FSF addresses used in PA sources are no longer valid and rpmlint
generates numerous warnings during packaging because of this.
This patch changes all FSF addresses to FSF web page according to
the GPL how-to: https://www.gnu.org/licenses/gpl-howto.en.html
Done automatically by sed-ing through sources.
This patch replaces every occurrence of ')\n{' with ') {'.
Command used for this:
find . -type d \( -name ffmpeg \) -prune -o \
-regex '\(.*\.[hc]\|.*\.cc\)' \
-a -not -name core-util.c -a -not \
-name adrian-aec.c -a -not -name g711.c \
-exec sed -i -e '/)$/{N;s/)\n{$/) {/}' {} \;
The excluded files are mirrored files from external sources.
Enable advanced AEC methods to use different specs (i.e., number of
channels) for rec and out stream. A typical application is beam forming
resp. multi-channel AEC, which takes multiple record channels to produce
an echo-canceled output stream.
This commit alters the EC API as follows: the EC's init() used to get
source and sink's sample spec/channel map. The new interface renamed
source to rec and sink to play and additionally passes sample spec and
channel map of the out stream. The new parameter names of init()
{rec,play,out}_{ss,map} are more intuitive and also resemble to the
parameter names known from run(). Both rec_{ss,map} and out_{ss,map} are
initialized as we knew it from source_{ss,map} before being passed to
init(). The previous EC implementations only require trivial changes,
i.e., setting rec_{ss,map} to out_{ss,map} at the end of init() in case
that out_{ss,map} is modified in init().
In order to support different blocksizes for source and sink (e.g, for
4-to-1 beamforming/echo canceling which involves 4 record channels and 1
playback channel) the AEC API is altered:
The blocksize for source and sink may differ (due to different sample
specs) but the number of frames that are processed in one invokation of
the AEC implementation's run() function is the same for the playback and
the record stream. Consequently, the AEC implementation's init()
function initalizes 'nframes' instead of 'blocksize' and the source's
and sink's blocksizes are derived from 'nframes'. The old API also
caused code duplication in each AEC implementation's init function for
the compution of the blocksize, which is eliminated by the new API.
Signed-off-by: Stefan Huber <s.huber@bct-electronic.com>
Acked-by: Peter Meerwald <p.meerwald@bct-electronic.com>
This forces us to get native-endian samples in the adrian module so that
we can rely on the existing endianness conversion mechanisms instead of
doing it in the module.
The adrian module was using home-brewed endianness conversion instead of
the appropriate mactos, and speex assumed a little-endian host. This
fixes both of these.
Optimises the core inner-product function, which takes the most CPU. The
SSE-optimised bits of the adrian echo canceller only if the CPU that PA
is running on actually supports SSE.
Since all algorithms will need to specify a block size (the amount of
data to be processed together), we make this a common parameter and have
the implementation set it at initialisation time.
This adds Andre Adrian's AEC implementation from his intercom project
(http://andreadrian.de/intercom/) as an alternative to the speex echo
cancellation routines. Since the implementation was in C++ and not in
the form of a library, I have converted the code to C and made a local
copy of the implementation.
The implementation actually works on floating point data, so we can
tweak it to work with both integer and floating point samples (currently
we just use S16LE).