mirror of
https://gitlab.freedesktop.org/pulseaudio/pulseaudio.git
synced 2025-11-04 13:29:59 -05:00
module-equalizer-sink:
removed liboil
added sse2 optimized dsp logic implementation
cleaned up a bit
This commit is contained in:
parent
702480a883
commit
c7fcc9cc01
2 changed files with 243 additions and 156 deletions
|
|
@ -1383,9 +1383,9 @@ module_ladspa_sink_la_LDFLAGS = $(MODULE_LDFLAGS)
|
|||
module_ladspa_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
|
||||
|
||||
module_equalizer_sink_la_SOURCES = modules/module-equalizer-sink.c
|
||||
module_equalizer_sink_la_CFLAGS = $(AM_CFLAGS) $(LIBOIL_CFLAGS)
|
||||
module_equalizer_sink_la_CFLAGS = $(AM_CFLAGS)
|
||||
module_equalizer_sink_la_LDFLAGS = $(MODULE_LDFLAGS)
|
||||
module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) $(LIBOIL_LIBS) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
|
||||
module_equalizer_sink_la_LIBADD = $(AM_LIBADD) $(LIBLTDL) -lfftw3f libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
|
||||
|
||||
module_match_la_SOURCES = modules/module-match.c
|
||||
module_match_la_LDFLAGS = $(MODULE_LDFLAGS)
|
||||
|
|
|
|||
|
|
@ -29,11 +29,13 @@ USA.
|
|||
#include <config.h>
|
||||
#endif
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include <fftw3.h>
|
||||
#include <float.h>
|
||||
|
||||
#include <string.h>
|
||||
#include <malloc.h>
|
||||
|
||||
#include <pulse/xmalloc.h>
|
||||
#include <pulse/i18n.h>
|
||||
|
|
@ -55,6 +57,14 @@ USA.
|
|||
#include <time.h>
|
||||
|
||||
|
||||
//#undef __SSE2__
|
||||
#ifdef __SSE2__
|
||||
#include <xmmintrin.h>
|
||||
#include <emmintrin.h>
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#include "module-equalizer-sink-symdef.h"
|
||||
|
||||
PA_MODULE_AUTHOR("Jason Newton");
|
||||
|
|
@ -82,10 +92,12 @@ struct userdata {
|
|||
* the latency of the filter, calculated from window_size
|
||||
* based on constraints of COLA and window function
|
||||
*/
|
||||
size_t latency;
|
||||
size_t latency;//Really just R but made into it's own variable
|
||||
//for twiddling with pulseaudio
|
||||
size_t overlap_size;//window_size-R
|
||||
size_t samples_gathered;
|
||||
size_t max_output;
|
||||
size_t max_output;//max amount of samples outputable in a single
|
||||
//message
|
||||
size_t target_samples;
|
||||
float *H;//frequency response filter (magnitude based)
|
||||
float *W;//windowing function (time domain)
|
||||
|
|
@ -109,75 +121,38 @@ static const char* const valid_modargs[] = {
|
|||
NULL
|
||||
};
|
||||
|
||||
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
|
||||
void hanning_normalized_window(float *W,size_t window_size);
|
||||
void hanning_window(float *W,size_t window_size);
|
||||
void hamming_window(float *W,size_t window_size);
|
||||
void blackman_window(float *W,size_t window_size);
|
||||
void sin_window(float *W,size_t window_size);
|
||||
void array_out(const char *name,float *a,size_t length);
|
||||
|
||||
static void dsp_logic(float *dst,struct userdata *u);
|
||||
static uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p);
|
||||
static void hanning_window(float *W,size_t window_size);
|
||||
static void array_out(const char *name,float *a,size_t length);
|
||||
static void process_samples(struct userdata *u);
|
||||
void input_buffer(struct userdata *u,pa_memchunk *in);
|
||||
