
pa_assert(u);
/* Handle may have been invalidated due to a device failure.
* In that case there is nothing to do. */
if (!u->pcm_handle)
return;
#ifdef USE_SMOOTHER_2
pa_smoother_2_pause(u->smoother, pa_rtclock_now());
#else
pa_smoother_pause(u->smoother, pa_rtclock_now());
#endif
/* Close PCM device */
close_pcm(u);
/* We reset max_rewind/max_request here to make sure that while we
* are suspended the old max_request/max_rewind values set before
* the suspend can influence the per-stream buffer of newly
* created streams, without their requirements having any
* influence on them. */
pa_sink_set_max_rewind_within_thread(u->sink, 0);
pa_sink_set_max_request_within_thread(u->sink, 0);
/* Disabling the UCM devices may save some power. */
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(u->sink->active_port);
pa_alsa_ucm_port_device_disable(data);
}
pa_log_info("Device suspended...");
}
/* Called from IO context */
static int update_sw_params(struct userdata *u, bool may_need_rewind) {
size_t old_unused;
snd_pcm_uframes_t avail_min;
int err;
pa_assert(u);
/* Use the full buffer if no one asked us for anything specific */
old_unused = u->hwbuf_unused;
u->hwbuf_unused = 0;
if (u->use_tsched) {
pa_usec_t latency;
if ((latency = pa_sink_get_requested_latency_within_thread(u->sink)) != (pa_usec_t) -1) {
size_t b;
pa_log_debug("Latency set to %0.2fms", (double) latency / PA_USEC_PER_MSEC);
b = pa_usec_to_bytes(latency, &u->sink->sample_spec);
/* We need at least one sample in our buffer */
if (PA_UNLIKELY(b < u->frame_size))
b = u->frame_size;
u->hwbuf_unused = PA_LIKELY(b < u->hwbuf_size) ? (u->hwbuf_size - b) : 0;
}
fix_min_sleep_wakeup(u);
fix_tsched_watermark(u);
}
pa_log_debug("hwbuf_unused=%lu", (unsigned long) u->hwbuf_unused);
/* We need at last one frame in the used part of the buffer */
avail_min = (snd_pcm_uframes_t) u->hwbuf_unused / u->frame_size + 1;
if (u->use_tsched) {
pa_usec_t sleep_usec, process_usec;
hw_sleep_time(u, &sleep_usec, &process_usec);
avail_min += pa_usec_to_bytes(sleep_usec, &u->sink->sample_spec) / u->frame_size;
}
pa_log_debug("setting avail_min=%lu", (unsigned long) avail_min);
if ((err = pa_alsa_set_sw_params(u->pcm_handle, avail_min, !u->use_tsched)) < 0) {
pa_log("Failed to set software parameters: %s", pa_alsa_strerror(err));
return err;
}
/* If we're lowering the latency, we need to do a rewind, because otherwise
* we might end up in a situation where the hw buffer contains more data
* than the new configured latency. The rewind has to be requested before
* updating max_rewind, because the rewind amount is limited to max_rewind.
*
* If may_need_rewind is false, it means that we're just starting playback,
* and rewinding is never needed in that situation. */
if (may_need_rewind && u->hwbuf_unused > old_unused) {
pa_log_debug("Requesting rewind due to latency change.");
pa_sink_request_rewind(u->sink, (size_t) -1);
}
pa_sink_set_max_request_within_thread(u->sink, u->hwbuf_size - u->hwbuf_unused);
if (pa_alsa_pcm_is_hw(u->pcm_handle))
pa_sink_set_max_rewind_within_thread(u->sink, u->hwbuf_size - u->hwbuf_unused);
else {
pa_log_info("Disabling rewind_within_thread for device %s", u->device_name);
pa_sink_set_max_rewind_within_thread(u->sink, 0);
}
return 0;
}
/* Called from IO Context on unsuspend */
static void update_size(struct userdata *u, pa_sample_spec *ss) {
pa_assert(u);
pa_assert(ss);
u->frame_size = pa_frame_size(ss);
u->frames_per_block = pa_mempool_block_size_max(u->core->mempool) / u->frame_size;
/* use initial values including module arguments */
u->fragment_size = u->initial_info.fragment_size;
u->hwbuf_size = u->initial_info.nfrags * u->fragment_size;
u->tsched_size = u->initial_info.tsched_size;
u->tsched_watermark = u->initial_info.tsched_watermark;
u->rewind_safeguard = u->initial_info.rewind_safeguard;
u->tsched_watermark_ref = u->tsched_watermark;
pa_log_info("Updated frame_size %zu, frames_per_block %lu, fragment_size %zu, hwbuf_size %zu, tsched(size %zu, watermark %zu), rewind_safeguard %zu",
u->frame_size, (unsigned long) u->frames_per_block, u->fragment_size, u->hwbuf_size, u->tsched_size, u->tsched_watermark, u->rewind_safeguard);
}
/* Called from IO context */
static int unsuspend(struct userdata *u, bool recovering) {
pa_sample_spec ss;
int err, i;
bool b, d;
snd_pcm_uframes_t period_frames, buffer_frames;
snd_pcm_uframes_t tsched_frames = 0;
char *device_name = NULL;
bool frame_size_changed = false;
pa_assert(u);
pa_assert(!u->pcm_handle);
pa_log_info("Trying resume...");
/* We disable all UCM devices when suspending, so let's enable them again. */
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(u->sink->active_port);
pa_alsa_ucm_port_device_enable(data);
sync_mixer(u, u->sink->active_port);
}
if ((is_iec958(u) || is_hdmi(u)) && pa_sink_is_passthrough(u->sink)) {
/* Need to open device in NONAUDIO mode */
int len = strlen(u->device_name) + 8;
device_name = pa_xmalloc(len);
pa_snprintf(device_name, len, "%s,AES0=6", u->device_name);
}
/*
* On some machines, during the system suspend and resume, the thread_func could receive
* POLLERR events before the dev nodes in /dev/snd/ are accessible, and thread_func calls
* the unsuspend() to try to recover the PCM, this will make the snd_pcm_open() fail, here
* we add msleep and retry to make sure those nodes are accessible.
*/
for (i = 0; i < 4; i++) {
if ((err = snd_pcm_open(&u->pcm_handle, device_name ? device_name : u->device_name, SND_PCM_STREAM_PLAYBACK,
SND_PCM_NONBLOCK|
SND_PCM_NO_AUTO_RESAMPLE|
SND_PCM_NO_AUTO_CHANNELS|
SND_PCM_NO_AUTO_FORMAT)) < 0 && recovering)
pa_msleep(25);
else
break;
}
if (err < 0) {
pa_log("Error opening PCM device %s: %s", u->device_name, pa_alsa_strerror(err));
goto fail;
}
if (pa_frame_size(&u->sink->sample_spec) != u->frame_size) {
update_size(u, &u->sink->sample_spec);
tsched_frames = u->tsched_size / u->frame_size;
frame_size_changed = true;
}
ss = u->sink->sample_spec;
period_frames = u->fragment_size / u->frame_size;
buffer_frames = u->hwbuf_size / u->frame_size;
b = u->use_mmap;
d = u->use_tsched;
if ((err = pa_alsa_set_hw_params(u->pcm_handle, &ss, &period_frames, &buffer_frames, tsched_frames, &b, &d, true)) < 0) {
pa_log("Failed to set hardware parameters: %s", pa_alsa_strerror(err));
goto fail;
}
if (b != u->use_mmap || d != u->use_tsched) {
pa_log_warn("Resume failed, couldn't get original access mode.");
goto fail;
}
if (!pa_sample_spec_equal(&ss, &u->sink->sample_spec)) {
pa_log_warn("Resume failed, couldn't restore original sample settings.");
goto fail;
}
if (frame_size_changed) {
u->fragment_size = (size_t)(period_frames * u->frame_size);
u->hwbuf_size = (size_t)(buffer_frames * u->frame_size);
pa_proplist_setf(u->sink->proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%zu", u->hwbuf_size);
pa_proplist_setf(u->sink->proplist, PA_PROP_DEVICE_BUFFERING_FRAGMENT_SIZE, "%zu", u->fragment_size);
} else if (period_frames * u->frame_size != u->fragment_size ||
buffer_frames * u->frame_size != u->hwbuf_size) {
pa_log_warn("Resume failed, couldn't restore original fragment settings. (Old: %zu/%zu, New %lu/%lu)",
u->hwbuf_size, u->fragment_size,
(unsigned long) buffer_frames * u->frame_size, (unsigned long) period_frames * u->frame_size);
goto fail;
}
if (update_sw_params(u, false) < 0)
goto fail;
if (build_pollfd(u) < 0)
goto fail;
reset_vars(u);
/* reset the watermark to the value defined when sink was created */
if (u->use_tsched && !recovering)
reset_watermark(u, u->tsched_watermark_ref, &u->sink->sample_spec, true);
pa_log_info("Resumed successfully...");
pa_xfree(device_name);
return 0;
fail:
if (u->pcm_handle) {
snd_pcm_close(u->pcm_handle);
u->pcm_handle = NULL;
}
pa_xfree(device_name);
return -PA_ERR_IO;
}
/* Called from the IO thread or the main thread depending on whether deferred
* volume is enabled or not (with deferred volume all mixer handling is done
* from the IO thread).
