mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-08 13:29:59 -05:00
tests: Factor out loopback setup code
This moves over setup code for the loopback latency test into a private library so that we can easily write more tests using the same framework.
This commit is contained in:
parent
36bdd720aa
commit
e001cc1424
4 changed files with 427 additions and 303 deletions
|
|
@ -223,6 +223,7 @@ pax11publish_LDFLAGS = $(AM_LDFLAGS) $(BINLDFLAGS)
|
|||
###################################
|
||||
# Test programs #
|
||||
###################################
|
||||
noinst_LTLIBRARIES =
|
||||
|
||||
TESTS_default = \
|
||||
mainloop-test \
|
||||
|
|
@ -575,8 +576,13 @@ echo_cancel_test_CXXFLAGS = $(module_echo_cancel_la_CXXFLAGS) -DECHO_CANCEL_TEST
|
|||
endif
|
||||
echo_cancel_test_LDFLAGS = $(AM_LDFLAGS) $(BINLDFLAGS)
|
||||
|
||||
liblo_test_util_la_SOURCES = tests/lo-test-util.h tests/lo-test-util.c
|
||||
liblo_test_util_la_LIBADD = libpulsecore-@PA_MAJORMINOR@.la
|
||||
liblo_test_util_la_LDFLAGS = -avoid-version
|
||||
noinst_LTLIBRARIES += liblo-test-util.la
|
||||
|
||||
lo_latency_test_SOURCES = tests/lo-latency-test.c
|
||||
lo_latency_test_LDADD = $(AM_LDADD) libpulse.la
|
||||
lo_latency_test_LDADD = $(AM_LDADD) libpulse.la liblo-test-util.la
|
||||
lo_latency_test_CFLAGS = $(AM_CFLAGS) $(LIBCHECK_CFLAGS)
|
||||
lo_latency_test_LDFLAGS = $(AM_LDFLAGS) $(BINLDFLAGS) $(LIBCHECK_LIBS)
|
||||
|
||||
|
|
@ -855,7 +861,6 @@ libpulsedsp_la_LDFLAGS = $(AM_LDFLAGS) -avoid-version -disable-static
|
|||
###################################
|
||||
|
||||
lib_LTLIBRARIES += libpulsecore-@PA_MAJORMINOR@.la
|
||||
noinst_LTLIBRARIES =
|
||||
|
||||
# Pure core stuff
|
||||
libpulsecore_@PA_MAJORMINOR@_la_SOURCES = \
|
||||
|
|
|
|||
|
|
@ -32,62 +32,33 @@
|
|||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
#include <check.h>
|
||||
|
||||
#include <pulse/pulseaudio.h>
|
||||
#include <pulse/mainloop.h>
|
||||
|
||||
/* for pa_make_realtime */
|
||||
#include <pulsecore/core-util.h>
|
||||
#include "lo-test-util.h"
|
||||
|
||||
#define SAMPLE_HZ 44100
|
||||
#define CHANNELS 2
|
||||
#define N_OUT (SAMPLE_HZ * 1)
|
||||
|
||||
#define TONE_HZ (SAMPLE_HZ / 100)
|
||||
#define PLAYBACK_LATENCY 25 /* ms */
|
||||
#define CAPTURE_LATENCY 5 /* ms */
|
||||
|
||||
static pa_context *context = NULL;
|
||||
static pa_stream *pstream, *rstream;
|
||||
static pa_mainloop_api *mainloop_api = NULL;
|
||||
static const char *context_name = NULL;
|
||||
|
||||
static float out[N_OUT][CHANNELS];
|
||||
static int ppos = 0;
|
||||
|
||||
static int n_underflow = 0;
|
||||
static int n_overflow = 0;
|
||||
pa_lo_test_context test_ctx;
|
||||
static const char *context_name = NULL;
|
||||
|
||||
static struct timeval tv_out, tv_in;
|
||||
|
||||
static const pa_sample_spec sample_spec = {
|
||||
.format = PA_SAMPLE_FLOAT32,
|
||||
.rate = SAMPLE_HZ,
|
||||
.channels = CHANNELS,
|
||||
};
|
||||
static int ss, fs;
|
||||
|
||||
static void nop_free_cb(void *p) {}
|
||||
|
||||
static void underflow_cb(struct pa_stream *s, void *userdata) {
|
||||
fprintf(stderr, "Underflow\n");
|
||||
n_underflow++;
|
||||
}
|
||||
|
||||