static void input_buffer(struct userdata *u,pa_memchunk *in);
|
||||
|
||||
void dsp_logic(
|
||||
float * __restrict__ dst,
|
||||
float * __restrict__ src,
|
||||
float * __restrict__ overlap,
|
||||
const float * __restrict__ H,
|
||||
const float * __restrict__ W,
|
||||
fftwf_complex * __restrict__ output_window,
|
||||
struct userdata *u);
|
||||
|
||||
#define v_size 4
|
||||
#define gettime(x) clock_gettime(CLOCK_MONOTONIC,&x)
|
||||
#define tdiff(x,y) time_diff(&x,&y)
|
||||
#define mround(x,y) (x%y==0?x:(x/y+1)*y)
|
||||
|
||||
uint64_t time_diff(struct timespec *timeA_p, struct timespec *timeB_p)
|
||||
{
|
||||
return ((timeA_p->tv_sec * 1000000000) + timeA_p->tv_nsec) -
|
||||
((timeB_p->tv_sec * 1000000000) + timeB_p->tv_nsec);
|
||||
return ((timeA_p->tv_sec * 1000000000ULL) + timeA_p->tv_nsec) -
|
||||
((timeB_p->tv_sec * 1000000000ULL) + timeB_p->tv_nsec);
|
||||
}
|
||||
|
||||
void hanning_normalized_window(float *W,size_t window_size){
|
||||
//h = sqrt(2)/2 * (1+cos(t*pi)) ./ sqrt( 1+cos(t*pi).^2 )
|
||||
float c;
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
c=cos(M_PI*i/(window_size-1));
|
||||
W[i]=sqrt(2.0)/2.0*(1.0+c) / sqrt(1.0+c*c);
|
||||
}
|
||||
}
|
||||
void hanning_window(float *W,size_t window_size){
|
||||
//h=.5*(1-cos(2*pi*j/(window_size+1)), COLA for R=(M+1)/2
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
W[i]=.5*(1-cos(2*M_PI*i/(window_size+1)));
|
||||
W[i]=(float).5*(1-cos(2*M_PI*i/(window_size+1)));
|
||||
}
|
||||
}
|
||||
void hamming_window(float *W,size_t window_size){
|
||||
//h=.54-.46*cos(2*pi*j/(window_size-1))
|
||||
//COLA for R=(M-1)/2,(M-1)/4 etc when endpoints are divided by 2
|
||||
//or one endpoint is zeroed
|
||||
float m;
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
m=i;
|
||||
m/=(window_size-1);
|
||||
W[i]=.54-.46*cos(2*M_PI*m);
|
||||
}
|
||||
W[window_size-1]=0;
|
||||
//W[0]/=2;
|
||||
//W[window_size-1]/=2;
|
||||
}
|
||||
void blackman_window(float *W,size_t window_size){
|
||||
//h=.42-.5*cos(2*pi*m)+.08*cos(4*pi*m), m=(0:W-1)/(W-1)
|
||||
//COLA for R=(M-1)/3 when M is odd and R is an integer
|
||||
//R=M/3 when M is even and R is an integer
|
||||
float m;
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
m=i;
|
||||
m/=(window_size-1);
|
||||
W[i]=.42-.5*cos(2*M_PI*m)+.08*cos(4*M_PI*m);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void sin_window(float *W,size_t window_size){
|
||||
//h = (cos(t*pi)+1)/2 .* float(abs(t)<1);
|
||||
for(size_t i=0;i<window_size;++i){
|
||||
W[i]=sin(M_PI*i/(window_size-1));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void array_out(const char *name,float *a,size_t length){
|
||||
FILE *p=fopen(name,"w");
|
||||
|
|
@ -211,9 +186,9 @@ static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offse
|
|||
if (PA_MSGOBJECT(u->master)->process_msg(PA_MSGOBJECT(u->master), PA_SINK_MESSAGE_GET_LATENCY, &usec, 0, NULL) < 0)
|
||||
usec = 0;
|
||||
|
||||
usec+=pa_bytes_to_usec(u->latency*fs,ss);
|
||||
//usec+=pa_bytes_to_usec(u->latency*fs,ss);
|
||||
//usec+=pa_bytes_to_usec(u->samples_gathered*fs,ss);
|
||||
//usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
|
||||
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->rendered_q), ss);
|
||||
/* Add the latency internal to our sink input on top */
|
||||
usec += pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->master->sample_spec);