*
* Sets the mixer settings to match the current sink and port state (the port
* is given as an argument, because active_port may still point to the old
* port, if we're switching ports). */
static void sync_mixer(struct userdata *u, pa_device_port *port) {
pa_alsa_setting *setting = NULL;
pa_assert(u);
if (!u->mixer_path)
return;
/* port may be NULL, because if we use a synthesized mixer path, then the
* sink has no ports. */
if (port && !u->ucm_context) {
pa_alsa_port_data *data;
data = PA_DEVICE_PORT_DATA(port);
setting = data->setting;
}
pa_alsa_path_select(u->mixer_path, setting, u->mixer_handle, u->sink->muted);
if (u->sink->set_mute)
u->sink->set_mute(u->sink);
if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) {
if (u->sink->write_volume)
u->sink->write_volume(u->sink);
} else {
if (u->sink->set_volume)
u->sink->set_volume(u->sink);
}
}
/* Called from IO context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
int64_t r = 0;
if (u->pcm_handle)
r = sink_get_latency(u);
*((int64_t*) data) = r;
return 0;
}
case SINK_MESSAGE_SYNC_MIXER: {
pa_device_port *port = data;
sync_mixer(u, port);
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state_in_main_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
pa_sink_state_t old_state;
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
/* When our session becomes active, we need to sync the mixer, because
* another user may have changed the mixer settings.
*
* If deferred volume is enabled, the syncing is done in the
* set_state_in_io_thread() callback instead. */
if (!(s->flags & PA_SINK_DEFERRED_VOLUME)
&& (s->suspend_cause & PA_SUSPEND_SESSION)
&& !(new_suspend_cause & PA_SUSPEND_SESSION))
sync_mixer(u, s->active_port);
old_state = u->sink->state;
if (PA_SINK_IS_OPENED(old_state) && new_state == PA_SINK_SUSPENDED)
reserve_done(u);
else if (old_state == PA_SINK_SUSPENDED && PA_SINK_IS_OPENED(new_state))
if (reserve_init(u, u->device_name) < 0)
return -PA_ERR_BUSY;
return 0;
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* When our session becomes active, we need to sync the mixer, because
* another user may have changed the mixer settings.
*
* If deferred volume is disabled, the syncing is done in the
* set_state_in_main_thread() callback instead. */
if ((s->flags & PA_SINK_DEFERRED_VOLUME)
&& (s->suspend_cause & PA_SUSPEND_SESSION)
&& !(new_suspend_cause & PA_SUSPEND_SESSION))
sync_mixer(u, s->active_port);
/* It may be that only the suspend cause is changing, in which case there's
* nothing more to do. */
if (new_state == s->thread_info.state)
return 0;
switch (new_state) {
case PA_SINK_SUSPENDED: {
pa_assert(PA_SINK_IS_OPENED(s->thread_info.state));
suspend(u);
break;
}
case PA_SINK_IDLE:
case PA_SINK_RUNNING: {
int r;
if (s->thread_info.state == PA_SINK_INIT) {
if (build_pollfd(u) < 0)
/* FIXME: This will cause an assertion failure, because
* with the current design pa_sink_put() is not allowed
* to fail and pa_sink_put() has no fallback code that
* would start the sink suspended if opening the device
* fails. */
return -PA_ERR_IO;
}
if (s->thread_info.state == PA_SINK_SUSPENDED) {
if ((r = unsuspend(u, false)) < 0)
return r;
}
break;
}
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
break;
}
return 0;
}
static int ctl_mixer_callback(snd_mixer_elem_t *elem, unsigned int mask) {
struct userdata *u = snd_mixer_elem_get_callback_private(elem);
pa_assert(u);
pa_assert(u->mixer_handle);
if (mask == SND_CTL_EVENT_MASK_REMOVE)
return 0;
if (!PA_SINK_IS_LINKED(u->sink->state))
return 0;
if (u->sink->suspend_cause & PA_SUSPEND_SESSION)
return 0;
if (mask & SND_CTL_EVENT_MASK_VALUE) {
pa_sink_get_volume(u->sink, true);
pa_sink_get_mute(u->sink, true);
}
return 0;
}
static int io_mixer_callback(snd_mixer_elem_t *elem, unsigned int mask) {
struct userdata *u = snd_mixer_elem_get_callback_private(elem);
pa_assert(u);
pa_assert(u->mixer_handle);
if (mask == SND_CTL_EVENT_MASK_REMOVE)
return 0;
if (u->sink->suspend_cause & PA_SUSPEND_SESSION)
return 0;
if (mask & SND_CTL_EVENT_MASK_VALUE)
pa_sink_update_volume_and_mute(u->sink);
return 0;
}
static void sink_get_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_cvolume r;
char volume_buf[PA_CVOLUME_SNPRINT_VERBOSE_MAX];
pa_assert(u);
pa_assert(u->mixer_path);
pa_assert(u->mixer_handle);
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(s->active_port);
if (pa_alsa_ucm_port_device_status(data) <= 0)
return;
}
if (pa_alsa_path_get_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &r) < 0)
return;
/* Shift down by the base volume, so that 0dB becomes maximum volume */
pa_sw_cvolume_multiply_scalar(&r, &r, s->base_volume);
pa_log_debug("Read hardware volume: %s",
pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &r, &s->channel_map, u->mixer_path->has_dB));
if (pa_cvolume_equal(&u->hardware_volume, &r))
return;
s->real_volume = u->hardware_volume = r;
/* Hmm, so the hardware volume changed, let's reset our software volume */
if (u->mixer_path->has_dB)
pa_sink_set_soft_volume(s, NULL);
}
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_cvolume r;
char volume_buf[PA_CVOLUME_SNPRINT_VERBOSE_MAX];
bool deferred_volume = !!(s->flags & PA_SINK_DEFERRED_VOLUME);
bool write_to_hw = !deferred_volume;
pa_assert(u);
pa_assert(u->mixer_path);
pa_assert(u->mixer_handle);
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(s->active_port);
if (pa_alsa_ucm_port_device_status(data) <= 0)
return;
}
/* Shift up by the base volume */
pa_sw_cvolume_divide_scalar(&r, &s->real_volume, s->base_volume);
/* If the set_volume() is called because of ucm active_port changing, the
* volume should be written to hw immediately, otherwise this volume will be
* overridden by calling get_volume_cb() which is called by
* _disdev/_enadev() -> io_mixer_callback() */
if (u->ucm_context && s->port_changing)
write_to_hw = true;
if (pa_alsa_path_set_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &r, deferred_volume, write_to_hw) < 0)
return;
/* Shift down by the base volume, so that 0dB becomes maximum volume */
pa_sw_cvolume_multiply_scalar(&r, &r, s->base_volume);
u->hardware_volume = r;
if (u->mixer_path->has_dB) {
pa_cvolume new_soft_volume;
bool accurate_enough;
/* Match exactly what the user requested by software */
pa_sw_cvolume_divide(&new_soft_volume, &s->real_volume, &u->hardware_volume);
/* If the adjustment to do in software is only minimal we
* can skip it. That saves us CPU at the expense of a bit of
* accuracy */
accurate_enough =
(pa_cvolume_min(&new_soft_volume) >= (PA_VOLUME_NORM - VOLUME_ACCURACY)) &&
(pa_cvolume_max(&new_soft_volume) <= (PA_VOLUME_NORM + VOLUME_ACCURACY));
pa_log_debug("Requested volume: %s",
pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &s->real_volume, &s->channel_map, true));
pa_log_debug("Got hardware volume: %s",
pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &u->hardware_volume, &s->channel_map, true));
pa_log_debug("Calculated software volume: %s (accurate-enough=%s)",
pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &new_soft_volume, &s->channel_map, true),
pa_yes_no(accurate_enough));
if (!accurate_enough)
s->soft_volume = new_soft_volume;
} else {
pa_log_debug("Wrote hardware volume: %s",
pa_cvolume_snprint_verbose(volume_buf, sizeof(volume_buf), &r, &s->channel_map, false));
/* We can't match exactly what the user requested, hence let's
* at least tell the user about it */
s->real_volume = r;
}
}
static void sink_write_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_cvolume hw_vol = s->thread_info.current_hw_volume;
pa_assert(u);
pa_assert(u->mixer_path);
pa_assert(u->mixer_handle);
pa_assert(s->flags & PA_SINK_DEFERRED_VOLUME);
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(s->active_port);
if (pa_alsa_ucm_port_device_status(data) <= 0)
return;
}
/* Shift up by the base volume */
pa_sw_cvolume_divide_scalar(&hw_vol, &hw_vol, s->base_volume);
if (pa_alsa_path_set_volume(u->mixer_path, u->mixer_handle, &s->channel_map, &hw_vol, true, true) < 0)
pa_log_error("Writing HW volume failed");
else {
pa_cvolume tmp_vol;
bool accurate_enough;
/* Shift down by the base volume, so that 0dB becomes maximum volume */
pa_sw_cvolume_multiply_scalar(&hw_vol, &hw_vol, s->base_volume);
pa_sw_cvolume_divide(&tmp_vol, &hw_vol, &s->thread_info.current_hw_volume);
accurate_enough =
(pa_cvolume_min(&tmp_vol) >= (PA_VOLUME_NORM - VOLUME_ACCURACY)) &&
(pa_cvolume_max(&tmp_vol) <= (PA_VOLUME_NORM + VOLUME_ACCURACY));
if (!accurate_enough) {
char volume_buf[2][PA_CVOLUME_SNPRINT_VERBOSE_MAX];
pa_log_debug("Written HW volume did not match with the request: %s (request) != %s",
pa_cvolume_snprint_verbose(volume_buf[0],
sizeof(volume_buf[0]),
&s->thread_info.current_hw_volume,
&s->channel_map,
true),
pa_cvolume_snprint_verbose(volume_buf[1], sizeof(volume_buf[1]), &hw_vol, &s->channel_map, true));
}
}
}
static int sink_get_mute_cb(pa_sink *s, bool *mute) {
struct userdata *u = s->userdata;
pa_assert(u);
pa_assert(u->mixer_path);
pa_assert(u->mixer_handle);
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(s->active_port);
if (pa_alsa_ucm_port_device_status(data) <= 0) {
*mute = s->muted;
return 0;
}
}
if (pa_alsa_path_get_mute(u->mixer_path, u->mixer_handle, mute) < 0)
return -1;
return 0;
}
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_assert(u);
pa_assert(u->mixer_path);
pa_assert(u->mixer_handle);
if (u->ucm_context) {
pa_alsa_ucm_port_data *data = PA_DEVICE_PORT_DATA(s->active_port);
if (pa_alsa_ucm_port_device_status(data) <= 0)
return;
}
pa_alsa_path_set_mute(u->mixer_path, u->mixer_handle, s->muted);
}
static void mixer_volume_init(struct userdata *u) {
pa_assert(u);
if (!u->mixer_path || !u->mixer_path->has_volume) {
pa_sink_set_write_volume_callback(u->sink, NULL);
pa_sink_set_get_volume_callback(u->sink, NULL);
pa_sink_set_set_volume_callback(u->sink, NULL);
pa_log_info("Driver does not support hardware volume control, falling back to software volume control.");
} else {
pa_sink_set_get_volume_callback(u->sink, sink_get_volume_cb);
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
if (u->mixer_path->has_dB && u->deferred_volume) {
pa_sink_set_write_volume_callback(u->sink, sink_write_volume_cb);
pa_log_info("Successfully enabled deferred volume.");
} else
pa_sink_set_write_volume_callback(u->sink, NULL);
if (u->mixer_path->has_dB) {
pa_sink_enable_decibel_volume(u->sink, true);
pa_log_info("Hardware volume ranges from %0.2f dB to %0.2f dB.", u->mixer_path->min_dB, u->mixer_path->max_dB);
u->sink->base_volume = pa_sw_volume_from_dB(-u->mixer_path->max_dB);
u->sink->n_volume_steps = PA_VOLUME_NORM+1;
pa_log_info("Fixing base volume to %0.2f dB", pa_sw_volume_to_dB(u->sink->base_volume));
} else {
pa_sink_enable_decibel_volume(u->sink, false);
pa_log_info("Hardware volume ranges from %li to %li.", u->mixer_path->min_volume, u->mixer_path->max_volume);
u->sink->base_volume = PA_VOLUME_NORM;
u->sink->n_volume_steps = u->mixer_path->max_volume - u->mixer_path->min_volume + 1;
}
pa_log_info("Using hardware volume control. Hardware dB scale %s.", u->mixer_path->has_dB ? "supported" : "not supported");
}
if (!u->mixer_path || !u->mixer_path->has_mute) {
pa_sink_set_get_mute_callback(u->sink, NULL);
pa_sink_set_set_mute_callback(u->sink, NULL);
pa_log_info("Driver does not support hardware mute control, falling back to software mute control.");
} else {
pa_sink_set_get_mute_callback(u->sink, sink_get_mute_cb);
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
pa_log_info("Using hardware mute control.");
}
}
static int sink_set_port_ucm_cb(pa_sink *s, pa_device_port *p) {
struct userdata *u = s->userdata;
pa_alsa_ucm_port_data *data;
pa_assert(u);
pa_assert(p);
pa_assert(u->ucm_context);
data = PA_DEVICE_PORT_DATA(p);
u->mixer_path = data->path;
mixer_volume_init(u);
if (s->flags & PA_SINK_DEFERRED_VOLUME)
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_SYNC_MIXER, p, 0, NULL);
else
sync_mixer(u, p);
return pa_alsa_ucm_set_port(u->ucm_context, p);
}
static int sink_set_port_cb(pa_sink *s, pa_device_port *p) {
struct userdata *u = s->userdata;
pa_alsa_port_data *data;
pa_assert(u);
pa_assert(p);
pa_assert(u->mixer_handle);
pa_assert(!u->ucm_context);
data = PA_DEVICE_PORT_DATA(p);
pa_assert_se(u->mixer_path = data->path);
mixer_volume_init(u);
if (s->flags & PA_SINK_DEFERRED_VOLUME)
pa_asyncmsgq_send(u->sink->asyncmsgq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_SYNC_MIXER, p, 0, NULL);
else
sync_mixer(u, p);
if (data->suspend_when_unavailable && p->available == PA_AVAILABLE_NO)
pa_sink_suspend(s, true, PA_SUSPEND_UNAVAILABLE);
else
pa_sink_suspend(s, false, PA_SUSPEND_UNAVAILABLE);
return 0;
}
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_assert(u);
pa_assert(u->use_tsched); /* only when timer scheduling is used
* we can dynamically adjust the
* latency */
if (!u->pcm_handle)
return;
update_sw_params(u, true);
}
static pa_idxset* sink_get_formats(pa_sink *s) {
struct userdata *u = s->userdata;
pa_assert(u);
return pa_idxset_copy(u->formats, (pa_copy_func_t) pa_format_info_copy);
}
static bool sink_set_formats(pa_sink *s, pa_idxset *formats) {
struct userdata *u = s->userdata;
pa_format_info *f, *g;
uint32_t idx, n;
pa_assert(u);
/* FIXME: also validate sample rates against what the device supports */
PA_IDXSET_FOREACH(f, formats, idx) {
if (is_iec958(u) && f->encoding == PA_ENCODING_EAC3_IEC61937)
/* EAC3 cannot be sent over over S/PDIF */
return false;
}
pa_idxset_free(u->formats, (pa_free_cb_t) pa_format_info_free);
u->formats = pa_idxset_new(NULL, NULL);
/* Note: the logic below won't apply if we're using software encoding.