static void overflow_cb(struct pa_stream *s, void *userdata) {
|
||||
fprintf(stderr, "Overlow\n");
|
||||
n_overflow++;
|
||||
static void nop_free_cb(void *p) {
|
||||
}
|
||||
|
||||
static void write_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
int r, nsamp = nbytes / fs;
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
static int ppos = 0;
|
||||
int r, nsamp = nbytes / ctx->fs;
|
||||
|
||||
if (ppos + nsamp > N_OUT) {
|
||||
r = pa_stream_write(s, &out[ppos][0], (N_OUT - ppos) * fs, nop_free_cb, 0, PA_SEEK_RELATIVE);
|
||||
nbytes -= (N_OUT - ppos) * fs;
|
||||
r = pa_stream_write(s, &out[ppos][0], (N_OUT - ppos) * ctx->fs, nop_free_cb, 0, PA_SEEK_RELATIVE);
|
||||
nbytes -= (N_OUT - ppos) * ctx->fs;
|
||||
ppos = 0;
|
||||
}
|
||||
|
||||
|
|
@ -97,22 +68,13 @@ static void write_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
|||
r = pa_stream_write(s, &out[ppos][0], nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE);
|
||||
fail_unless(r == 0);
|
||||
|
||||
ppos = (ppos + nbytes / fs) % N_OUT;
|
||||
}
|
||||
|
||||
static inline float rms(const float *s, int n) {
|
||||
float sq = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
sq += s[i] * s[i];
|
||||
|
||||
return sqrtf(sq / n);
|
||||
ppos = (ppos + nbytes / ctx->fs) % N_OUT;
|
||||
}
|
||||
|
||||
#define WINDOW (2 * CHANNELS)
|
||||
|
||||
static void read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
static float last = 0.0f;
|
||||
const float *in;
|
||||
float cur;
|
||||
|
|
@ -143,16 +105,16 @@ static void read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
|||
#if 0
|
||||
{
|
||||
int j;
|
||||
fprintf(stderr, "%g (", rms(in, WINDOW));
|
||||
fprintf(stderr, "%g (", pa_rms(in, WINDOW));
|
||||
for (j = 0; j < WINDOW; j++)
|
||||
fprintf(stderr, "%g ", in[j]);
|
||||
fprintf(stderr, ")\n");
|
||||
}
|
||||
#endif
|
||||
if (i + (ss * WINDOW) < l)
|
||||
cur = rms(in, WINDOW);
|
||||
if (i + (ctx->ss * WINDOW) < l)
|
||||
cur = pa_rms(in, WINDOW);
|
||||
else
|
||||
cur = rms(in, (l - i)/ss);
|
||||
cur = pa_rms(in, (l - i) / ctx->ss);
|
||||
|
||||
/* We leave the definition of 0 generous since the window might
|
||||
* straddle the 0->1 transition, raising the average power. We keep the
|
||||
|
|
@ -165,223 +127,26 @@ static void read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
|||
|
||||
last = cur;
|
||||
in += WINDOW;
|
||||
i += ss * WINDOW;
|
||||
} while (i + (ss * WINDOW) <= l);
|
||||
i += ctx->ss * WINDOW;
|
||||
} while (i + (ctx->ss * WINDOW) <= l);
|
||||
|
||||
pa_stream_drop(s);
|
||||
}
|
||||
|
||||
/*
|
||||
* We run a simple volume calibration so that we know we can detect the signal
|
||||
* being played back. We start with the playback stream at 100% volume, and
|
||||
* capture at 0.
|
||||
*
|
||||
* First, we then play a sine wave and increase the capture volume till the
|
||||
* signal is clearly received.
|
||||
*
|
||||
* Next, we play back silence and make sure that the level is low enough to
|
||||
* distinguish from when playback is happening.
|
||||
*
|
||||
* Finally, we hand off to the real read/write callbacks to run the actual
|
||||
* test.
