mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-01 22:58:47 -04:00
526 lines
13 KiB
C
526 lines
13 KiB
C
/***
|
|
This file is part of PulseAudio.
|
|
|
|
Copyright 2007 Lennart Poettering
|
|
|
|
PulseAudio is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as
|
|
published by the Free Software Foundation; either version 2.1 of the
|
|
License, or (at your option) any later version.
|
|
|
|
PulseAudio is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with PulseAudio; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
|
USA.
|
|
***/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <pulse/sample.h>
|
|
#include <pulse/xmalloc.h>
|
|
|
|
#include <pulsecore/macro.h>
|
|
|
|
#include "time-smoother.h"
|
|
|
|
#define HISTORY_MAX 64
|
|
|
|
/*
|
|
* Implementation of a time smoothing algorithm to synchronize remote
|
|
* clocks to a local one. Evens out noise, adjusts to clock skew and
|
|
* allows cheap estimations of the remote time while clock updates may
|
|
* be seldom and recieved in non-equidistant intervals.
|
|
*
|
|
* Basically, we estimate the gradient of received clock samples in a
|
|
* certain history window (of size 'history_time') with linear
|
|
* regression. With that info we estimate the remote time in
|
|
* 'adjust_time' ahead and smoothen our current estimation function
|
|
* towards that point with a 3rd order polynomial interpolation with
|
|
* fitting derivatives. (more or less a b-spline)
|
|
*
|
|
* The larger 'history_time' is chosen the better we will surpress
|
|
* noise -- but we'll adjust to clock skew slower..
|
|
*
|
|
* The larger 'adjust_time' is chosen the smoother our estimation
|
|
* function will be -- but we'll adjust to clock skew slower, too.
|
|
*
|
|
* If 'monotonic' is TRUE the resulting estimation function is
|
|
* guaranteed to be monotonic.
|
|
*/
|
|
|
|
struct pa_smoother {
|
|
pa_usec_t adjust_time, history_time;
|
|
|
|
pa_usec_t time_offset;
|
|
|
|
pa_usec_t px, py; /* Point p, where we want to reach stability */
|
|
double dp; /* Gradient we want at point p */
|
|
|
|
pa_usec_t ex, ey; /* Point e, which we estimated before and need to smooth to */
|
|
double de; /* Gradient we estimated for point e */
|
|
pa_usec_t ry; /* The original y value for ex */
|
|
|
|
/* History of last measurements */
|
|
pa_usec_t history_x[HISTORY_MAX], history_y[HISTORY_MAX];
|
|
unsigned history_idx, n_history;
|
|
|
|
/* To even out for monotonicity */
|
|
pa_usec_t last_y, last_x;
|
|
|
|
/* Cached parameters for our interpolation polynomial y=ax^3+b^2+cx */
|
|
double a, b, c;
|
|
pa_bool_t abc_valid:1;
|
|
|
|
pa_bool_t monotonic:1;
|
|
pa_bool_t paused:1;
|
|
pa_bool_t smoothing:1; /* If FALSE we skip the polonyomial interpolation step */
|
|
|
|
pa_usec_t pause_time;
|
|
|
|
unsigned min_history;
|
|
};
|
|
|
|
pa_smoother* pa_smoother_new(
|
|
pa_usec_t adjust_time,
|
|
pa_usec_t history_time,
|
|
pa_bool_t monotonic,
|
|
pa_bool_t smoothing,
|
|
unsigned min_history,
|
|
pa_usec_t time_offset,
|
|
pa_bool_t paused) {
|
|
|
|
pa_smoother *s;
|
|
|
|
pa_assert(adjust_time > 0);
|
|
pa_assert(history_time > 0);
|
|
pa_assert(min_history >= 2);
|
|
pa_assert(min_history <= HISTORY_MAX);
|
|
|
|
s = pa_xnew(pa_smoother, 1);
