pulseaudio/src/modules/module-solaris.c

1082 lines
32 KiB
C

/***
This file is part of PulseAudio.
Copyright 2006 Lennart Poettering
Copyright 2006-2007 Pierre Ossman <ossman@cendio.se> for Cendio AB
Copyright 2009 Finn Thain
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <limits.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <signal.h>
#include <stropts.h>
#include <sys/conf.h>
#include <sys/audio.h>
#include <pulse/error.h>
#include <pulse/mainloop-signal.h>
#include <pulse/xmalloc.h>
#include <pulse/timeval.h>
#include <pulse/util.h>
#include <pulsecore/iochannel.h>
#include <pulsecore/sink.h>
#include <pulsecore/source.h>
#include <pulsecore/module.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/core-error.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/thread.h>
#include <pulsecore/rtclock.h>
#include "module-solaris-symdef.h"
PA_MODULE_AUTHOR("Pierre Ossman");
PA_MODULE_DESCRIPTION("Solaris Sink/Source");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"source_name=<name for the source> "
"source_properties=<properties for the source> "
"device=<audio device file name> "
"record=<enable source?> "
"playback=<enable sink?> "
"format=<sample format> "
"channels=<number of channels> "
"rate=<sample rate> "
"buffer_length=<milliseconds> "
"channel_map=<channel map>");
PA_MODULE_LOAD_ONCE(FALSE);
struct userdata {
pa_core *core;
pa_sink *sink;
pa_source *source;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_signal_event *sig;
pa_memchunk memchunk;
uint32_t frame_size;
int32_t buffer_size;
uint64_t written_bytes, read_bytes;
char *device_name;
int mode;
int fd;
pa_rtpoll_item *rtpoll_item;
pa_module *module;
pa_bool_t sink_suspended, source_suspended;
uint32_t play_samples_msw, record_samples_msw;
uint32_t prev_playback_samples, prev_record_samples;
int32_t minimum_request;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"source_name",
"source_properties",
"device",
"record",
"playback",
"buffer_length",
"format",
"rate",
"channels",
"channel_map",
NULL
};
#define DEFAULT_DEVICE "/dev/audio"
#define MAX_RENDER_HZ (300)
/* This render rate limit imposes a minimum latency, but without it we waste too much CPU time. */
static uint64_t get_playback_buffered_bytes(struct userdata *u) {
audio_info_t info;
uint64_t played_bytes;
int err;
pa_assert(u->sink);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
/* Handle wrap-around of the device's sample counter, which is a uint_32. */
if (u->prev_playback_samples > info.play.samples) {
/* Unfortunately info.play.samples can sometimes go backwards, even before it wraps! */
if (u->prev_playback_samples + info.play.samples < 240000) {
++u->play_samples_msw;
} else {
pa_log_debug("play.samples went backwards %d bytes", u->prev_playback_samples - info.play.samples);
}
}
u->prev_playback_samples = info.play.samples;
played_bytes = (((uint64_t)u->play_samples_msw << 32) + info.play.samples) * u->frame_size;
return u->written_bytes - played_bytes;
}
static pa_usec_t sink_get_latency(struct userdata *u, pa_sample_spec *ss) {
pa_usec_t r = 0;
pa_assert(u);
pa_assert(ss);
if (u->fd >= 0) {
r = pa_bytes_to_usec(get_playback_buffered_bytes(u), ss);
if (u->memchunk.memblock)
r += pa_bytes_to_usec(u->memchunk.length, ss);
}
return r;
}
static uint64_t get_recorded_bytes(struct userdata *u) {
audio_info_t info;
uint64_t result;
int err;
pa_assert(u->source);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
if (u->prev_record_samples > info.record.samples)
++u->record_samples_msw;
u->prev_record_samples = info.record.samples;
result = (((uint64_t)u->record_samples_msw << 32) + info.record.samples) * u->frame_size;
return result;
}
static pa_usec_t source_get_latency(struct userdata *u, pa_sample_spec *ss) {
pa_usec_t r = 0;
audio_info_t info;
pa_assert(u);
pa_assert(ss);
if (u->fd) {
int err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
r = pa_bytes_to_usec(get_recorded_bytes(u), ss) - pa_bytes_to_usec(u->read_bytes, ss);
}
return r;
}
static void build_pollfd(struct userdata *u) {
struct pollfd *pollfd;
pa_assert(u);