|
||||
*/
|
||||
|
||||
enum {
|
||||
CALIBRATION_ONE,
|
||||
CALIBRATION_ZERO,
|
||||
CALIBRATION_DONE,
|
||||
};
|
||||
|
||||
static int cal_state = CALIBRATION_ONE;
|
||||
|
||||
static void calibrate_write_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
int i, r, nsamp = nbytes / fs;
|
||||
float tmp[nsamp][2];
|
||||
static int count = 0;
|
||||
|
||||
/* Write out a sine tone */
|
||||
for (i = 0; i < nsamp; i++)
|
||||
tmp[i][0] = tmp[i][1] = cal_state == CALIBRATION_ONE ? sinf(count++ * TONE_HZ * 2 * M_PI / SAMPLE_HZ) : 0.0f;
|
||||
|
||||
r = pa_stream_write(s, &tmp, nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE);
|
||||
fail_unless(r == 0);
|
||||
|
||||
if (cal_state == CALIBRATION_DONE)
|
||||
pa_stream_set_write_callback(s, write_cb, NULL);
|
||||
}
|
||||
|
||||
static void calibrate_read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
static double v = 0;
|
||||
static int skip = 0, confirm;
|
||||
|
||||
pa_cvolume vol;
|
||||
pa_operation *o;
|
||||
int r, nsamp;
|
||||
float *in;
|
||||
size_t l;
|
||||
|
||||
r = pa_stream_peek(s, (const void **)&in, &l);
|
||||
fail_unless(r == 0);
|
||||
|
||||
nsamp = l / fs;
|
||||
|
||||
/* For each state or volume step change, throw out a few samples so we know
|
||||
* we're seeing the changed samples. */
|
||||
if (skip++ < 100)
|
||||
goto out;
|
||||
else
|
||||
skip = 0;
|
||||
|
||||
switch (cal_state) {
|
||||
case CALIBRATION_ONE:
|
||||
/* Try to detect the sine wave. RMS is 0.5, */
|
||||
if (rms(in, nsamp) < 0.40f) {
|
||||
confirm = 0;
|
||||
v += 0.02f;
|
||||
|
||||
if (v > 1.0) {
|
||||
fprintf(stderr, "Capture signal too weak at 100%% volume (%g). Giving up.\n", rms(in, nsamp));
|
||||
fail();
|
||||
}
|
||||
|
||||
pa_cvolume_set(&vol, CHANNELS, v * PA_VOLUME_NORM);
|
||||
o = pa_context_set_source_output_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
fail_if(o == NULL);
|
||||
pa_operation_unref(o);
|
||||
} else {
|
||||
/* Make sure the signal strength is steadily above our threshold */
|
||||
if (++confirm > 5) {
|
||||
#if 0
|
||||
fprintf(stderr, "Capture volume = %g (%g)\n", v, rms(in, nsamp));
|
||||
#endif
|
||||
cal_state = CALIBRATION_ZERO;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case CALIBRATION_ZERO:
|
||||
/* Now make sure silence doesn't trigger a false positive because
|
||||
* of noise. */
|
||||
if (rms(in, nsamp) > 0.1f) {
|
||||
fprintf(stderr, "Too much noise on capture (%g). Giving up.\n", rms(in, nsamp));
|
||||
fail();
|
||||
}
|
||||
|
||||
cal_state = CALIBRATION_DONE;
|
||||
pa_stream_set_read_callback(s, read_cb, NULL);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
out:
|
||||
pa_stream_drop(s);
|
||||
}
|
||||
|
||||
/* This routine is called whenever the stream state changes */
|
||||
static void stream_state_callback(pa_stream *s, void *userdata) {
|
||||
switch (pa_stream_get_state(s)) {
|
||||
case PA_STREAM_UNCONNECTED:
|
||||
case PA_STREAM_CREATING:
|
||||
case PA_STREAM_TERMINATED:
|
||||
break;
|
||||
|
||||
case PA_STREAM_READY: {
|
||||
pa_cvolume vol;
|
||||
pa_operation *o;
|
||||
|
||||
/* Set volumes for calibration */
|
||||
if (!userdata) {
|
||||
pa_cvolume_set(&vol, CHANNELS, PA_VOLUME_NORM);
|
||||
o = pa_context_set_sink_input_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
} else {
|
||||
pa_cvolume_set(&vol, CHANNELS, pa_sw_volume_from_linear(0.0));
|
||||
o = pa_context_set_source_output_volume(context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