|
|
s->adjust_time = adjust_time;
|
|
s->history_time = history_time;
|
|
s->min_history = min_history;
|
|
s->monotonic = monotonic;
|
|
s->smoothing = smoothing;
|
|
|
|
pa_smoother_reset(s, time_offset, paused);
|
|
|
|
return s;
|
|
}
|
|
|
|
void pa_smoother_free(pa_smoother* s) {
|
|
pa_assert(s);
|
|
|
|
pa_xfree(s);
|
|
}
|
|
|
|
#define REDUCE(x) \
|
|
do { \
|
|
x = (x) % HISTORY_MAX; \
|
|
} while(FALSE)
|
|
|
|
#define REDUCE_INC(x) \
|
|
do { \
|
|
x = ((x)+1) % HISTORY_MAX; \
|
|
} while(FALSE)
|
|
|
|
|
|
static void drop_old(pa_smoother *s, pa_usec_t x) {
|
|
|
|
/* Drop items from history which are too old, but make sure to
|
|
* always keep min_history in the history */
|
|
|
|
while (s->n_history > s->min_history) {
|
|
|
|
if (s->history_x[s->history_idx] + s->history_time >= x)
|
|
/* This item is still valid, and thus all following ones
|
|
* are too, so let's quit this loop */
|
|
break;
|
|
|
|
/* Item is too old, let's drop it */
|
|
REDUCE_INC(s->history_idx);
|
|
|
|
s->n_history --;
|
|
}
|
|
}
|
|
|
|
static void add_to_history(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
|
|
unsigned j, i;
|
|
pa_assert(s);
|
|
|
|
/* First try to update an existing history entry */
|
|
i = s->history_idx;
|
|
for (j = s->n_history; j > 0; j--) {
|
|
|
|
if (s->history_x[i] == x) {
|
|
s->history_y[i] = y;
|
|
return;
|
|
}
|
|
|
|
REDUCE_INC(i);
|
|
}
|
|
|
|
/* Drop old entries */
|
|
drop_old(s, x);
|
|
|
|
/* Calculate position for new entry */
|
|
j = s->history_idx + s->n_history;
|
|
REDUCE(j);
|
|
|
|
/* Fill in entry */
|
|
s->history_x[j] = x;
|
|
s->history_y[j] = y;
|
|
|
|
/* Adjust counter */
|
|
s->n_history ++;
|
|
|
|
/* And make sure we don't store more entries than fit in */
|
|
if (s->n_history > HISTORY_MAX) {
|
|
s->history_idx += s->n_history - HISTORY_MAX;
|
|
REDUCE(s->history_idx);
|
|
s->n_history = HISTORY_MAX;
|
|
}
|
|
}
|
|
|
|
static double avg_gradient(pa_smoother *s, pa_usec_t x) {
|
|
unsigned i, j, c = 0;
|
|
int64_t ax = 0, ay = 0, k, t;
|
|
double r;
|
|
|
|
/* FIXME: Optimization: Jason Newton suggested that instead of
|
|
* going through the history on each iteration we could calculated
|
|
* avg_gradient() as we go.
|
|
*
|
|
* Second idea: it might make sense to weight history entries:
|
|
* more recent entries should matter more than old ones. */
|
|
|
|
/* Too few measurements, assume gradient of 1 */
|
|
if (s->n_history < s->min_history)
|
|
return 1;
|
|
|
|
/* First, calculate average of all measurements */
|
|
i = s->history_idx;
|
|
for (j = s->n_history; j > 0; j--) {
|
|
|
|
ax += (int64_t) s->history_x[i];
|
|
ay += (int64_t) s->history_y[i];
|
|
c++;
|
|
|
|
REDUCE_INC(i);
|
|
}
|
|
|
|
pa_assert(c >= s->min_history);
|
|
ax /= c;
|
|
ay /= c;
|
|
|
|
/* Now, do linear regression */
|
|
k = t = 0;
|
|
|
|
i = s->history_idx;
|
|
for (j = s->n_history; j > 0; j--) {
|
|
int64_t dx, dy;
|
|
|
|
dx = (int64_t) s->history_x[i] - ax;
|
|
dy = (int64_t) s->history_y[i] - ay;
|
|
|
|
k += dx*dy;
|
|
t += dx*dx;
|
|
|
|
REDUCE_INC(i);
|
|
}
|
|
|
|
r = (double) k / (double) t;
|
|
|
|
return (s->monotonic && r < 0) ? 0 : r;
|
|
}
|
|
|
|
static void calc_abc(pa_smoother *s) {
|
|
pa_usec_t ex, ey, px, py;
|