* This is fine for now since we don't support that via the passthrough
* framework, but this must be changed if we do. */
/* Count how many sample rates we support */
for (idx = 0, n = 0; u->supported_rates[idx]; idx++)
n++;
/* First insert non-PCM formats since we prefer those. */
PA_IDXSET_FOREACH(f, formats, idx) {
if (!pa_format_info_is_pcm(f)) {
g = pa_format_info_copy(f);
pa_format_info_set_prop_int_array(g, PA_PROP_FORMAT_RATE, (int *) u->supported_rates, n);
pa_idxset_put(u->formats, g, NULL);
}
}
/* Now add any PCM formats */
PA_IDXSET_FOREACH(f, formats, idx) {
if (pa_format_info_is_pcm(f)) {
/* We don't set rates here since we'll just tack on a resampler for
* unsupported rates */
pa_idxset_put(u->formats, pa_format_info_copy(f), NULL);
}
}
return true;
}
static void sink_reconfigure_cb(pa_sink *s, pa_sample_spec *spec, bool passthrough) {
struct userdata *u = s->userdata;
int i;
bool format_supported = false;
bool rate_supported = false;
#ifdef USE_SMOOTHER_2
pa_sample_spec effective_spec;
#endif
pa_assert(u);
#ifdef USE_SMOOTHER_2
effective_spec.channels = s->sample_spec.channels;
#endif
for (i = 0; u->supported_formats[i] != PA_SAMPLE_MAX; i++) {
if (u->supported_formats[i] == spec->format) {
pa_sink_set_sample_format(u->sink, spec->format);
#ifdef USE_SMOOTHER_2
effective_spec.format = spec->format;
#endif
format_supported = true;
break;
}
}
if (!format_supported) {
pa_log_info("Sink does not support sample format of %s, set it to a verified value",
pa_sample_format_to_string(spec->format));
pa_sink_set_sample_format(u->sink, u->verified_sample_spec.format);
#ifdef USE_SMOOTHER_2
effective_spec.format = u->verified_sample_spec.format;
#endif
}
for (i = 0; u->supported_rates[i]; i++) {
if (u->supported_rates[i] == spec->rate) {
pa_sink_set_sample_rate(u->sink, spec->rate);
#ifdef USE_SMOOTHER_2
effective_spec.rate = spec->rate;
#endif
rate_supported = true;
break;
}
}
if (!rate_supported) {
pa_log_info("Sink does not support sample rate of %u, set it to a verified value", spec->rate);
pa_sink_set_sample_rate(u->sink, u->verified_sample_spec.rate);
#ifdef USE_SMOOTHER_2
effective_spec.rate = u->verified_sample_spec.rate;
#endif
}
#ifdef USE_SMOOTHER_2
pa_smoother_2_set_sample_spec(u->smoother, pa_rtclock_now(), &effective_spec);
#endif
/* Passthrough status change is handled during unsuspend */
}
static int process_rewind(struct userdata *u) {
snd_pcm_sframes_t unused;
size_t rewind_nbytes, unused_nbytes, limit_nbytes;
int err;
pa_assert(u);
if (!PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
pa_sink_process_rewind(u->sink, 0);
return 0;
}
/* Figure out how much we shall rewind and reset the counter */
rewind_nbytes = u->sink->thread_info.rewind_nbytes;
pa_log_debug("Requested to rewind %lu bytes.", (unsigned long) rewind_nbytes);
if (rewind_nbytes == 0)
goto rewind_done;
if (PA_UNLIKELY((unused = pa_alsa_safe_avail(u->pcm_handle, u->hwbuf_size, &u->sink->sample_spec)) < 0)) {
if ((err = try_recover(u, "snd_pcm_avail", (int) unused)) < 0) {
pa_log_warn("Trying to recover from underrun failed during rewind");
return -1;
}
if (err == 1)
goto rewind_done;
}
unused_nbytes = (size_t) unused * u->frame_size;
/* make sure rewind doesn't go too far, can cause issues with DMAs */
unused_nbytes += u->rewind_safeguard;
if (u->hwbuf_size > unused_nbytes)
limit_nbytes = u->hwbuf_size - unused_nbytes;
else
limit_nbytes = 0;
if (rewind_nbytes > limit_nbytes)
rewind_nbytes = limit_nbytes;
if (rewind_nbytes > 0) {
snd_pcm_sframes_t in_frames, out_frames;
pa_log_debug("Limited to %lu bytes.", (unsigned long) rewind_nbytes);
in_frames = (snd_pcm_sframes_t) (rewind_nbytes / u->frame_size);
pa_log_debug("before: %lu", (unsigned long) in_frames);
if ((out_frames = snd_pcm_rewind(u->pcm_handle, (snd_pcm_uframes_t) in_frames)) < 0) {
pa_log("snd_pcm_rewind() failed: %s", pa_alsa_strerror((int) out_frames));
if ((err = try_recover(u, "process_rewind", out_frames)) < 0)
return -1;
if (err == 1)
goto rewind_done;
out_frames = 0;
}
pa_log_debug("after: %lu", (unsigned long) out_frames);
rewind_nbytes = (size_t) out_frames * u->frame_size;
if (rewind_nbytes <= 0)
pa_log_info("Tried rewind, but was apparently not possible.");
else {
u->write_count -= rewind_nbytes;
pa_log_debug("Rewound %lu bytes.", (unsigned long) rewind_nbytes);
pa_sink_process_rewind(u->sink, rewind_nbytes);
u->after_rewind = true;
return 0;
}
} else {
pa_log_debug("Mhmm, actually there is nothing to rewind.");
if (u->use_tsched)
increase_watermark(u);
}
rewind_done:
pa_sink_process_rewind(u->sink, 0);
return 0;
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
unsigned short revents = 0;
pa_assert(u);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_thread_make_realtime(u->core->realtime_priority);
pa_thread_mq_install(&u->thread_mq);
for (;;) {
int ret;
pa_usec_t rtpoll_sleep = 0, real_sleep;
#ifdef DEBUG_TIMING
pa_log_debug("Loop");
#endif
if (PA_UNLIKELY(u->sink->thread_info.rewind_requested)) {
if (process_rewind(u) < 0)
goto fail;
}
/* Render some data and write it to the dsp */
if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
int work_done;
pa_usec_t sleep_usec = 0;
bool on_timeout = pa_rtpoll_timer_elapsed(u->rtpoll);
if (u->use_mmap)
work_done = mmap_write(u, &sleep_usec, revents & POLLOUT, on_timeout);
else
work_done = unix_write(u, &sleep_usec, revents & POLLOUT, on_timeout);
if (work_done < 0)
goto fail;
/* pa_log_debug("work_done = %i", work_done); */
if (work_done) {
if (u->first) {
pa_log_info("Starting playback.");
snd_pcm_start(u->pcm_handle);
#ifdef USE_SMOOTHER_2
pa_smoother_2_resume(u->smoother, pa_rtclock_now());
#else
pa_smoother_resume(u->smoother, pa_rtclock_now(), true);
#endif
u->first = false;
}
update_smoother(u);
}
if (u->use_tsched) {
pa_usec_t cusec;
if (u->since_start <= u->hwbuf_size) {
/* USB devices on ALSA seem to hit a buffer
* underrun during the first iterations much
* quicker then we calculate here, probably due to
* the transport latency. To accommodate for that
* we artificially decrease the sleep time until
* we have filled the buffer at least once
* completely.*/
if (pa_log_ratelimit(PA_LOG_DEBUG))
pa_log_debug("Cutting sleep time for the initial iterations by half.");