pa_assert(!u->rtpoll_item);
u->rtpoll_item = pa_rtpoll_item_new(u->rtpoll, PA_RTPOLL_NEVER, 1);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->fd = u->fd;
pollfd->events = 0;
pollfd->revents = 0;
}
static int set_buffer(int fd, int buffer_size) {
audio_info_t info;
pa_assert(fd >= 0);
AUDIO_INITINFO(&info);
info.play.buffer_size = buffer_size;
info.record.buffer_size = buffer_size;
if (ioctl(fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported buffer size.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
return -1;
}
return 0;
}
static int auto_format(int fd, int mode, pa_sample_spec *ss) {
audio_info_t info;
pa_assert(fd >= 0);
pa_assert(ss);
AUDIO_INITINFO(&info);
if (mode != O_RDONLY) {
info.play.sample_rate = ss->rate;
info.play.channels = ss->channels;
switch (ss->format) {
case PA_SAMPLE_U8:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_LINEAR;
break;
case PA_SAMPLE_ALAW:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_ALAW;
break;
case PA_SAMPLE_ULAW:
info.play.precision = 8;
info.play.encoding = AUDIO_ENCODING_ULAW;
break;
case PA_SAMPLE_S16NE:
info.play.precision = 16;
info.play.encoding = AUDIO_ENCODING_LINEAR;
break;
default:
pa_log("AUDIO_SETINFO: Unsupported sample format.");
return -1;
}
}
if (mode != O_WRONLY) {
info.record.sample_rate = ss->rate;
info.record.channels = ss->channels;
switch (ss->format) {
case PA_SAMPLE_U8:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_LINEAR;
break;
case PA_SAMPLE_ALAW:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_ALAW;
break;
case PA_SAMPLE_ULAW:
info.record.precision = 8;
info.record.encoding = AUDIO_ENCODING_ULAW;
break;
case PA_SAMPLE_S16NE:
info.record.precision = 16;
info.record.encoding = AUDIO_ENCODING_LINEAR;
break;
default:
pa_log("AUDIO_SETINFO: Unsupported sample format.");
return -1;
}
}
if (ioctl(fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Failed to set sample format.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
return -1;
}
return 0;
}
static int open_audio_device(struct userdata *u, pa_sample_spec *ss) {
pa_assert(u);
pa_assert(ss);
if ((u->fd = open(u->device_name, u->mode | O_NONBLOCK)) < 0) {
pa_log_warn("open %s failed (%s)", u->device_name, pa_cstrerror(errno));
return -1;
}
pa_log_info("device opened in %s mode.", u->mode == O_WRONLY ? "O_WRONLY" : (u->mode == O_RDONLY ? "O_RDONLY" : "O_RDWR"));
if (auto_format(u->fd, u->mode, ss) < 0)
return -1;
if (set_buffer(u->fd, u->buffer_size) < 0)
return -1;
u->written_bytes = u->read_bytes = 0;
u->play_samples_msw = u->record_samples_msw = 0;
u->prev_playback_samples = u->prev_record_samples = 0;
return u->fd;
}
static int suspend(struct userdata *u) {
pa_assert(u);
pa_assert(u->fd >= 0);
pa_log_info("Suspending...");
ioctl(u->fd, AUDIO_DRAIN, NULL);
pa_close(u->fd);
u->fd = -1;
if (u->rtpoll_item) {
pa_rtpoll_item_free(u->rtpoll_item);
u->rtpoll_item = NULL;
}
pa_log_info("Device suspended.");
return 0;
}
static int unsuspend(struct userdata *u) {
pa_assert(u);
pa_assert(u->fd < 0);
pa_log_info("Resuming...");
if (open_audio_device(u, u->sink ? &u->sink->sample_spec : &u->source->sample_spec) < 0)
return -1;
build_pollfd(u);
pa_log_info("Device resumed.");
return 0;
}
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
*((pa_usec_t*) data) = sink_get_latency(u, &PA_SINK(o)->sample_spec);
return 0;
case PA_SINK_MESSAGE_SET_STATE:
switch ((pa_sink_state_t) PA_PTR_TO_UINT(data)) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->thread_info.state));
if (!u->source || u->source_suspended) {
if (suspend(u) < 0)
return -1;
}
u->sink_suspended = TRUE;
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->thread_info.state == PA_SINK_SUSPENDED) {
if (!u->source || u->source_suspended) {
if (unsuspend(u) < 0)
return -1;
u->sink->get_volume(u->sink);
u->sink->get_mute(u->sink);
}
u->sink_suspended = FALSE;
}
break;
case PA_SINK_INVALID_STATE:
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
;
}
break;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
static int source_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SOURCE(o)->userdata;