|
int64_t kx, ky;
|
|
double de, dp;
|
|
|
|
pa_assert(s);
|
|
|
|
if (s->abc_valid)
|
|
return;
|
|
|
|
/* We have two points: (ex|ey) and (px|py) with two gradients at
|
|
* these points de and dp. We do a polynomial
|
|
* interpolation of degree 3 with these 6 values */
|
|
|
|
ex = s->ex; ey = s->ey;
|
|
px = s->px; py = s->py;
|
|
de = s->de; dp = s->dp;
|
|
|
|
pa_assert(ex < px);
|
|
|
|
/* To increase the dynamic range and symplify calculation, we
|
|
* move these values to the origin */
|
|
kx = (int64_t) px - (int64_t) ex;
|
|
ky = (int64_t) py - (int64_t) ey;
|
|
|
|
/* Calculate a, b, c for y=ax^3+bx^2+cx */
|
|
s->c = de;
|
|
s->b = (((double) (3*ky)/ (double) kx - dp - (double) (2*de))) / (double) kx;
|
|
s->a = (dp/(double) kx - 2*s->b - de/(double) kx) / (double) (3*kx);
|
|
|
|
s->abc_valid = TRUE;
|
|
}
|
|
|
|
static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) {
|
|
pa_assert(s);
|
|
pa_assert(y);
|
|
|
|
if (x >= s->px) {
|
|
/* Linear interpolation right from px */
|
|
int64_t t;
|
|
|
|
/* The requested point is right of the point where we wanted
|
|
* to be on track again, thus just linearly estimate */
|
|
|
|
t = (int64_t) s->py + (int64_t) llrint(s->dp * (double) (x - s->px));
|
|
|
|
if (t < 0)
|
|
t = 0;
|
|
|
|
*y = (pa_usec_t) t;
|
|
|
|
if (deriv)
|
|
*deriv = s->dp;
|
|
|
|
} else if (x <= s->ex) {
|
|
/* Linear interpolation left from ex */
|
|
int64_t t;
|
|
|
|
t = (int64_t) s->ey - (int64_t) llrint(s->de * (double) (s->ex - x));
|
|
|
|
if (t < 0)
|
|
t = 0;
|
|
|
|
*y = (pa_usec_t) t;
|
|
|
|
if (deriv)
|
|
*deriv = s->de;
|
|
|
|
} else {
|
|
/* Spline interpolation between ex and px */
|
|
double tx, ty;
|
|
|
|
/* Ok, we're not yet on track, thus let's interpolate, and
|
|
* make sure that the first derivative is smooth */
|
|
|
|
calc_abc(s);
|
|
|
|
/* Move to origin */
|
|
tx = (double) (x - s->ex);
|
|
|
|
/* Horner scheme */
|
|
ty = (tx * (s->c + tx * (s->b + tx * s->a)));
|
|
|
|
/* Move back from origin */
|
|
ty += (double) s->ey;
|
|
|
|
*y = ty >= 0 ? (pa_usec_t) llrint(ty) : 0;
|
|
|
|
/* Horner scheme */
|
|
if (deriv)
|
|
*deriv = s->c + (tx * (s->b*2 + tx * s->a*3));
|
|
}
|
|
|
|
/* Guarantee monotonicity */
|
|
if (s->monotonic) {
|
|
|
|
if (deriv && *deriv < 0)
|
|
*deriv = 0;
|
|
}
|
|
}
|
|
|
|
void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
|
|
pa_usec_t ney;
|
|
double nde;
|
|
pa_bool_t is_new;
|
|
|
|
pa_assert(s);
|
|
|
|
/* Fix up x value */
|
|
if (s->paused)
|
|
x = s->pause_time;
|
|
|
|
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
|
|
|
|
is_new = x >= s->ex;
|
|
|
|
if (is_new) {
|
|
/* First, we calculate the position we'd estimate for x, so that
|
|
* we can adjust our position smoothly from this one */
|
|
estimate(s, x, &ney, &nde);
|
|
s->ex = x; s->ey = ney; s->de = nde;
|
|
s->ry = y;
|
|
}
|
|
|
|
/* Then, we add the new measurement to our history */
|
|
add_to_history(s, x, y);
|
|
|
|
/* And determine the average gradient of the history */
|
|
s->dp = avg_gradient(s, x);
|
|
|
|
/* And calculate when we want to be on track again */
|
|
if (s->smoothing) {
|
|
s->px = s->ex + s->adjust_time;
|
|
s->py = s->ry + (pa_usec_t) llrint(s->dp * (double) s->adjust_time);
|
|