sleep_usec /= 2;
}
/* OK, the playback buffer is now full, let's
* calculate when to wake up next */
#ifdef DEBUG_TIMING
pa_log_debug("Waking up in %0.2fms (sound card clock).", (double) sleep_usec / PA_USEC_PER_MSEC);
#endif
/* Convert from the sound card time domain to the
* system time domain */
#ifdef USE_SMOOTHER_2
cusec = pa_smoother_2_translate(u->smoother, sleep_usec);
#else
cusec = pa_smoother_translate(u->smoother, pa_rtclock_now(), sleep_usec);
#endif
#ifdef DEBUG_TIMING
pa_log_debug("Waking up in %0.2fms (system clock).", (double) cusec / PA_USEC_PER_MSEC);
#endif
/* We don't trust the conversion, so we wake up whatever comes first */
rtpoll_sleep = PA_MIN(sleep_usec, cusec);
}
u->after_rewind = false;
}
if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) {
pa_usec_t volume_sleep;
pa_sink_volume_change_apply(u->sink, &volume_sleep);
if (volume_sleep > 0) {
if (rtpoll_sleep > 0)
rtpoll_sleep = PA_MIN(volume_sleep, rtpoll_sleep);
else
rtpoll_sleep = volume_sleep;
}
}
if (rtpoll_sleep > 0) {
pa_rtpoll_set_timer_relative(u->rtpoll, rtpoll_sleep);
real_sleep = pa_rtclock_now();
}
else
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll)) < 0)
goto fail;
if (rtpoll_sleep > 0) {
real_sleep = pa_rtclock_now() - real_sleep;
#ifdef DEBUG_TIMING
pa_log_debug("Expected sleep: %0.2fms, real sleep: %0.2fms (diff %0.2f ms)",
(double) rtpoll_sleep / PA_USEC_PER_MSEC, (double) real_sleep / PA_USEC_PER_MSEC,
(double) ((int64_t) real_sleep - (int64_t) rtpoll_sleep) / PA_USEC_PER_MSEC);
#endif
if (u->use_tsched && real_sleep > rtpoll_sleep + u->tsched_watermark_usec)
pa_log_info("Scheduling delay of %0.2f ms > %0.2f ms, you might want to investigate this to improve latency...",
(double) (real_sleep - rtpoll_sleep) / PA_USEC_PER_MSEC,
(double) (u->tsched_watermark_usec) / PA_USEC_PER_MSEC);
}
if (u->sink->flags & PA_SINK_DEFERRED_VOLUME)
pa_sink_volume_change_apply(u->sink, NULL);
if (ret == 0)
goto finish;
/* Tell ALSA about this and process its response */
if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
struct pollfd *pollfd;
int err;
unsigned n;
pollfd = pa_rtpoll_item_get_pollfd(u->alsa_rtpoll_item, &n);
if ((err = snd_pcm_poll_descriptors_revents(u->pcm_handle, pollfd, n, &revents)) < 0) {
pa_log("snd_pcm_poll_descriptors_revents() failed: %s", pa_alsa_strerror(err));
goto fail;
}
if (revents & ~POLLOUT) {
if ((err = pa_alsa_recover_from_poll(u->pcm_handle, revents)) < 0)
goto fail;
/* Stream needs to be restarted */
if (err == 1) {
close_pcm(u);
if (unsuspend(u, true) < 0)
goto fail;
} else
reset_vars(u);
revents = 0;
} else if (revents && u->use_tsched && pa_log_ratelimit(PA_LOG_DEBUG))
pa_log_debug("Wakeup from ALSA!");
} else
revents = 0;
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static void set_sink_name(pa_sink_new_data *data, pa_modargs *ma, const char *device_id, const char *device_name, pa_alsa_mapping *mapping) {
const char *n;
char *t;
pa_assert(data);
pa_assert(ma);
pa_assert(device_name);
if ((n = pa_modargs_get_value(ma, "sink_name", NULL))) {
pa_sink_new_data_set_name(data, n);
data->namereg_fail = true;
return;
}
if ((n = pa_modargs_get_value(ma, "name", NULL)))
data->namereg_fail = true;
else {
n = device_id ? device_id : device_name;
data->namereg_fail = false;
}
if (mapping)
t = pa_sprintf_malloc("alsa_output.%s.%s", n, mapping->name);
else
t = pa_sprintf_malloc("alsa_output.%s", n);
pa_sink_new_data_set_name(data, t);
pa_xfree(t);
}
static void find_mixer(struct userdata *u, pa_alsa_mapping *mapping, const char *element, bool ignore_dB) {
const char *mdev;
if (!mapping && !element)
return;
if (!element && mapping && pa_alsa_path_set_is_empty(mapping->output_path_set))
return;
u->mixers = pa_hashmap_new_full(pa_idxset_string_hash_func, pa_idxset_string_compare_func,
NULL, (pa_free_cb_t) pa_alsa_mixer_free);
mdev = mapping ? pa_proplist_gets(mapping->proplist, "alsa.mixer_device") : NULL;
if (mdev) {
u->mixer_handle = pa_alsa_open_mixer_by_name(u->mixers, mdev, true);
} else {
u->mixer_handle = pa_alsa_open_mixer_for_pcm(u->mixers, u->pcm_handle, true);
}
if (!u->mixer_handle) {
pa_log_info("Failed to find a working mixer device.");
return;
}
if (element) {
if (!(u->mixer_path = pa_alsa_path_synthesize(element, PA_ALSA_DIRECTION_OUTPUT)))
goto fail;
if (pa_alsa_path_probe(u->mixer_path, NULL, u->mixer_handle, ignore_dB) < 0)
goto fail;
pa_log_debug("Probed mixer path %s:", u->mixer_path->name);
pa_alsa_path_dump(u->mixer_path);
} else {
u->mixer_path_set = mapping->output_path_set;
}
return;
fail:
if (u->mixer_path) {
pa_alsa_path_free(u->mixer_path);
u->mixer_path = NULL;
}
u->mixer_handle = NULL;
pa_hashmap_free(u->mixers);
u->mixers = NULL;
}
static int setup_mixer(struct userdata *u, bool ignore_dB) {
bool need_mixer_callback = false;
pa_assert(u);
/* This code is before the u->mixer_handle check, because if the UCM
* configuration doesn't specify volume or mute controls, u->mixer_handle
* will be NULL, but the UCM device enable sequence will still need to be
* executed. */
if (u->sink->active_port && u->ucm_context) {
if (pa_alsa_ucm_set_port(u->ucm_context, u->sink->active_port) < 0)
return -1;
}
if (!u->mixer_handle)
return 0;
if (u->sink->active_port) {
if (!u->ucm_context) {
pa_alsa_port_data *data;
/* We have a list of supported paths, so let's activate the
* one that has been chosen as active */
data = PA_DEVICE_PORT_DATA(u->sink->active_port);
u->mixer_path = data->path;
pa_alsa_path_select(data->path, data->setting, u->mixer_handle, u->sink->muted);
} else {
pa_alsa_ucm_port_data *data;
data = PA_DEVICE_PORT_DATA(u->sink->active_port);
/* Now activate volume controls, if any */
if (data->path) {
u->mixer_path = data->path;
pa_alsa_path_select(u->mixer_path, NULL, u->mixer_handle, u->sink->muted);
}
}
} else {
if (!u->mixer_path && u->mixer_path_set)
u->mixer_path = pa_hashmap_first(u->mixer_path_set->paths);
if (u->mixer_path) {
/* Hmm, we have only a single path, then let's activate it */
pa_alsa_path_select(u->mixer_path, u->mixer_path->settings, u->mixer_handle, u->sink->muted);
} else
return 0;
}
mixer_volume_init(u);
/* Will we need to register callbacks? */