switch (code) {
case PA_SOURCE_MESSAGE_GET_LATENCY:
*((pa_usec_t*) data) = source_get_latency(u, &PA_SOURCE(o)->sample_spec);
return 0;
case PA_SOURCE_MESSAGE_SET_STATE:
switch ((pa_source_state_t) PA_PTR_TO_UINT(data)) {
case PA_SOURCE_SUSPENDED:
pa_assert(PA_SOURCE_IS_OPENED(u->source->thread_info.state));
if (!u->sink || u->sink_suspended) {
if (suspend(u) < 0)
return -1;
}
u->source_suspended = TRUE;
break;
case PA_SOURCE_IDLE:
case PA_SOURCE_RUNNING:
if (u->source->thread_info.state == PA_SOURCE_SUSPENDED) {
if (!u->sink || u->sink_suspended) {
if (unsuspend(u) < 0)
return -1;
u->source->get_volume(u->source);
}
u->source_suspended = FALSE;
}
break;
case PA_SOURCE_UNLINKED:
case PA_SOURCE_INIT:
case PA_SOURCE_INVALID_STATE:
;
}
break;
}
return pa_source_process_msg(o, code, data, offset, chunk);
}
static void sink_set_volume(pa_sink *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.play.gain = pa_cvolume_max(&s->virtual_volume) * AUDIO_MAX_GAIN / PA_VOLUME_NORM;
assert(info.play.gain <= AUDIO_MAX_GAIN);
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported volume.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
}
static void sink_get_volume(pa_sink *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
pa_cvolume_set(&s->virtual_volume, s->sample_spec.channels,
info.play.gain * PA_VOLUME_NORM / AUDIO_MAX_GAIN);
}
}
static void source_set_volume(pa_source *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.play.gain = pa_cvolume_max(&s->virtual_volume) * AUDIO_MAX_GAIN / PA_VOLUME_NORM;
assert(info.play.gain <= AUDIO_MAX_GAIN);
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0) {
if (errno == EINVAL)
pa_log("AUDIO_SETINFO: Unsupported volume.");
else
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
}
static void source_get_volume(pa_source *s) {
struct userdata *u;
audio_info_t info;
pa_assert_se(u = s->userdata);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
pa_cvolume_set(&s->virtual_volume, s->sample_spec.channels,
info.play.gain * PA_VOLUME_NORM / AUDIO_MAX_GAIN);
}
}
static void sink_set_mute(pa_sink *s) {
struct userdata *u = s->userdata;
audio_info_t info;
pa_assert(u);
if (u->fd >= 0) {
AUDIO_INITINFO(&info);
info.output_muted = !!s->muted;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
}
static void sink_get_mute(pa_sink *s) {
struct userdata *u = s->userdata;
audio_info_t info;
pa_assert(u);
if (u->fd >= 0) {
if (ioctl(u->fd, AUDIO_GETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
else
s->muted = !!info.output_muted;
}
}
static void process_rewind(struct userdata *u) {
size_t rewind_nbytes;
pa_assert(u);
/* Figure out how much we shall rewind and reset the counter */
rewind_nbytes = u->sink->thread_info.rewind_nbytes;
u->sink->thread_info.rewind_nbytes = 0;
if (rewind_nbytes > 0) {
pa_log_debug("Requested to rewind %lu bytes.", (unsigned long) rewind_nbytes);
rewind_nbytes = PA_MIN(u->memchunk.length, rewind_nbytes);
u->memchunk.length -= rewind_nbytes;
pa_log_debug("Rewound %lu bytes.", (unsigned long) rewind_nbytes);
}
pa_sink_process_rewind(u->sink, rewind_nbytes);
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
unsigned short revents = 0;
int ret, err;
audio_info_t info;
pa_assert(u);
pa_log_debug("Thread starting up");
if (u->core->realtime_scheduling)
pa_make_realtime(u->core->realtime_priority);
pa_thread_mq_install(&u->thread_mq);
pa_rtpoll_install(u->rtpoll);
for (;;) {
/* Render some data and write it to the dsp */
if (u->sink && PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
pa_usec_t xtime0;
uint64_t buffered_bytes;
if (u->sink->thread_info.rewind_requested)
process_rewind(u);
err = ioctl(u->fd, AUDIO_GETINFO, &info);
if (err < 0) {
pa_log("AUDIO_GETINFO ioctl failed: %s", pa_cstrerror(errno));
goto fail;
}
if (info.play.error) {
pa_log_debug("buffer under-run!");
AUDIO_INITINFO(&info);
info.play.error = 0;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
for (;;) {
void *p;
ssize_t w;
size_t len;
/*
* Since we cannot modify the size of the output buffer we fake it
* by not filling it more than u->buffer_size.
