add better time interpolator: use linear regression to determine gradient from

measurements, predict a short distance ahead, and smoothen estimation function
with 3rd degree spline interpolation.



git-svn-id: file:///home/lennart/svn/public/pulseaudio/branches/lennart@1949 fefdeb5f-60dc-0310-8127-8f9354f1896f
This commit is contained in:
Lennart Poettering 2007-10-23 22:55:56 +00:00
parent 9464b9b45f
commit dc987e9df8
4 changed files with 439 additions and 6 deletions

View file

@ -237,7 +237,8 @@ noinst_PROGRAMS = \
queue-test \
rtpoll-test \
sig2str-test \
resampler-test
resampler-test \
smoother-test
if HAVE_SIGXCPU
noinst_PROGRAMS += \
@ -387,6 +388,11 @@ resampler_test_LDADD = $(AM_LDADD) libpulsecore.la
resampler_test_CFLAGS = $(AM_CFLAGS) $(LIBOIL_CFLAGS)
resampler_test_LDFLAGS = $(AM_LDFLAGS) $(BINLDFLAGS) $(LIBOIL_LIBS)
smoother_test_SOURCES = tests/smoother-test.c
smoother_test_LDADD = $(AM_LDADD) libpulsecore.la
smoother_test_CFLAGS = $(AM_CFLAGS)
smoother_test_LDFLAGS = $(AM_LDFLAGS) $(BINLDFLAGS)
###################################
# Client library #
###################################
@ -716,6 +722,7 @@ libpulsecore_la_SOURCES += \
pulsecore/rtclock.c pulsecore/rtclock.h \
pulsecore/macro.h \
pulsecore/once.c pulsecore/once.h \
pulsecore/time-smoother.c pulsecore/time-smoother.h \
$(PA_THREAD_OBJS)
if OS_IS_WIN32
@ -948,9 +955,9 @@ modlibexec_LTLIBRARIES += \
module-combine.la \
module-remap-sink.la \
module-ladspa-sink.la
# module-tunnel-sink.la \
# module-tunnel-source.la \
# module-esound-sink.la
# module-tunnel-sink.la
# module-tunnel-source.la
# See comment at librtp.la above
if !OS_IS_WIN32