if (u->mixer_path_set && u->mixer_path_set->paths) {
pa_alsa_path *p;
void *state;
PA_HASHMAP_FOREACH(p, u->mixer_path_set->paths, state) {
if (p->has_volume || p->has_mute)
need_mixer_callback = true;
}
}
else if (u->mixer_path)
need_mixer_callback = u->mixer_path->has_volume || u->mixer_path->has_mute;
if (need_mixer_callback) {
int (*mixer_callback)(snd_mixer_elem_t *, unsigned int);
if (u->sink->flags & PA_SINK_DEFERRED_VOLUME) {
u->mixer_pd = pa_alsa_mixer_pdata_new();
mixer_callback = io_mixer_callback;
if (pa_alsa_set_mixer_rtpoll(u->mixer_pd, u->mixer_handle, u->rtpoll) < 0) {
pa_log("Failed to initialize file descriptor monitoring");
return -1;
}
} else {
u->mixer_fdl = pa_alsa_fdlist_new();
mixer_callback = ctl_mixer_callback;
if (pa_alsa_fdlist_set_handle(u->mixer_fdl, u->mixer_handle, NULL, u->core->mainloop) < 0) {
pa_log("Failed to initialize file descriptor monitoring");
return -1;
}
}
if (u->mixer_path_set)
pa_alsa_path_set_set_callback(u->mixer_path_set, u->mixer_handle, mixer_callback, u);
else
pa_alsa_path_set_callback(u->mixer_path, u->mixer_handle, mixer_callback, u);
}
return 0;
}
pa_sink *pa_alsa_sink_new(pa_module *m, pa_modargs *ma, const char*driver, pa_card *card, pa_alsa_mapping *mapping) {
struct userdata *u = NULL;
const char *dev_id = NULL, *key, *mod_name;
pa_sample_spec ss;
char *thread_name = NULL;
uint32_t alternate_sample_rate;
pa_channel_map map;
uint32_t nfrags, frag_size, buffer_size, tsched_size, tsched_watermark, rewind_safeguard;
snd_pcm_uframes_t period_frames, buffer_frames, tsched_frames;
size_t frame_size;
bool use_mmap = true;
bool use_tsched = true;
bool ignore_dB = false;
bool namereg_fail = false;
bool deferred_volume = false;
bool set_formats = false;
bool fixed_latency_range = false;
bool b;
bool d;
bool avoid_resampling;
pa_sink_new_data data;
bool volume_is_set;
bool mute_is_set;
pa_alsa_profile_set *profile_set = NULL;
void *state = NULL;
#ifdef USE_SMOOTHER_2
snd_pcm_info_t* pcm_info;
const char *id;
#endif
pa_assert(m);
pa_assert(ma);
ss = m->core->default_sample_spec;
map = m->core->default_channel_map;
avoid_resampling = m->core->avoid_resampling;
/* Pick sample spec overrides from the mapping, if any */
if (mapping) {
if (mapping->sample_spec.format != PA_SAMPLE_INVALID)
ss.format = mapping->sample_spec.format;
if (mapping->sample_spec.rate != 0)
ss.rate = mapping->sample_spec.rate;
if (mapping->sample_spec.channels != 0) {
ss.channels = mapping->sample_spec.channels;
if (pa_channel_map_valid(&mapping->channel_map))
pa_assert(pa_channel_map_compatible(&mapping->channel_map, &ss));
}
}
/* Override with modargs if provided */
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_ALSA) < 0) {
pa_log("Failed to parse sample specification and channel map");
goto fail;
}
alternate_sample_rate = m->core->alternate_sample_rate;
if (pa_modargs_get_alternate_sample_rate(ma, &alternate_sample_rate) < 0) {
pa_log("Failed to parse alternate sample rate");
goto fail;
}
frame_size = pa_frame_size(&ss);
nfrags = m->core->default_n_fragments;
frag_size = (uint32_t) pa_usec_to_bytes(m->core->default_fragment_size_msec*PA_USEC_PER_MSEC, &ss);
if (frag_size <= 0)
frag_size = (uint32_t) frame_size;
tsched_size = (uint32_t) pa_usec_to_bytes(DEFAULT_TSCHED_BUFFER_USEC, &ss);
tsched_watermark = (uint32_t) pa_usec_to_bytes(DEFAULT_TSCHED_WATERMARK_USEC, &ss);
if (pa_modargs_get_value_u32(ma, "fragments", &nfrags) < 0 ||
pa_modargs_get_value_u32(ma, "fragment_size", &frag_size) < 0 ||
pa_modargs_get_value_u32(ma, "tsched_buffer_size", &tsched_size) < 0 ||
pa_modargs_get_value_u32(ma, "tsched_buffer_watermark", &tsched_watermark) < 0) {
pa_log("Failed to parse buffer metrics");
goto fail;
}
buffer_size = nfrags * frag_size;
period_frames = frag_size/frame_size;
buffer_frames = buffer_size/frame_size;
tsched_frames = tsched_size/frame_size;
if (pa_modargs_get_value_boolean(ma, "mmap", &use_mmap) < 0) {
pa_log("Failed to parse mmap argument.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "tsched", &use_tsched) < 0) {
pa_log("Failed to parse tsched argument.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "ignore_dB", &ignore_dB) < 0) {
pa_log("Failed to parse ignore_dB argument.");
goto fail;
}
rewind_safeguard = PA_MAX(DEFAULT_REWIND_SAFEGUARD_BYTES, pa_usec_to_bytes(DEFAULT_REWIND_SAFEGUARD_USEC, &ss));
if (pa_modargs_get_value_u32(ma, "rewind_safeguard", &rewind_safeguard) < 0) {
pa_log("Failed to parse rewind_safeguard argument");
goto fail;
}
deferred_volume = m->core->deferred_volume;
if (pa_modargs_get_value_boolean(ma, "deferred_volume", &deferred_volume) < 0) {
pa_log("Failed to parse deferred_volume argument.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "fixed_latency_range", &fixed_latency_range) < 0) {
pa_log("Failed to parse fixed_latency_range argument.");
goto fail;
}
use_tsched = pa_alsa_may_tsched(use_tsched);
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
u->use_mmap = use_mmap;
u->use_tsched = use_tsched;
u->tsched_size = tsched_size;
u->initial_info.nfrags = (size_t) nfrags;
u->initial_info.fragment_size = (size_t) frag_size;
u->initial_info.tsched_size = (size_t) tsched_size;
u->initial_info.tsched_watermark = (size_t) tsched_watermark;
u->initial_info.rewind_safeguard = (size_t) rewind_safeguard;
u->deferred_volume = deferred_volume;
u->fixed_latency_range = fixed_latency_range;
u->first = true;
u->rewind_safeguard = rewind_safeguard;
u->rtpoll = pa_rtpoll_new();
if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) {
pa_log("pa_thread_mq_init() failed.");
goto fail;
}
#ifndef USE_SMOOTHER_2
u->smoother = pa_smoother_new(
SMOOTHER_ADJUST_USEC,
SMOOTHER_WINDOW_USEC,
true,
true,
5,
pa_rtclock_now(),
true);
u->smoother_interval = SMOOTHER_MIN_INTERVAL;
#endif
/* use ucm */
if (mapping && mapping->ucm_context.ucm)
u->ucm_context = &mapping->ucm_context;
dev_id = pa_modargs_get_value(
ma, "device_id",
pa_modargs_get_value(ma, "device", DEFAULT_DEVICE));
u->paths_dir = pa_xstrdup(pa_modargs_get_value(ma, "paths_dir", NULL));
if (reserve_init(u, dev_id) < 0)
goto fail;
if (reserve_monitor_init(u, dev_id) < 0)
goto fail;
b = use_mmap;
d = use_tsched;
/* Force ALSA to reread its configuration if module-alsa-card didn't