}
|
||||
|
||||
if (!o) {
|
||||
fprintf(stderr, "Could not set stream volume: %s\n", pa_strerror(pa_context_errno(context)));
|
||||
fail();
|
||||
} else
|
||||
pa_operation_unref(o);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case PA_STREAM_FAILED:
|
||||
default:
|
||||
fprintf(stderr, "Stream error: %s\n", pa_strerror(pa_context_errno(pa_stream_get_context(s))));
|
||||
fail();
|
||||
}
|
||||
}
|
||||
|
||||
/* This is called whenever the context status changes */
|
||||
static void context_state_callback(pa_context *c, void *userdata) {
|
||||
fail_unless(c != NULL);
|
||||
|
||||
switch (pa_context_get_state(c)) {
|
||||
case PA_CONTEXT_CONNECTING:
|
||||
case PA_CONTEXT_AUTHORIZING:
|
||||
case PA_CONTEXT_SETTING_NAME:
|
||||
break;
|
||||
|
||||
case PA_CONTEXT_READY: {
|
||||
pa_buffer_attr buffer_attr;
|
||||
|
||||
pa_make_realtime(4);
|
||||
|
||||
/* Create playback stream */
|
||||
buffer_attr.maxlength = -1;
|
||||
buffer_attr.tlength = SAMPLE_HZ * fs * PLAYBACK_LATENCY / 1000;
|
||||
buffer_attr.prebuf = 0; /* Setting prebuf to 0 guarantees us the stream will run synchronously, no matter what */
|
||||
buffer_attr.minreq = -1;
|
||||
buffer_attr.fragsize = -1;
|
||||
|
||||
pstream = pa_stream_new(c, "loopback: play", &sample_spec, NULL);
|
||||
fail_unless(pstream != NULL);
|
||||
pa_stream_set_state_callback(pstream, stream_state_callback, (void *) 0);
|
||||
pa_stream_set_write_callback(pstream, calibrate_write_cb, NULL);
|
||||
pa_stream_set_underflow_callback(pstream, underflow_cb, userdata);
|
||||
|
||||
pa_stream_connect_playback(pstream, getenv("TEST_SINK"), &buffer_attr,
|
||||
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL);
|
||||
|
||||
/* Create capture stream */
|
||||
buffer_attr.maxlength = -1;
|
||||
buffer_attr.tlength = (uint32_t) -1;
|
||||
buffer_attr.prebuf = 0;
|
||||
buffer_attr.minreq = (uint32_t) -1;
|
||||
buffer_attr.fragsize = SAMPLE_HZ * fs * CAPTURE_LATENCY / 1000;
|
||||
|
||||
rstream = pa_stream_new(c, "loopback: rec", &sample_spec, NULL);
|
||||
fail_unless(rstream != NULL);
|
||||
pa_stream_set_state_callback(rstream, stream_state_callback, (void *) 1);
|
||||
pa_stream_set_read_callback(rstream, calibrate_read_cb, NULL);
|
||||
pa_stream_set_overflow_callback(rstream, overflow_cb, userdata);
|
||||
|
||||
pa_stream_connect_record(rstream, getenv("TEST_SOURCE"), &buffer_attr,
|
||||
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case PA_CONTEXT_TERMINATED:
|
||||
mainloop_api->quit(mainloop_api, 0);
|
||||
break;
|
||||
|
||||
case PA_CONTEXT_FAILED:
|
||||
default:
|
||||
fprintf(stderr, "Context error: %s\n", pa_strerror(pa_context_errno(c)));
|
||||
fail();
|
||||
}
|
||||
}
|
||||
|
||||
START_TEST (loopback_test) {
|
||||
pa_mainloop* m = NULL;
|
||||
int i, ret = 0, pulse_hz = SAMPLE_HZ / 1000;
|
||||
int i, pulse_hz = SAMPLE_HZ / 1000;
|
||||
|
||||
test_ctx.context_name = context_name;
|
||||
|
||||
test_ctx.sample_spec.format = PA_SAMPLE_FLOAT32,
|
||||
test_ctx.sample_spec.rate = SAMPLE_HZ,
|
||||
test_ctx.sample_spec.channels = CHANNELS,
|
||||
|
||||
test_ctx.play_latency = 25;
|
||||
test_ctx.rec_latency = 5;
|
||||
|
||||
test_ctx.read_cb = read_cb;
|
||||
test_ctx.write_cb = write_cb;
|
||||
|
||||
/* Generate a square pulse */
|
||||
for (i = 0; i < N_OUT; i++)
|
||||
|
|
@ -390,40 +155,9 @@ START_TEST (loopback_test) {
|
|||
else
|
||||
out[i][0] = out[i][1] = 0.0f;
|
||||
|