View file

@ -0,0 +1,317 @@
/* $Id$ */
/***
This file is part of PulseAudio.
Copyright 2007 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <pulse/sample.h>
#include <pulse/xmalloc.h>
#include <pulsecore/macro.h>
#include "time-smoother.h"
#define HISTORY_MAX 100
/*
* Implementation of a time smoothing algorithm to synchronize remote
* clocks to a local one. Evens out noise, adjusts to clock skew and
* allows cheap estimations of the remote time while clock updates may
* be seldom and recieved in non-equidistant intervals.
*
* Basically, we estimate the gradient of received clock samples in a
* certain history window (of size 'history_time') with linear
* regression. With that info we estimate the remote time in
* 'adjust_time' ahead and smoothen our current estimation function
* towards that point with a 3rd order polynomial interpolation with
* fitting derivatives. (more or less a b-spline)
*
* The larger 'history_time' is chosen the better we will surpress
* noise -- but we'll adjust to clock skew slower..
*
* The larger 'adjust_time' is chosen the smoother our estimation
* function will be -- but we'll adjust to clock skew slower, too.
*
* If 'monotonic' is TRUE the resulting estimation function is
* guaranteed to be monotonic.
*/
struct pa_smoother {
pa_usec_t adjust_time, history_time;
pa_bool_t monotonic;
pa_usec_t px, py; /* Point p, where we want to reach stability */
double dp; /* Gradient we want at point p */
pa_usec_t ex, ey; /* Point e, which we estimated before and need to smooth to */
double de; /* Gradient we estimated for point e */
/* History of last measurements */
pa_usec_t history_x[HISTORY_MAX], history_y[HISTORY_MAX];
unsigned history_idx, n_history;
/* To even out for monotonicity */
pa_usec_t last_y;
/* Cached parameters for our interpolation polynomial y=ax^3+b^2+cx */
double a, b, c;
pa_bool_t abc_valid;
};
pa_smoother* pa_smoother_new(pa_usec_t adjust_time, pa_usec_t history_time, pa_bool_t monotonic) {
pa_smoother *s;
pa_assert(adjust_time > 0);
pa_assert(history_time > 0);
s = pa_xnew(pa_smoother, 1);
s->adjust_time = adjust_time;
s->history_time = history_time;
s->monotonic = monotonic;
s->px = s->py = 0;
s->dp = 1;
s->ex = s->ey = 0;
s->de = 1;
s->history_idx = 0;
s->n_history = 0;
s->last_y = 0;
s->abc_valid = FALSE;
return s;
}
static void drop_old(pa_smoother *s, pa_usec_t x) {
unsigned j;
/* First drop items from history which are too old, but make sure
* to always keep two entries in the history */
for (j = s->n_history; j > 2; j--) {
if (s->history_x[s->history_idx] + s->history_time >= x) {
/* This item is still valid, and thus all following ones
* are too, so let's quit this loop */
break;
}
/* Item is too old, let's drop it */
s->history_idx ++;
while (s->history_idx >= HISTORY_MAX)
s->history_idx -= HISTORY_MAX;
s->n_history --;
}
}
static void add_to_history(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
unsigned j;
pa_assert(s);
drop_old(s, x);
/* Calculate position for new entry */
j = s->history_idx + s->n_history;
while (j >= HISTORY_MAX)
j -= HISTORY_MAX;
/* Fill in entry */
s->history_x[j] = x;
s->history_y[j] = y;
/* Adjust counter */
s->n_history ++;
/* And make sure we don't store more entries than fit in */
if (s->n_history >= HISTORY_MAX) {
s->history_idx += s->n_history - HISTORY_MAX;
s->n_history = HISTORY_MAX;
}
}
static double avg_gradient(pa_smoother *s, pa_usec_t x) {
unsigned i, j, c = 0;
int64_t ax = 0, ay = 0, k, t;
double r;
drop_old(s, x);
/* First, calculate average of all measurements */
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
ax += s->history_x[i];
ay += s->history_y[i];
c++;
i++;
while (i >= HISTORY_MAX)
i -= HISTORY_MAX;
}
/* Too few measurements, assume gradient of 1 */
if (c < 2)
return 1;
ax /= c;
ay /= c;
/* Now, do linear regression */
k = t = 0;
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
int64_t dx, dy;
dx = (int64_t) s->history_x[i] - ax;
dy = (int64_t) s->history_y[i] - ay;
k += dx*dy;
t += dx*dx;
i++;
while (i >= HISTORY_MAX)
i -= HISTORY_MAX;
}
r = (double) k / t;
return s->monotonic && r < 0 ? 0 : r;
}
static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) {
pa_assert(s);
pa_assert(y);
if (x >= s->px) {
int64_t t;
/* The requested point is right of the point where we wanted
* to be on track again, thus just linearly estimate */
t = (int64_t) s->py + (int64_t) (s->dp * (x - s->px));
if (t < 0)
t = 0;
*y = (pa_usec_t) t;
if (deriv)
*deriv = s->dp;
} else {
if (!s->abc_valid) {
pa_usec_t ex, ey, px, py;
int64_t kx, ky;
double de, dp;
/* Ok, we're not yet on track, thus let's interpolate, and
* make sure that the first derivative is smooth */
/* We have two points: (ex|ey) and (px|py) with two gradients
* at these points de and dp. We do a polynomial interpolation
* of degree 3 with these 6 values */
ex = s->ex; ey = s->ey;
px = s->px; py = s->py;
de = s->de; dp = s->dp;
pa_assert(ex < px);
/* To increase the dynamic range and symplify calculation, we
* move these values to the origin */
kx = (int64_t) px - (int64_t) ex;
ky = (int64_t) py - (int64_t) ey;
/* Calculate a, b, c for y=ax^3+b^2+cx */
s->c = de;
s->b = (((double) (3*ky)/kx - dp - 2*de)) / kx;
s->a = (dp/kx - 2*s->b - de/kx) / (3*kx);
s->abc_valid = TRUE;
}
/* Move to origin */
x -= s->ex;
/* Horner scheme */
*y = (pa_usec_t) ((double) x * (s->c + (double) x * (s->b + (double) x * s->a)));
/* Move back from origin */
*y += s->ey;
/* Horner scheme */
if (deriv)
*deriv = s->c + ((double) x * (s->b*2 + (double) x * s->a*3));
}
/* Guarantee monotonicity */
if (s->monotonic) {
if (*y < s->last_y)
*y = s->last_y;
else
s->last_y = *y;
if (deriv && *deriv < 0)
*deriv = 0;
}
}
void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
pa_assert(s);
/* First, we calculate the position we'd estimate for x, so that
* we can adjust our position smoothly from this one */
estimate(s, x, &s->ey, &s->de);
s->ex = x;
/* Then, we add the new measurement to our history */
add_to_history(s, x, y);
/* And determine the average gradient of the history */
s->dp = avg_gradient(s, x);
/* And calculate when we want to be on track again */
s->px = x + s->adjust_time;
s->py = y + s->dp *s->adjust_time;
s->abc_valid = FALSE;
}
pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x) {
pa_usec_t y;
pa_assert(s);
estimate(s, x, &y, NULL);
return y;
}