* do it for us. This matters if our device was hot-plugged after ALSA
* has already read its configuration - see
* https://bugs.freedesktop.org/show_bug.cgi?id=54029
*/
if (!card)
snd_config_update_free_global();
if (mapping) {
if (!(dev_id = pa_modargs_get_value(ma, "device_id", NULL))) {
pa_log("device_id= not set");
goto fail;
}
if ((mod_name = pa_proplist_gets(mapping->proplist, PA_ALSA_PROP_UCM_MODIFIER))) {
if (snd_use_case_set(u->ucm_context->ucm->ucm_mgr, "_enamod", mod_name) < 0)
pa_log("Failed to enable ucm modifier %s", mod_name);
else
pa_log_debug("Enabled ucm modifier %s", mod_name);
}
if (!(u->pcm_handle = pa_alsa_open_by_device_id_mapping(
dev_id,
&u->device_name,
&ss, &map,
SND_PCM_STREAM_PLAYBACK,
&period_frames, &buffer_frames, tsched_frames,
&b, &d,
&u->supported_formats, &u->supported_rates,
mapping)))
goto fail;
} else if ((dev_id = pa_modargs_get_value(ma, "device_id", NULL))) {
if (!(profile_set = pa_alsa_profile_set_new(NULL, &map)))
goto fail;
if (!(u->pcm_handle = pa_alsa_open_by_device_id_auto(
dev_id,
&u->device_name,
&ss, &map,
SND_PCM_STREAM_PLAYBACK,
&period_frames, &buffer_frames, tsched_frames,
&b, &d,
&u->supported_formats, &u->supported_rates,
profile_set, &mapping)))
goto fail;
} else {
if (!(u->pcm_handle = pa_alsa_open_by_device_string(
pa_modargs_get_value(ma, "device", DEFAULT_DEVICE),
&u->device_name,
&ss, &map,
SND_PCM_STREAM_PLAYBACK,
&period_frames, &buffer_frames, tsched_frames,
&b, &d,
&u->supported_formats, &u->supported_rates,
false)))
goto fail;
}
pa_assert(u->device_name);
pa_log_info("Successfully opened device %s.", u->device_name);
if (pa_alsa_pcm_is_modem(u->pcm_handle)) {
pa_log_notice("Device %s is modem, refusing further initialization.", u->device_name);
goto fail;
}
if (mapping)
pa_log_info("Selected mapping '%s' (%s).", mapping->description, mapping->name);
if (use_mmap && !b) {
pa_log_info("Device doesn't support mmap(), falling back to UNIX read/write mode.");
u->use_mmap = use_mmap = false;
}
if (use_tsched && (!b || !d)) {
pa_log_info("Cannot enable timer-based scheduling, falling back to sound IRQ scheduling.");
u->use_tsched = use_tsched = false;
}
if (u->use_mmap)
pa_log_info("Successfully enabled mmap() mode.");
if (u->use_tsched) {
pa_log_info("Successfully enabled timer-based scheduling mode.");
if (u->fixed_latency_range)
pa_log_info("Disabling latency range changes on underrun");
}
/* All passthrough formats supported by PulseAudio require
* IEC61937 framing with two fake channels. So, passthrough
* clients will always send two channels. Multichannel sinks
* cannot accept that, because nobody implemented sink channel count
* switching so far. So just don't show known non-working settings
* to the user. */
if ((is_iec958(u) || is_hdmi(u)) && ss.channels == 2)
set_formats = true;
u->verified_sample_spec = ss;
if (!u->supported_formats) {
pa_log_error("Failed to find any supported sample formats.");
goto fail;
}
if (!u->supported_rates) {
pa_log_error("Failed to find any supported sample rates.");
goto fail;
}
/* ALSA might tweak the sample spec, so recalculate the frame size */
frame_size = pa_frame_size(&ss);
pa_sink_new_data_init(&data);
data.driver = driver;
data.module = m;
data.card = card;
set_sink_name(&data, ma, dev_id, u->device_name, mapping);
/* We need to give pa_modargs_get_value_boolean() a pointer to a local
* variable instead of using &data.namereg_fail directly, because
* data.namereg_fail is a bitfield and taking the address of a bitfield
* variable is impossible. */
namereg_fail = data.namereg_fail;
if (pa_modargs_get_value_boolean(ma, "namereg_fail", &namereg_fail) < 0) {
pa_log("Failed to parse namereg_fail argument.");
pa_sink_new_data_done(&data);
goto fail;
}
data.namereg_fail = namereg_fail;
if (pa_modargs_get_value_boolean(ma, "avoid_resampling", &avoid_resampling) < 0) {
pa_log("Failed to parse avoid_resampling argument.");
pa_sink_new_data_done(&data);
goto fail;
}
pa_sink_new_data_set_avoid_resampling(&data, avoid_resampling);
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_sink_new_data_set_channel_map(&data, &map);
pa_sink_new_data_set_alternate_sample_rate(&data, alternate_sample_rate);
pa_alsa_init_proplist_pcm(m->core, data.proplist, u->pcm_handle);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_STRING, u->device_name);
pa_proplist_setf(data.proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%lu", (unsigned long) (buffer_frames * frame_size));
pa_proplist_setf(data.proplist, PA_PROP_DEVICE_BUFFERING_FRAGMENT_SIZE, "%lu", (unsigned long) (period_frames * frame_size));
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_ACCESS_MODE, u->use_tsched ? "mmap+timer" : (u->use_mmap ? "mmap" : "serial"));
if (mapping) {
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_PROFILE_NAME, mapping->name);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_PROFILE_DESCRIPTION, mapping->description);
state = NULL;
while ((key = pa_proplist_iterate(mapping->proplist, &state)))
pa_proplist_sets(data.proplist, key, pa_proplist_gets(mapping->proplist, key));
}
pa_alsa_init_description(data.proplist, card);
if (u->control_device)
pa_alsa_init_proplist_ctl(data.proplist, u->control_device);
if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&data);
goto fail;
}
if (u->ucm_context) {
pa_alsa_ucm_add_ports(&data.ports, data.proplist, u->ucm_context, true, card, u->pcm_handle, ignore_dB);
find_mixer(u, mapping, pa_modargs_get_value(ma, "control", NULL), ignore_dB);
} else {
find_mixer(u, mapping, pa_modargs_get_value(ma, "control", NULL), ignore_dB);
if (u->mixer_path_set)
pa_alsa_add_ports(&data, u->mixer_path_set, card);
}
u->sink = pa_sink_new(m->core, &data, PA_SINK_HARDWARE | PA_SINK_LATENCY | (u->use_tsched ? PA_SINK_DYNAMIC_LATENCY : 0) |
(set_formats ? PA_SINK_SET_FORMATS : 0));
volume_is_set = data.volume_is_set;
mute_is_set = data.muted_is_set;
pa_sink_new_data_done(&data);
if (!u->sink) {
pa_log("Failed to create sink object");
goto fail;
}
#ifdef USE_SMOOTHER_2
u->smoother = pa_smoother_2_new(SMOOTHER_WINDOW_USEC, pa_rtclock_now(), frame_size, u->sink->sample_spec.rate);
/* Check if this is an USB device, see alsa-util.c