*/
xtime0 = pa_rtclock_usec();
buffered_bytes = get_playback_buffered_bytes(u);
if (buffered_bytes >= (uint64_t)u->buffer_size)
break;
len = u->buffer_size - buffered_bytes;
len -= len % u->frame_size;
if (len < (size_t) u->minimum_request)
break;
if (u->memchunk.length < len)
pa_sink_render(u->sink, u->sink->thread_info.max_request, &u->memchunk);
p = pa_memblock_acquire(u->memchunk.memblock);
w = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, NULL);
pa_memblock_release(u->memchunk.memblock);
if (w <= 0) {
switch (errno) {
case EINTR:
continue;
case EAGAIN:
/* If the buffer_size is too big, we get EAGAIN. Avoiding that limit by trial and error
* is not ideal, but I don't know how to get the system to tell me what the limit is.
*/
u->buffer_size = u->buffer_size * 18 / 25;
u->buffer_size -= u->buffer_size % u->frame_size;
u->buffer_size = PA_MAX(u->buffer_size, 2 * u->minimum_request);
pa_sink_set_max_request_within_thread(u->sink, u->buffer_size);
pa_sink_set_max_rewind_within_thread(u->sink, u->buffer_size);
pa_log("EAGAIN. Buffer size is now %u bytes (%llu buffered)", u->buffer_size, buffered_bytes);
break;
default:
pa_log("Failed to write data to DSP: %s", pa_cstrerror(errno));
goto fail;
}
} else {
pa_assert(w % u->frame_size == 0);
u->written_bytes += w;
u->memchunk.length -= w;
u->memchunk.index += w;
if (u->memchunk.length <= 0) {
pa_memblock_unref(u->memchunk.memblock);
pa_memchunk_reset(&u->memchunk);
}
}
}
pa_rtpoll_set_timer_absolute(u->rtpoll, xtime0 + pa_bytes_to_usec(buffered_bytes / 2, &u->sink->sample_spec));
} else
pa_rtpoll_set_timer_disabled(u->rtpoll);
/* Try to read some data and pass it on to the source driver */
if (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state) && (revents & POLLIN)) {
pa_memchunk memchunk;
void *p;
ssize_t r;
size_t len;
err = ioctl(u->fd, AUDIO_GETINFO, &info);
pa_assert(err >= 0);
if (info.record.error) {
pa_log_debug("buffer overflow!");
AUDIO_INITINFO(&info);
info.record.error = 0;
if (ioctl(u->fd, AUDIO_SETINFO, &info) < 0)
pa_log("AUDIO_SETINFO: %s", pa_cstrerror(errno));
}
err = ioctl(u->fd, I_NREAD, &len);
pa_assert(err >= 0);
if (len > 0) {
memchunk.memblock = pa_memblock_new(u->core->mempool, len);
pa_assert(memchunk.memblock);
p = pa_memblock_acquire(memchunk.memblock);
r = pa_read(u->fd, p, len, NULL);
pa_memblock_release(memchunk.memblock);
if (r < 0) {
pa_memblock_unref(memchunk.memblock);
if (errno == EAGAIN)
break;
else {
pa_log("Failed to read data from DSP: %s", pa_cstrerror(errno));
goto fail;
}
} else {
u->read_bytes += r;
memchunk.index = 0;
memchunk.length = r;
pa_source_post(u->source, &memchunk);
pa_memblock_unref(memchunk.memblock);
revents &= ~POLLIN;
}
}
}
if (u->rtpoll_item) {
struct pollfd *pollfd;
pa_assert(u->fd >= 0);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->events = (u->source && PA_SOURCE_IS_OPENED(u->source->thread_info.state)) ? POLLIN : 0;
}
/* Hmm, nothing to do. Let's sleep */
if ((ret = pa_rtpoll_run(u->rtpoll, TRUE)) < 0)
goto fail;
if (ret == 0)
goto finish;
if (u->rtpoll_item) {
struct pollfd *pollfd;
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
if (pollfd->revents & ~(POLLOUT|POLLIN)) {
pa_log("DSP shutdown.");
goto fail;
}
revents = pollfd->revents;
} else
revents = 0;
}
fail:
/* We have to continue processing messages until we receive the
* SHUTDOWN message */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static void sig_callback(pa_mainloop_api *api, pa_signal_event*e, int sig, void *userdata) {