||||
ss = pa_sample_size(&sample_spec);
|
||||
fs = pa_frame_size(&sample_spec);
|
||||
|
||||
pstream = NULL;
|
||||
|
||||
/* Set up a new main loop */
|
||||
m = pa_mainloop_new();
|
||||
fail_unless(m != NULL);
|
||||
|
||||
mainloop_api = pa_mainloop_get_api(m);
|
||||
|
||||
context = pa_context_new(mainloop_api, context_name);
|
||||
fail_unless(context != NULL);
|
||||
|
||||
pa_context_set_state_callback(context, context_state_callback, NULL);
|
||||
|
||||
/* Connect the context */
|
||||
if (pa_context_connect(context, NULL, 0, NULL) < 0) {
|
||||
fprintf(stderr, "pa_context_connect() failed.\n");
|
||||
goto quit;
|
||||
}
|
||||
|
||||
if (pa_mainloop_run(m, &ret) < 0)
|
||||
fprintf(stderr, "pa_mainloop_run() failed.\n");
|
||||
|
||||
quit:
|
||||
pa_context_unref(context);
|
||||
|
||||
if (pstream)
|
||||
pa_stream_unref(pstream);
|
||||
|
||||
pa_mainloop_free(m);
|
||||
|
||||
fail_unless(ret == 0);
|
||||
fail_unless(pa_lo_test_init(&test_ctx) == 0);
|
||||
fail_unless(pa_lo_test_run(&test_ctx) == 0);
|
||||
pa_lo_test_deinit(&test_ctx);
|
||||
}
|
||||
END_TEST
|
||||
|
||||
|
|
@ -435,8 +169,8 @@ int main(int argc, char *argv[]) {
|
|||
|
||||
context_name = argv[0];
|
||||
|
||||
s = suite_create("Loopback");
|
||||
tc = tcase_create("loopback");
|
||||
s = suite_create("Loopback latency");
|
||||
tc = tcase_create("loopback latency");
|
||||
tcase_add_test(tc, loopback_test);
|
||||
tcase_set_timeout(tc, 5 * 60);
|
||||
suite_add_tcase(s, tc);
|
||||
|
|
|
|||
328
src/tests/lo-test-util.c
Normal file
328
src/tests/lo-test-util.c
Normal file
|
|
@ -0,0 +1,328 @@
|
|||
/***
|
||||
This file is part of PulseAudio.
|
||||
|
||||
Copyright 2013 Collabora Ltd.
|
||||
Author: Arun Raghavan <arun.raghavan@collabora.co.uk>
|
||||
|
||||
PulseAudio is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published
|
||||
by the Free Software Foundation; either version 2.1 of the License,
|
||||
or (at your option) any later version.
|
||||
|
||||
PulseAudio is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with PulseAudio; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
||||
USA.
|
||||
***/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include <config.h>
|
||||
#endif
|
||||
|
||||
#include <math.h>
|
||||
|
||||
#include <pulsecore/log.h>
|
||||
#include <pulsecore/macro.h>
|
||||
#include <pulsecore/core-util.h>
|
||||
|
||||
#include "lo-test-util.h"
|
||||
|
||||
/* Keep the frequency high so RMS over ranges of a few ms remains relatively
|
||||
* high as well */
|
||||
#define TONE_HZ 4410
|
||||
|
||||
static void nop_free_cb(void *p) {
|
||||
}
|
||||
|
||||
static void underflow_cb(struct pa_stream *s, void *userdata) {
|
||||
pa_log_warn("Underflow\n");
|
||||
}
|
||||
|
||||
static void overflow_cb(struct pa_stream *s, void *userdata) {
|
||||
pa_log_warn("Overlow\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* We run a simple volume calibration so that we know we can detect the signal
|
||||
* being played back. We start with the playback stream at 100% volume, and
|
||||
* capture at 0.
|
||||
*
|
||||
* First, we then play a sine wave and increase the capture volume till the
|
||||
* signal is clearly received.
|
||||
*
|
||||
* Next, we play back silence and make sure that the level is low enough to
|
||||
* distinguish from when playback is happening.
|
||||
*
|
||||
* Finally, we hand off to the real read/write callbacks to run the actual
|
||||
* test.