|
||||
*((pa_usec_t*) data) = usec;
|
||||
|
|
@ -276,7 +251,18 @@ static void process_samples(struct userdata *u){
|
|||
tchunk.length=u->R*fs;
|
||||
tchunk.memblock=pa_memblock_new(u->core->mempool,tchunk.length);
|
||||
dst=((float*)pa_memblock_acquire(tchunk.memblock));
|
||||
dsp_logic(dst,u);
|
||||
for (size_t c=0;c<u->channels;c++) {
|
||||
dsp_logic(
|
||||
u->work_buffer,
|
||||
u->input[c],
|
||||
u->overlap_accum[c],
|
||||
u->H,
|
||||
u->W,
|
||||
u->output_window,
|
||||
u
|
||||
);
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R);
|
||||
}
|
||||
pa_memblock_release(tchunk.memblock);
|
||||
pa_memblockq_push(u->rendered_q, &tchunk);
|
||||
pa_memblock_unref(tchunk.memblock);
|
||||
|
|
@ -284,54 +270,166 @@ static void process_samples(struct userdata *u){
|
|||
}
|
||||
}
|
||||
|
||||
static void dsp_logic(float *dst,struct userdata *u){
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
//use a linear-phase sliding STFT and overlap-add method (for each channel)
|
||||
for (size_t c=0;c<u->channels;c++) {
|
||||
//zero padd the data
|
||||
memset(u->work_buffer+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
|
||||
//window the data
|
||||
for(size_t j=0;j<u->window_size;++j){
|
||||
u->work_buffer[j]=u->W[j]*u->input[c][j];
|
||||
}
|
||||
//Processing is done here!
|
||||
//do fft
|
||||
fftwf_execute_dft_r2c(u->forward_plan,u->work_buffer,u->output_window);
|
||||
//perform filtering
|
||||
for(size_t j=0;j<u->fft_size/2+1;++j){
|
||||
u->output_window[j][0]*=u->H[j];
|
||||
u->output_window[j][1]*=u->H[j];
|
||||
}
|
||||
//inverse fft
|
||||
fftwf_execute_dft_c2r(u->inverse_plan,u->output_window,u->work_buffer);
|
||||
////debug: tests overlaping add
|
||||
////and negates ALL PREVIOUS processing
|
||||
////yields a perfect reconstruction if COLA is held
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// u->work_buffer[j]=u->W[j]*u->input[c][j];
|
||||
//}
|
||||
typedef float v4sf __attribute__ ((__aligned__(v_size*sizeof(float))));
|
||||
typedef union float_vector {
|
||||
float f[v_size];
|
||||
v4sf v;
|
||||
#ifdef __SSE2__
|
||||
__m128 m;
|
||||
#endif
|
||||
} float_vector_t;
|
||||
|
||||
//overlap add and preserve overlap component from this window (linear phase)
|
||||
for(size_t j=0;j<u->R;++j){
|
||||
u->work_buffer[j]+=u->overlap_accum[c][j];
|
||||
u->overlap_accum[c][j]=u->work_buffer[u->overlap_size+j];
|
||||
}
|
||||
////reference implementation
|
||||
//void dsp_logic(
|
||||
// float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
|
||||
// float * __restrict__ src,/*input data w/ overlap at start,
|
||||
// *automatically cycled in routine
|
||||
// */
|
||||
// float * __restrict__ overlap,//The size of the overlap
|
||||
// const float * __restrict__ H,//The freq. magnitude scalers filter
|
||||
// const float * __restrict__ W,//The windowing function
|
||||
// fftwf_complex * __restrict__ output_window,//The transformed window'd src
|
||||
// struct userdata *u){
|
||||
// //use a linear-phase sliding STFT and overlap-add method (for each channel)
|
||||
// //zero padd the data
|
||||
// memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
|
||||
// //window the data
|
||||
// for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=W[j]*src[j];
|
||||
// }
|
||||
// //Processing is done here!
