pulseaudio/src/modules/module-remap-sink.c
Arun Raghavan 0ac2cfce6d core: Add extended stream API to support compressed formats
This is the beginning of work to support compressed formats natively in
PulseAudio. This adds a pa_stream_new_extended() that takes a format
structure, sends it to the server (=> protocol extension) and has the
server negotiate with the appropropriate sink to figure out what format
it should use.

This is work in progress, and works only with PCM streams. Actual
compressed format support in some sink needs to be implemented, and
extensive testing is required.

More details on how this is supposed to work is available at:
http://pulseaudio.org/wiki/PassthroughSupport
2011-05-02 11:54:43 +05:30

501 lines
15 KiB
C

/***
This file is part of PulseAudio.
Copyright 2004-2009 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <pulse/xmalloc.h>
#include <pulsecore/core-error.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/rtpoll.h>
#include "module-remap-sink-symdef.h"
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("Virtual channel remapping sink");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"master=<name of sink to remap> "
"master_channel_map=<channel map> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"remix=<remix channels?>");
struct userdata {
pa_module *module;
pa_sink *sink;
pa_sink_input *sink_input;
pa_bool_t auto_desc;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"master_channel_map",
"format",
"rate",
"channels",
"channel_map",
"remix",
NULL
};
/* Called from I/O thread context */
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it yet */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
return 0;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return 0;
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
pa_sink_input_request_rewind(u->sink_input, s->thread_info.rewind_nbytes, TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
pa_sink_render(u->sink, nbytes, chunk);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
size_t amount = 0;
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->sink->thread_info.rewind_nbytes > 0) {
amount = PA_MIN(u->sink->thread_info.rewind_nbytes, nbytes);
u->sink->thread_info.rewind_nbytes = 0;
}
pa_sink_process_rewind(u->sink, amount);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_max_request_within_thread(u->sink, nbytes);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i));
pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* The order here matters! We first kill the sink input, followed
* by the sink. That means the sink callbacks must be protected
* against an unconnected sink input! */
pa_sink_input_unlink(u->sink_input);
pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_unref(u->sink);
u->sink = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
if (u->auto_desc && dest) {
const char *k;
pa_proplist *pl;
pl = pa_proplist_new();
k = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "Remapped %s", k ? k : dest->name);
pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl);
pa_proplist_free(pl);
}
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss;
pa_channel_map sink_map, stream_map;
pa_modargs *ma;
pa_sink *master;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
pa_bool_t remix = TRUE;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
ss = master->sample_spec;
sink_map = master->channel_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &sink_map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
stream_map = sink_map;
if (pa_modargs_get_channel_map(ma, "master_channel_map", &stream_map) < 0) {
pa_log("Invalid master channel map");
goto fail;
}
if (stream_map.channels != ss.channels) {
pa_log("Number of channels doesn't match");
goto fail;
}
if (pa_channel_map_equal(&stream_map, &master->channel_map))
pa_log_warn("No remapping configured, proceeding nonetheless!");
if (pa_modargs_get_value_boolean(ma, "remix", &remix) < 0) {
pa_log("Invalid boolean remix parameter");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
u->module = m;
m->userdata = u;
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.remapped", master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &sink_map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
const char *k;
k = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Remapped %s", k ? k : master->name);
}
u->sink = pa_sink_new(m->core, &sink_data, master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state = sink_set_state;
u->sink->update_requested_latency = sink_update_requested_latency;
u->sink->request_rewind = sink_request_rewind;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
pa_sink_input_new_data_set_sink(&sink_input_data, master, FALSE);
sink_input_data.origin_sink = u->sink;
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Remapped Stream");
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &stream_map);
sink_input_data.flags = (remix ? 0 : PA_SINK_INPUT_NO_REMIX);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
u->sink_input->userdata = u;
u->sink->input_to_master = u->sink_input;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
/* See comments in sink_input_kill_cb() above regarding
* destruction order! */
if (u->sink_input)
pa_sink_input_unlink(u->sink_input);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->sink_input)
pa_sink_input_unref(u->sink_input);
if (u->sink)
pa_sink_unref(u->sink);
pa_xfree(u);
}