|
||||
*/
|
||||
|
||||
enum {
|
||||
CALIBRATION_ONE,
|
||||
CALIBRATION_ZERO,
|
||||
CALIBRATION_DONE,
|
||||
};
|
||||
|
||||
static int cal_state = CALIBRATION_ONE;
|
||||
|
||||
static void calibrate_write_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
int i, r, nsamp = nbytes / ctx->fs;
|
||||
float tmp[nsamp][2];
|
||||
static int count = 0;
|
||||
|
||||
/* Write out a sine tone */
|
||||
for (i = 0; i < nsamp; i++)
|
||||
tmp[i][0] = tmp[i][1] = cal_state == CALIBRATION_ONE ? sinf(count++ * TONE_HZ * 2 * M_PI / ctx->sample_spec.rate) : 0.0f;
|
||||
|
||||
r = pa_stream_write(s, &tmp, nbytes, nop_free_cb, 0, PA_SEEK_RELATIVE);
|
||||
pa_assert(r == 0);
|
||||
|
||||
if (cal_state == CALIBRATION_DONE)
|
||||
pa_stream_set_write_callback(s, ctx->write_cb, ctx);
|
||||
}
|
||||
|
||||
static void calibrate_read_cb(pa_stream *s, size_t nbytes, void *userdata) {
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
static double v = 0;
|
||||
static int skip = 0, confirm;
|
||||
|
||||
pa_cvolume vol;
|
||||
pa_operation *o;
|
||||
int r, nsamp;
|
||||
float *in;
|
||||
size_t l;
|
||||
|
||||
r = pa_stream_peek(s, (const void **)&in, &l);
|
||||
pa_assert(r == 0);
|
||||
|
||||
nsamp = l / ctx->fs;
|
||||
|
||||
/* For each state or volume step change, throw out a few samples so we know
|
||||
* we're seeing the changed samples. */
|
||||
if (skip++ < 100)
|
||||
goto out;
|
||||
else
|
||||
skip = 0;
|
||||
|
||||
switch (cal_state) {
|
||||
case CALIBRATION_ONE:
|
||||
/* Try to detect the sine wave. RMS is 0.5, */
|
||||
if (pa_rms(in, nsamp) < 0.40f) {
|
||||
confirm = 0;
|
||||
v += 0.02f;
|
||||
|
||||
if (v > 1.0) {
|
||||
pa_log_error("Capture signal too weak at 100%% volume (%g). Giving up.\n", pa_rms(in, nsamp));
|
||||
pa_assert_not_reached();
|
||||
}
|
||||
|
||||
pa_cvolume_set(&vol, ctx->sample_spec.channels, v * PA_VOLUME_NORM);
|
||||
o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
pa_assert(o != NULL);
|
||||
pa_operation_unref(o);
|
||||
} else {
|
||||
/* Make sure the signal strength is steadily above our threshold */
|
||||
if (++confirm > 5) {
|
||||
#if 0
|
||||
pa_log_debug(stderr, "Capture volume = %g (%g)\n", v, pa_rms(in, nsamp));
|
||||
#endif
|
||||
cal_state = CALIBRATION_ZERO;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case CALIBRATION_ZERO:
|
||||
/* Now make sure silence doesn't trigger a false positive because
|
||||
* of noise. */
|
||||
if (pa_rms(in, nsamp) > 0.1f) {
|
||||
fprintf(stderr, "Too much noise on capture (%g). Giving up.\n", pa_rms(in, nsamp));
|
||||
pa_assert_not_reached();
|
||||
}
|
||||
|
||||
cal_state = CALIBRATION_DONE;
|
||||
pa_stream_set_read_callback(s, ctx->read_cb, ctx);
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
out:
|
||||
pa_stream_drop(s);
|
||||
}
|
||||
|
||||
/* This routine is called whenever the stream state changes */
|
||||
static void stream_state_callback(pa_stream *s, void *userdata) {
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
|
||||
switch (pa_stream_get_state(s)) {
|
||||
case PA_STREAM_UNCONNECTED:
|
||||
case PA_STREAM_CREATING:
|
||||
case PA_STREAM_TERMINATED:
|
||||
break;
|
||||
|
||||
case PA_STREAM_READY: {
|
||||
pa_cvolume vol;
|
||||
pa_operation *o;
|
||||
|
||||
/* Set volumes for calibration */
|
||||
if (s == ctx->play_stream) {
|
||||
pa_cvolume_set(&vol, ctx->sample_spec.channels, PA_VOLUME_NORM);
|
||||
o = pa_context_set_sink_input_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