|
||||
// //do fft
|
||||
// fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
|
||||
// //perform filtering
|
||||
// for(size_t j=0;j<u->fft_size/2+1;++j){
|
||||
// u->output_window[j][0]*=u->H[j];
|
||||
// u->output_window[j][1]*=u->H[j];
|
||||
// }
|
||||
// //inverse fft
|
||||
// fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
|
||||
// ////debug: tests overlaping add
|
||||
// ////and negates ALL PREVIOUS processing
|
||||
// ////yields a perfect reconstruction if COLA is held
|
||||
// //for(size_t j=0;j<u->window_size;++j){
|
||||
// // u->work_buffer[j]=u->W[j]*u->input[c][j];
|
||||
// //}
|
||||
//
|
||||
// //overlap add and preserve overlap component from this window (linear phase)
|
||||
// for(size_t j=0;j<u->overlap_size;++j){
|
||||
// u->work_buffer[j]+=overlap[j];
|
||||
// overlap[j]=dst[u->R+j];
|
||||
// }
|
||||
// ////debug: tests if basic buffering works
|
||||
// ////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
// //for(size_t j=0;j<u->window_size;++j){
|
||||
// // u->work_buffer[j]=u->input[c][j];
|
||||
// //}
|
||||
//
|
||||
// //preseve the needed input for the next window's overlap
|
||||
// memmove(src,src+u->R,
|
||||
// (u->samples_gathered+u->overlap_size-u->R)*sizeof(float)
|
||||
// );
|
||||
//}
|
||||
|
||||
////debug: tests if basic buffering works
|
||||
////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// u->work_buffer[j]=u->input[c][j];
|
||||
//}
|
||||
//regardless of sse enabled, the loops in here assume
|
||||
//16 byte aligned addresses and memory allocations divisible by v_size
|
||||
void dsp_logic(
|
||||
float * __restrict__ dst,//used as a temp array too, needs to be fft_length!
|
||||
float * __restrict__ src,/*input data w/ overlap at start,
|
||||
*automatically cycled in routine
|
||||
*/
|
||||
float * __restrict__ overlap,//The size of the overlap
|
||||
const float * __restrict__ H,//The freq. magnitude scalers filter
|
||||
const float * __restrict__ W,//The windowing function
|
||||
fftwf_complex * __restrict__ output_window,//The transformed window'd src
|
||||
struct userdata *u){//Collection of constants
|
||||
|
||||
//preseve the needed input for the next window's overlap
|
||||
memmove(u->input[c],u->input[c]+u->R,
|
||||
(u->samples_gathered+u->overlap_size-u->R)*sizeof(float)
|
||||
);
|
||||
//output the samples that are outputable now
|
||||
pa_sample_clamp(PA_SAMPLE_FLOAT32NE,dst+c,fs,u->work_buffer,sizeof(float),u->R);
|
||||
const size_t window_size=mround(u->window_size,v_size);
|
||||
const size_t fft_h=mround(u->fft_size/2+1,v_size/2);
|
||||
const size_t R=mround(u->R,v_size);
|
||||
const size_t overlap_size=mround(u->overlap_size,v_size);
|
||||
|
||||
//assert(u->samples_gathered>=u->R);
|
||||
//zero out the bit beyond the real overlap so we don't add garbage
|
||||
for(size_t j=overlap_size;j>u->overlap_size;--j){
|
||||
overlap[j-1]=0;
|
||||
}
|
||||
//use a linear-phase sliding STFT and overlap-add method
|
||||
//zero padd the data
|
||||
memset(dst+u->window_size,0,(u->fft_size-u->window_size)*sizeof(float));
|
||||
//window the data
|
||||
for(size_t j=0;j<window_size;j+=v_size){
|
||||
//dst[j]=W[j]*src[j];
|
||||
float_vector_t *d=(float_vector_t*)(dst+j);
|
||||
float_vector_t *w=(float_vector_t*)(W+j);
|
||||
float_vector_t *s=(float_vector_t*)(src+j);
|
||||
#if __SSE2__
|
||||
d->m=_mm_mul_ps(w->m,s->m);
|
||||
#else
|
||||
d->v=w->v*s->v;
|
||||
#endif
|
||||
}
|
||||
//Processing is done here!