View file

@ -0,0 +1,37 @@
#ifndef foopulsetimesmootherhfoo
#define foopulsetimesmootherhfoo
/* $Id$ */
/***
This file is part of PulseAudio.
Copyright 2007 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#include <pulsecore/macro.h>
#include <pulse/sample.h>
typedef struct pa_smoother pa_smoother;
pa_smoother* pa_smoother_new(pa_usec_t adjust_x, pa_usec_t history_x, pa_bool_t monotonic);
void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y);
pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x);
#endif

72
src/tests/smoother-test.c Normal file
View file

@ -0,0 +1,72 @@
/* $Id$ */
/***
This file is part of PulseAudio.
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <pulsecore/time-smoother.h>
#include <pulse/timeval.h>
int main(int argc, char*argv[]) {
pa_usec_t x;
unsigned u = 0;
pa_smoother *s;
int m;
/* unsigned msec[] = { */
/* 200, 200, */
/* 300, 320, */
/* 400, 400, */
/* 500, 480, */
/* 0, 0 */
/* }; */
int msec[200];
for (m = 0, u = 0; u < PA_ELEMENTSOF(msec)-2; u+= 2) {
msec[u] = m+1;
msec[u+1] = m + rand() % 2000 - 1000;
m += rand() % 100;
}
msec[PA_ELEMENTSOF(msec)-2] = 0;
msec[PA_ELEMENTSOF(msec)-1] = 0;
s = pa_smoother_new(1000*PA_USEC_PER_MSEC, 2000*PA_USEC_PER_MSEC, TRUE);
for (x = 0, u = 0; x < PA_USEC_PER_SEC * 10; x += PA_USEC_PER_MSEC) {
while (msec[u] > 0 && msec[u]*PA_USEC_PER_MSEC < x) {
pa_smoother_put(s, msec[u]*PA_USEC_PER_MSEC, msec[u+1]*PA_USEC_PER_MSEC);
printf("%i\t\t%i\n", msec[u], msec[u+1]);
u += 2;
}
printf("%llu\t%llu\n", x/PA_USEC_PER_MSEC, pa_smoother_get(s, x)/PA_USEC_PER_MSEC);
}
}