} else {
|
||||
pa_cvolume_set(&vol, ctx->sample_spec.channels, pa_sw_volume_from_linear(0.0));
|
||||
o = pa_context_set_source_output_volume(ctx->context, pa_stream_get_index(s), &vol, NULL, NULL);
|
||||
}
|
||||
|
||||
if (!o) {
|
||||
pa_log_error("Could not set stream volume: %s\n", pa_strerror(pa_context_errno(ctx->context)));
|
||||
pa_assert_not_reached();
|
||||
} else
|
||||
pa_operation_unref(o);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case PA_STREAM_FAILED:
|
||||
default:
|
||||
pa_log_error("Stream error: %s\n", pa_strerror(pa_context_errno(ctx->context)));
|
||||
pa_assert_not_reached();
|
||||
}
|
||||
}
|
||||
|
||||
/* This is called whenever the context status changes */
|
||||
static void context_state_callback(pa_context *c, void *userdata) {
|
||||
pa_lo_test_context *ctx = (pa_lo_test_context *) userdata;
|
||||
pa_mainloop_api *api;
|
||||
|
||||
switch (pa_context_get_state(c)) {
|
||||
case PA_CONTEXT_CONNECTING:
|
||||
case PA_CONTEXT_AUTHORIZING:
|
||||
case PA_CONTEXT_SETTING_NAME:
|
||||
break;
|
||||
|
||||
case PA_CONTEXT_READY: {
|
||||
pa_buffer_attr buffer_attr;
|
||||
|
||||
pa_make_realtime(4);
|
||||
|
||||
/* Create playback stream */
|
||||
buffer_attr.maxlength = -1;
|
||||
buffer_attr.tlength = ctx->sample_spec.rate * ctx->fs * ctx->play_latency / 1000;
|
||||
buffer_attr.prebuf = 0; /* Setting prebuf to 0 guarantees us the stream will run synchronously, no matter what */
|
||||
buffer_attr.minreq = -1;
|
||||
buffer_attr.fragsize = -1;
|
||||
|
||||
ctx->play_stream = pa_stream_new(c, "loopback: play", &ctx->sample_spec, NULL);
|
||||
pa_assert(ctx->play_stream != NULL);
|
||||
pa_stream_set_state_callback(ctx->play_stream, stream_state_callback, ctx);
|
||||
pa_stream_set_write_callback(ctx->play_stream, calibrate_write_cb, ctx);
|
||||
pa_stream_set_underflow_callback(ctx->play_stream, underflow_cb, userdata);
|
||||
|
||||
pa_stream_connect_playback(ctx->play_stream, getenv("TEST_SINK"), &buffer_attr,
|
||||
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE, NULL, NULL);
|
||||
|
||||
/* Create capture stream */
|
||||
buffer_attr.maxlength = -1;
|
||||
buffer_attr.tlength = (uint32_t) -1;
|
||||
buffer_attr.prebuf = 0;
|
||||
buffer_attr.minreq = (uint32_t) -1;
|
||||
buffer_attr.fragsize = ctx->sample_spec.rate * ctx->fs * ctx->rec_latency / 1000;
|
||||
|
||||
ctx->rec_stream = pa_stream_new(c, "loopback: rec", &ctx->sample_spec, NULL);
|
||||
pa_assert(ctx->rec_stream != NULL);
|
||||
pa_stream_set_state_callback(ctx->rec_stream, stream_state_callback, ctx);
|
||||
pa_stream_set_read_callback(ctx->rec_stream, calibrate_read_cb, ctx);
|
||||
pa_stream_set_overflow_callback(ctx->rec_stream, overflow_cb, userdata);
|
||||
|
||||
pa_stream_connect_record(ctx->rec_stream, getenv("TEST_SOURCE"), &buffer_attr,
|
||||
PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE);
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
case PA_CONTEXT_TERMINATED:
|
||||
api = pa_mainloop_get_api(ctx->mainloop);
|
||||
api->quit(api, 0);
|
||||
break;
|
||||
|
||||
case PA_CONTEXT_FAILED:
|
||||
default:
|
||||
pa_log_error("Context error: %s\n", pa_strerror(pa_context_errno(c)));
|
||||
pa_assert_not_reached();
|
||||
}
|
||||
}
|
||||
|
||||
int pa_lo_test_init(pa_lo_test_context *ctx) {
|
||||
/* FIXME: need to deal with non-float samples at some point */
|
||||
pa_assert(ctx->sample_spec.format == PA_SAMPLE_FLOAT32);
|
||||
|
||||
ctx->ss = pa_sample_size(&ctx->sample_spec);