* USB devices unfortunately need some special handling */
snd_pcm_info_alloca(&pcm_info);
if (snd_pcm_info(u->pcm_handle, pcm_info) == 0 &&
(id = snd_pcm_info_get_id(pcm_info))) {
if (pa_streq(id, "USB Audio")) {
uint32_t hack_threshold;
/* USB device, set hack parameter */
hack_threshold = 2000;
if (!u->use_tsched)
hack_threshold = 1000;
pa_smoother_2_usb_hack_enable(u->smoother, true, hack_threshold);
}
}
#endif
if (u->ucm_context) {
pa_device_port *port;
unsigned h_prio = 0;
PA_HASHMAP_FOREACH(port, u->sink->ports, state) {
if (!h_prio || port->priority > h_prio)
h_prio = port->priority;
}
/* ucm ports prioriy is 100, 200, ..., 900, change it to units digit */
h_prio = h_prio / 100;
u->sink->priority += h_prio;
}
if (pa_modargs_get_value_u32(ma, "deferred_volume_safety_margin",
&u->sink->thread_info.volume_change_safety_margin) < 0) {
pa_log("Failed to parse deferred_volume_safety_margin parameter");
goto fail;
}
if (pa_modargs_get_value_s32(ma, "deferred_volume_extra_delay",
&u->sink->thread_info.volume_change_extra_delay) < 0) {
pa_log("Failed to parse deferred_volume_extra_delay parameter");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
if (u->use_tsched)
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->set_state_in_main_thread = sink_set_state_in_main_thread_cb;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
if (u->ucm_context)
u->sink->set_port = sink_set_port_ucm_cb;
else
u->sink->set_port = sink_set_port_cb;
u->sink->reconfigure = sink_reconfigure_cb;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
u->frame_size = frame_size;
u->frames_per_block = pa_mempool_block_size_max(m->core->mempool) / frame_size;
u->fragment_size = frag_size = (size_t) (period_frames * frame_size);
u->hwbuf_size = buffer_size = (size_t) (buffer_frames * frame_size);
pa_cvolume_mute(&u->hardware_volume, u->sink->sample_spec.channels);
pa_log_info("Using %0.1f fragments of size %lu bytes (%0.2fms), buffer size is %lu bytes (%0.2fms)",
(double) u->hwbuf_size / (double) u->fragment_size,
(long unsigned) u->fragment_size,
(double) pa_bytes_to_usec(u->fragment_size, &ss) / PA_USEC_PER_MSEC,
(long unsigned) u->hwbuf_size,
(double) pa_bytes_to_usec(u->hwbuf_size, &ss) / PA_USEC_PER_MSEC);
pa_sink_set_max_request(u->sink, u->hwbuf_size);
if (pa_alsa_pcm_is_hw(u->pcm_handle))
pa_sink_set_max_rewind(u->sink, u->hwbuf_size);
else {
pa_log_info("Disabling rewind for device %s", u->device_name);
pa_sink_set_max_rewind(u->sink, 0);
}
if (u->use_tsched) {
u->tsched_watermark_ref = tsched_watermark;
reset_watermark(u, u->tsched_watermark_ref, &ss, false);
} else
pa_sink_set_fixed_latency(u->sink, pa_bytes_to_usec(u->hwbuf_size, &ss));
reserve_update(u);
if (update_sw_params(u, false) < 0)
goto fail;
if (setup_mixer(u, ignore_dB) < 0)
goto fail;
pa_alsa_dump(PA_LOG_DEBUG, u->pcm_handle);
thread_name = pa_sprintf_malloc("alsa-sink-%s", pa_strnull(pa_proplist_gets(u->sink->proplist, "alsa.id")));
if (!(u->thread = pa_thread_new(thread_name, thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
pa_xfree(thread_name);
thread_name = NULL;
/* Get initial mixer settings */
if (volume_is_set) {
if (u->sink->set_volume)
u->sink->set_volume(u->sink);
} else {
if (u->sink->get_volume)
u->sink->get_volume(u->sink);
}
if (mute_is_set) {
if (u->sink->set_mute)
u->sink->set_mute(u->sink);
} else {
if (u->sink->get_mute) {
bool mute;
if (u->sink->get_mute(u->sink, &mute) >= 0)
pa_sink_set_mute(u->sink, mute, false);
}
}
if ((volume_is_set || mute_is_set) && u->sink->write_volume)
u->sink->write_volume(u->sink);
if (set_formats) {
/* For S/PDIF and HDMI, allow getting/setting custom formats */
pa_format_info *format;
/* To start with, we only support PCM formats. Other formats may be added
* with pa_sink_set_formats().*/
format = pa_format_info_new();
format->encoding = PA_ENCODING_PCM;
u->formats = pa_idxset_new(NULL, NULL);
pa_idxset_put(u->formats, format, NULL);
u->sink->get_formats = sink_get_formats;
u->sink->set_formats = sink_set_formats;
}
pa_sink_put(u->sink);
if (profile_set)
pa_alsa_profile_set_free(profile_set);
/* Suspend if necessary. FIXME: It would be better to start suspended, but
* that would require some core changes. It's possible to set
* pa_sink_new_data.suspend_cause, but that has to be done before the
* pa_sink_new() call, and we know if we need to suspend only after the
* pa_sink_new() call when the initial port has been chosen. Calling
* pa_sink_suspend() between pa_sink_new() and pa_sink_put() would
* otherwise work, but currently pa_sink_suspend() will crash if
* pa_sink_put() hasn't been called. */
if (u->sink->active_port && !u->ucm_context) {
pa_alsa_port_data *port_data;
port_data = PA_DEVICE_PORT_DATA(u->sink->active_port);
if (port_data->suspend_when_unavailable && u->sink->active_port->available == PA_AVAILABLE_NO)
pa_sink_suspend(u->sink, true, PA_SUSPEND_UNAVAILABLE);
}
return u->sink;
fail:
pa_xfree(thread_name);
if (u)
userdata_free(u);
if (profile_set)
pa_alsa_profile_set_free(profile_set);
return NULL;
}
static void userdata_free(struct userdata *u) {
pa_assert(u);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
if (u->mixer_pd)
pa_alsa_mixer_pdata_free(u->mixer_pd);
if (u->alsa_rtpoll_item)
pa_rtpoll_item_free(u->alsa_rtpoll_item);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->pcm_handle) {
snd_pcm_drop(u->pcm_handle);
snd_pcm_close(u->pcm_handle);
}
if (u->mixer_fdl)
pa_alsa_fdlist_free(u->mixer_fdl);
/* Only free the mixer_path if the sink owns it */
if (u->mixer_path && !u->mixer_path_set && !u->ucm_context)
pa_alsa_path_free(u->mixer_path);
if (u->mixers)
pa_hashmap_free(u->mixers);
if (u->smoother)
#ifdef USE_SMOOTHER_2
pa_smoother_2_free(u->smoother);
#else
pa_smoother_free(u->smoother);
#endif
if (u->formats)
pa_idxset_free(u->formats, (pa_free_cb_t) pa_format_info_free);
if (u->supported_formats)
pa_xfree(u->supported_formats);
if (u->supported_rates)
pa_xfree(u->supported_rates);
reserve_done(u);
monitor_done(u);
pa_xfree(u->device_name);
pa_xfree(u->control_device);
pa_xfree(u->paths_dir);
pa_xfree(u);
}
void pa_alsa_sink_free(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
userdata_free(u);
}