pulseaudio/src/polypcore/memblockq.h
Lennart Poettering 304449002c 1) Add flexible seeking support (including absolute) for memory block queues and playback streams
2) Add support to synchronize multiple playback streams
3) add two tests for 1) and 2)
4) s/PA_ERROR/PA_ERR/
5) s/PA_ERROR_OK/PA_OK/
6) update simple API to deal properly with new peek/drop recording API
7) add beginnings of proper validity checking on API calls in client libs (needs to be extended)
8) report playback buffer overflows/underflows to the client
9) move client side recording mcalign stuff into the memblockq 
10) create typedefs for a bunch of API callback prototypes
11) simplify handling of HUP poll() events

Yes, i know, it's usually better to commit a lot of small patches instead of a
single big one. In this case however, this would have contradicted the other
rule: never commit broken or incomplete stuff.

*** This stuff needs a lot of additional testing! ***


git-svn-id: file:///home/lennart/svn/public/pulseaudio/trunk@511 fefdeb5f-60dc-0310-8127-8f9354f1896f
2006-02-20 04:05:16 +00:00

134 lines
4.7 KiB
C

#ifndef foomemblockqhfoo
#define foomemblockqhfoo
/* $Id$ */
/***
This file is part of polypaudio.
polypaudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
polypaudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with polypaudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#include <sys/types.h>
#include <inttypes.h>
#include <polypcore/memblock.h>
#include <polypcore/memchunk.h>
#include <polyp/def.h>
/* A memblockq is a queue of pa_memchunks (yepp, the name is not
* perfect). It is similar to the ring buffers used by most other
* audio software. In contrast to a ring buffer this memblockq data
* type doesn't need to copy any data around, it just maintains
* references to reference counted memory blocks. */
typedef struct pa_memblockq pa_memblockq;
/* Parameters:
- idx: start value for both read and write index
- maxlength: maximum length of queue. If more data is pushed into
the queue, the operation will fail. Must not be 0.
- tlength: the target length of the queue. Pass 0 for the default.
- base: a base value for all metrics. Only multiples of this value
are popped from the queue or should be pushed into
it. Must not be 0.
- prebuf: If the queue runs empty wait until this many bytes are in
queue again before passing the first byte out. If set
to 0 pa_memblockq_pop() will return a silence memblock
if no data is in the queue and will never fail. Pass
(size_t) -1 for the default.
- minreq: pa_memblockq_missing() will only return values greater
than this value. Pass 0 for the default.
- silence: return this memblock whzen reading unitialized data
*/
pa_memblockq* pa_memblockq_new(
int64_t idx,
size_t maxlength,
size_t tlength,
size_t base,
size_t prebuf,
size_t minreq,
pa_memblock *silence,
pa_memblock_stat *s);
void pa_memblockq_free(pa_memblockq*bq);
/* Push a new memory chunk into the queue. */
int pa_memblockq_push(pa_memblockq* bq, const pa_memchunk *chunk);
/* Push a new memory chunk into the queue, but filter it through a
* pa_mcalign object. Don't mix this with pa_memblockq_seek() unless
* you know what you do. */
int pa_memblockq_push_align(pa_memblockq* bq, const pa_memchunk *chunk);
/* Return a copy of the next memory chunk in the queue. It is not removed from the queue */
int pa_memblockq_peek(pa_memblockq* bq, pa_memchunk *chunk);
/* Drop the specified bytes from the queue, but only if the first
* chunk in the queue matches the one passed here. If NULL is passed,
* this check isn't done. */
void pa_memblockq_drop(pa_memblockq *bq, const pa_memchunk *chunk, size_t length);
/* Test if the pa_memblockq is currently readable, that is, more data than base */
int pa_memblockq_is_readable(pa_memblockq *bq);
/* Test if the pa_memblockq is currently writable for the specified amount of bytes */
int pa_memblockq_is_writable(pa_memblockq *bq, size_t length);
/* Return the length of the queue in bytes */
size_t pa_memblockq_get_length(pa_memblockq *bq);
/* Return how many bytes are missing in queue to the specified fill amount */
size_t pa_memblockq_missing(pa_memblockq *bq);
/* Returns the minimal request value */
size_t pa_memblockq_get_minreq(pa_memblockq *bq);
/* Manipulate the write pointer */
void pa_memblockq_seek(pa_memblockq *bq, int64_t offset, pa_seek_mode_t seek);
/* Set the queue to silence, set write index to read index */
void pa_memblockq_flush(pa_memblockq *bq);
/* Get Target length */
uint32_t pa_memblockq_get_tlength(pa_memblockq *bq);
/* Return the current read index */
int64_t pa_memblockq_get_read_index(pa_memblockq *bq);
/* Return the current write index */
int64_t pa_memblockq_get_write_index(pa_memblockq *bq);
/* Shorten the pa_memblockq to the specified length by dropping data
* at the read end of the queue. The read index is increased until the
* queue has the specified length */
void pa_memblockq_shorten(pa_memblockq *bq, size_t length);
/* Ignore prebuf for now */
void pa_memblockq_prebuf_disable(pa_memblockq *bq);
/* Force prebuf */
void pa_memblockq_prebuf_force(pa_memblockq *bq);
#endif