|
||||
ctx->fs = pa_frame_size(&ctx->sample_spec);
|
||||
|
||||
ctx->mainloop = pa_mainloop_new();
|
||||
ctx->context = pa_context_new(pa_mainloop_get_api(ctx->mainloop), ctx->context_name);
|
||||
|
||||
pa_context_set_state_callback(ctx->context, context_state_callback, ctx);
|
||||
|
||||
/* Connect the context */
|
||||
if (pa_context_connect(ctx->context, NULL, PA_CONTEXT_NOFLAGS, NULL) < 0) {
|
||||
pa_log_error("pa_context_connect() failed.\n");
|
||||
goto quit;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
quit:
|
||||
pa_context_unref(ctx->context);
|
||||
pa_mainloop_free(ctx->mainloop);
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
int pa_lo_test_run(pa_lo_test_context *ctx) {
|
||||
int ret;
|
||||
|
||||
if (pa_mainloop_run(ctx->mainloop, &ret) < 0) {
|
||||
pa_log_error("pa_mainloop_run() failed.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void pa_lo_test_deinit(pa_lo_test_context *ctx) {
|
||||
if (ctx->play_stream) {
|
||||
pa_stream_disconnect(ctx->play_stream);
|
||||
pa_stream_unref(ctx->play_stream);
|
||||
}
|
||||
|
||||
if (ctx->rec_stream) {
|
||||
pa_stream_disconnect(ctx->rec_stream);
|
||||
pa_stream_unref(ctx->rec_stream);
|
||||
}
|
||||
|
||||
if (ctx->context)
|
||||
pa_context_unref(ctx->context);
|
||||
|
||||
if (ctx->mainloop)
|
||||
pa_mainloop_free(ctx->mainloop);
|
||||
}
|
||||
|
||||
float pa_rms(const float *s, int n) {
|
||||
float sq = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
sq += s[i] * s[i];
|
||||
|
||||
return sqrtf(sq / n);
|
||||
}
|
||||
57
src/tests/lo-test-util.h
Normal file
57
src/tests/lo-test-util.h
Normal file
|
|
@ -0,0 +1,57 @@
|
|||
/***
|
||||
This file is part of PulseAudio.
|
||||
|
||||
Copyright 2013 Collabora Ltd.
|
||||
Author: Arun Raghavan <arun.raghavan@collabora.co.uk>
|
||||
|
||||
PulseAudio is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU Lesser General Public License as published
|
||||
by the Free Software Foundation; either version 2.1 of the License,
|
||||
or (at your option) any later version.
|
||||
|
||||
PulseAudio is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public License
|
||||
along with PulseAudio; if not, write to the Free Software
|
||||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
|
||||
USA.
|
||||
***/
|
||||
|
||||
#ifdef HAVE_CONFIG_H
|
||||
#include <config.h>
|
||||
#endif
|
||||
|
||||
#include <pulse/pulseaudio.h>
|
||||
|
||||
typedef struct pa_lo_test_context {
|
||||
/* Tests need to set these */
|
||||
const char *context_name;
|
||||
|
||||
pa_sample_spec sample_spec;
|
||||
int play_latency; /* ms */
|
||||
int rec_latency; /* ms */
|
||||
|
||||
pa_stream_request_cb_t write_cb, read_cb;
|
||||
|
||||
/* These are set by lo_test_init() */
|
||||
pa_mainloop *mainloop;
|
||||
pa_context *context;
|
||||
|
||||
pa_stream *play_stream, *rec_stream;
|
||||
|
||||
int ss, fs; /* sample size, frame size for convenience */
|
||||
} pa_lo_test_context;
|
||||
|
||||
/* Initialise the test parameters, connect */
|
||||
int pa_lo_test_init(pa_lo_test_context *ctx);
|
||||
/* Start running the test */
|
||||
int pa_lo_test_run(pa_lo_test_context *ctx);
|
||||
/* Clean up */
|
||||
void pa_lo_test_deinit(pa_lo_test_context *ctx);
|
||||
|
||||
/* Return RMS for the given signal. Assumes the data is a single channel for
|
||||
* simplicity */
|
||||
float pa_rms(const float *s, int n);
|
||||
Loading…
Add table
Add a link
Reference in a new issue