struct userdata *u = userdata;
assert(u);
pa_log_debug("caught signal");
if (u->sink) {
pa_sink_get_volume(u->sink, TRUE, FALSE);
pa_sink_get_mute(u->sink, TRUE);
}
if (u->source)
pa_source_get_volume(u->source, TRUE);
}
int pa__init(pa_module *m) {
struct userdata *u = NULL;
pa_bool_t record = TRUE, playback = TRUE;
pa_sample_spec ss;
pa_channel_map map;
pa_modargs *ma = NULL;
uint32_t buffer_length_msec;
int fd;
pa_sink_new_data sink_new_data;
pa_source_new_data source_new_data;
char const *name;
char *name_buf;
pa_bool_t namereg_fail;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) {
pa_log("record= and playback= expect a boolean argument.");
goto fail;
}
if (!playback && !record) {
pa_log("neither playback nor record enabled for device.");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
/*
* For a process (or several processes) to use the same audio device for both
* record and playback at the same time, the device's mixer must be enabled.
* See mixerctl(1). It may be turned off for playback only or record only.
*/
u->mode = (playback && record) ? O_RDWR : (playback ? O_WRONLY : (record ? O_RDONLY : 0));
ss = m->core->default_sample_spec;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("failed to parse sample specification");
goto fail;
}
u->frame_size = pa_frame_size(&ss);
u->minimum_request = pa_usec_to_bytes(PA_USEC_PER_SEC / MAX_RENDER_HZ, &ss);
buffer_length_msec = 100;
if (pa_modargs_get_value_u32(ma, "buffer_length", &buffer_length_msec) < 0) {
pa_log("failed to parse buffer_length argument");
goto fail;
}
u->buffer_size = pa_usec_to_bytes(1000 * buffer_length_msec, &ss);
if (u->buffer_size < 2 * u->minimum_request) {
pa_log("supplied buffer size argument is too small");
goto fail;
}
u->device_name = pa_xstrdup(pa_modargs_get_value(ma, "device", DEFAULT_DEVICE));
if ((fd = open_audio_device(u, &ss)) < 0)
goto fail;
u->core = m->core;
u->module = m;
m->userdata = u;
pa_memchunk_reset(&u->memchunk);
u->rtpoll = pa_rtpoll_new();
pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll);
u->rtpoll_item = NULL;
build_pollfd(u);
if (u->mode != O_WRONLY) {
name_buf = NULL;
namereg_fail = TRUE;
if (!(name = pa_modargs_get_value(ma, "source_name", NULL))) {
name = name_buf = pa_sprintf_malloc("solaris_input.%s", pa_path_get_filename(u->device_name));
namereg_fail = FALSE;
}
pa_source_new_data_init(&source_new_data);
source_new_data.driver = __FILE__;
source_new_data.module = m;
pa_source_new_data_set_name(&source_new_data, name);
source_new_data.namereg_fail = namereg_fail;
pa_source_new_data_set_sample_spec(&source_new_data, &ss);
pa_source_new_data_set_channel_map(&source_new_data, &map);
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_STRING, u->device_name);
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_API, "solaris");
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Solaris PCM source");
pa_proplist_sets(source_new_data.proplist, PA_PROP_DEVICE_ACCESS_MODE, "serial");
pa_proplist_setf(source_new_data.proplist, PA_PROP_DEVICE_BUFFERING_BUFFER_SIZE, "%lu", (unsigned long) u->buffer_size);
if (pa_modargs_get_proplist(ma, "source_properties", source_new_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_source_new_data_done(&source_new_data);
goto fail;
}
u->source = pa_source_new(m->core, &source_new_data, PA_SOURCE_HARDWARE|PA_SOURCE_LATENCY|PA_SOURCE_HW_VOLUME_CTRL);