} else {
|
|
s->px = s->ex;
|
|
s->py = s->ry;
|
|
}
|
|
|
|
s->abc_valid = FALSE;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("%p, put(%llu | %llu) = %llu", s, (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y);
|
|
#endif
|
|
}
|
|
|
|
pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x) {
|
|
pa_usec_t y;
|
|
|
|
pa_assert(s);
|
|
|
|
/* Fix up x value */
|
|
if (s->paused)
|
|
x = s->pause_time;
|
|
|
|
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
|
|
|
|
if (s->monotonic)
|
|
if (x <= s->last_x)
|
|
x = s->last_x;
|
|
|
|
estimate(s, x, &y, NULL);
|
|
|
|
if (s->monotonic) {
|
|
|
|
/* Make sure the querier doesn't jump forth and back. */
|
|
s->last_x = x;
|
|
|
|
if (y < s->last_y)
|
|
y = s->last_y;
|
|
else
|
|
s->last_y = y;
|
|
}
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("%p, get(%llu | %llu) = %llu", s, (unsigned long long) (x + s->time_offset), (unsigned long long) x, (unsigned long long) y);
|
|
#endif
|
|
|
|
return y;
|
|
}
|
|
|
|
void pa_smoother_set_time_offset(pa_smoother *s, pa_usec_t offset) {
|
|
pa_assert(s);
|
|
|
|
s->time_offset = offset;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("offset(%llu)", (unsigned long long) offset);
|
|
#endif
|
|
}
|
|
|
|
void pa_smoother_pause(pa_smoother *s, pa_usec_t x) {
|
|
pa_assert(s);
|
|
|
|
if (s->paused)
|
|
return;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("pause(%llu)", (unsigned long long) x);
|
|
#endif
|
|
|
|
s->paused = TRUE;
|
|
s->pause_time = x;
|
|
}
|
|
|
|
void pa_smoother_resume(pa_smoother *s, pa_usec_t x, pa_bool_t fix_now) {
|
|
pa_assert(s);
|
|
|
|
if (!s->paused)
|
|
return;
|
|
|
|
if (x < s->pause_time)
|
|
x = s->pause_time;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("resume(%llu)", (unsigned long long) x);
|
|
#endif
|
|
|
|
s->paused = FALSE;
|
|
s->time_offset += x - s->pause_time;
|
|
|
|
if (fix_now)
|
|
pa_smoother_fix_now(s);
|
|
}
|
|
|
|
void pa_smoother_fix_now(pa_smoother *s) {
|
|
pa_assert(s);
|
|
|
|
s->px = s->ex;
|
|
s->py = s->ry;
|
|
}
|
|
|
|
pa_usec_t pa_smoother_translate(pa_smoother *s, pa_usec_t x, pa_usec_t y_delay) {
|
|
pa_usec_t ney;
|
|
double nde;
|
|
|
|
pa_assert(s);
|
|
|
|
/* Fix up x value */
|
|
if (s->paused)
|
|
x = s->pause_time;
|
|
|
|
x = PA_LIKELY(x >= s->time_offset) ? x - s->time_offset : 0;
|
|
|
|
estimate(s, x, &ney, &nde);
|
|
|
|
/* Play safe and take the larger gradient, so that we wakeup
|
|
* earlier when this is used for sleeping */
|
|
if (s->dp > nde)
|
|
nde = s->dp;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("translate(%llu) = %llu (%0.2f)", (unsigned long long) y_delay, (unsigned long long) ((double) y_delay / nde), nde);
|
|
#endif
|
|
|
|
return (pa_usec_t) llrint((double) y_delay / nde);
|
|
}
|
|
|
|
void pa_smoother_reset(pa_smoother *s, pa_usec_t time_offset, pa_bool_t paused) {
|
|
pa_assert(s);
|
|
|
|
s->px = s->py = 0;
|
|
s->dp = 1;
|
|
|
|
s->ex = s->ey = s->ry = 0;
|
|
s->de = 1;
|
|
|
|
s->history_idx = 0;
|
|
s->n_history = 0;
|
|
|
|
s->last_y = s->last_x = 0;
|
|
|
|
s->abc_valid = FALSE;
|
|
|
|
s->paused = paused;
|
|
s->time_offset = s->pause_time = time_offset;
|
|
|
|
#ifdef DEBUG_DATA
|
|
pa_log_debug("reset()");
|
|
#endif
|
|
}
|