pa_source_new_data_done(&source_new_data);
pa_xfree(name_buf);
if (!u->source) {
pa_log("Failed to create source object");
goto fail;
}
u->source->userdata = u;
u->source->parent.process_msg = source_process_msg;
pa_source_set_asyncmsgq(u->source, u->thread_mq.inq);
pa_source_set_rtpoll(u->source, u->rtpoll);
u->source->get_volume = source_get_volume;
u->source->set_volume = source_set_volume;
u->source->refresh_volume = TRUE;
} else
u->source = NULL;
if (u->mode != O_RDONLY) {
name_buf = NULL;
namereg_fail = TRUE;
if (!(name = pa_modargs_get_value(ma, "sink_name", NULL))) {
name = name_buf = pa_sprintf_malloc("solaris_output.%s", pa_path_get_filename(u->device_name));
namereg_fail = FALSE;
}
pa_sink_new_data_init(&sink_new_data);
sink_new_data.driver = __FILE__;
sink_new_data.module = m;
pa_sink_new_data_set_name(&sink_new_data, name);
sink_new_data.namereg_fail = namereg_fail;
pa_sink_new_data_set_sample_spec(&sink_new_data, &ss);
pa_sink_new_data_set_channel_map(&sink_new_data, &map);
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_STRING, u->device_name);
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_API, "solaris");
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Solaris PCM sink");
pa_proplist_sets(sink_new_data.proplist, PA_PROP_DEVICE_ACCESS_MODE, "serial");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_new_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_new_data);
goto fail;
}
u->sink = pa_sink_new(m->core, &sink_new_data, PA_SINK_HARDWARE|PA_SINK_LATENCY|PA_SINK_HW_VOLUME_CTRL|PA_SINK_HW_MUTE_CTRL);
pa_sink_new_data_done(&sink_new_data);
pa_assert(u->sink);
u->sink->userdata = u;
u->sink->parent.process_msg = sink_process_msg;
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
u->sink->get_volume = sink_get_volume;
u->sink->set_volume = sink_set_volume;
u->sink->get_mute = sink_get_mute;
u->sink->set_mute = sink_set_mute;
u->sink->refresh_volume = u->sink->refresh_muted = TRUE;
pa_sink_set_max_request(u->sink, u->buffer_size);
pa_sink_set_max_rewind(u->sink, u->buffer_size);
} else
u->sink = NULL;
pa_assert(u->source || u->sink);
u->sig = pa_signal_new(SIGPOLL, sig_callback, u);
if (u->sig)
ioctl(u->fd, I_SETSIG, S_MSG);
else
pa_log_warn("Could not register SIGPOLL handler");
if (!(u->thread = pa_thread_new(thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
/* Read mixer settings */
if (u->sink) {
if (sink_new_data.volume_is_set)
u->sink->set_volume(u->sink);
else
u->sink->get_volume(u->sink);
if (sink_new_data.muted_is_set)
u->sink->set_mute(u->sink);
else
u->sink->get_mute(u->sink);
pa_sink_put(u->sink);
}
if (u->source) {
if (source_new_data.volume_is_set)
u->source->set_volume(u->source);
else
u->source->get_volume(u->source);
pa_source_put(u->source);
}
pa_modargs_free(ma);
return 0;
fail:
if (u)
pa__done(m);
else if (fd >= 0)
close(fd);
if (ma)
pa_modargs_free(ma);
return -1;
}
void pa__done(pa_module *m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sig) {
ioctl(u->fd, I_SETSIG, 0);
pa_signal_free(u->sig);
}
if (u->sink)
pa_sink_unlink(u->sink);
if (u->source)
pa_source_unlink(u->source);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->source)
pa_source_unref(u->source);
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
if (u->rtpoll_item)
pa_rtpoll_item_free(u->rtpoll_item);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->fd >= 0)
close(u->fd);
pa_xfree(u->device_name);
pa_xfree(u);
}