|
||||
//do fft
|
||||
fftwf_execute_dft_r2c(u->forward_plan,dst,output_window);
|
||||
|
||||
|
||||
//perform filtering - purely magnitude based
|
||||
for(size_t j=0;j<fft_h;j+=v_size/2){
|
||||
//output_window[j][0]*=H[j];
|
||||
//output_window[j][1]*=H[j];
|
||||
float_vector_t *d=(float_vector_t*)(output_window+j);
|
||||
float_vector_t h;
|
||||
h.f[0]=h.f[1]=H[j];
|
||||
h.f[2]=h.f[3]=H[j+1];
|
||||
#if __SSE2__
|
||||
d->m=_mm_mul_ps(d->m,h.m);
|
||||
#else
|
||||
d->v=d->v*h->v;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
//inverse fft
|
||||
fftwf_execute_dft_c2r(u->inverse_plan,output_window,dst);
|
||||
|
||||
////debug: tests overlaping add
|
||||
////and negates ALL PREVIOUS processing
|
||||
////yields a perfect reconstruction if COLA is held
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=W[j]*src[j];
|
||||
//}
|
||||
|
||||
//overlap add and preserve overlap component from this window (linear phase)
|
||||
for(size_t j=0;j<overlap_size;j+=v_size){
|
||||
//dst[j]+=overlap[j];
|
||||
//overlap[j]+=dst[j+R];
|
||||
float_vector_t *d=(float_vector_t*)(dst+j);
|
||||
float_vector_t *o=(float_vector_t*)(overlap+j);
|
||||
#if __SSE2__
|
||||
d->m=_mm_add_ps(d->m,o->m);
|
||||
o->m=((float_vector_t*)(dst+u->R+j))->m;
|
||||
#else
|
||||
d->v=d->v+o->v;
|
||||
o->v=((float_vector_t*)(dst+u->R+j))->v;
|
||||
#endif
|
||||
}
|
||||
//memcpy(overlap,dst+u->R,u->overlap_size*sizeof(float));
|
||||
|
||||
//////debug: tests if basic buffering works
|
||||
//////shouldn't modify the signal AT ALL (beyond roundoff)
|
||||
//for(size_t j=0;j<u->window_size;++j){
|
||||
// dst[j]=src[j];
|
||||
//}
|
||||
|
||||
//preseve the needed input for the next window's overlap
|
||||
memmove(src,src+u->R,
|
||||
(u->overlap_size+u->samples_gathered-u->R)*sizeof(float)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void input_buffer(struct userdata *u,pa_memchunk *in){
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
size_t samples=in->length/fs;
|
||||
|
|
@ -422,31 +520,6 @@ static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk
|
|||
pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0);
|
||||
*chunk=tchunk;
|
||||
pa_memblockq_drop(u->rendered_q, chunk->length);
|
||||
//if(tchunk.length>=nbytes){
|
||||
//chunk->length=PA_MIN(tchunk.length,nbytes);
|
||||
//}else{
|
||||
// size_t copied=0;
|
||||
// chunk->index=0;
|
||||
// chunk->length=PA_MIN(nbytes,pa_memblockq_get_length(u->rendered_q));
|
||||
// chunk->memblock=pa_memblock_new(u->core->mempool,chunk->length);
|
||||
// uint8_t *dst=(uint8_t*)pa_memblock_acquire(chunk->memblock);
|
||||
// for(;;){
|
||||
// size_t l=PA_MIN(tchunk.length,nbytes-copied);
|
||||
// pa_assert_se(l>0);
|
||||
// uint8_t *src=(((uint8_t*)pa_memblock_acquire(tchunk.memblock))+tchunk.index);
|
||||
// memmove(dst+copied,src,l);
|
||||
// copied+=l;
|
||||
// pa_memblock_release(tchunk.memblock);
|
||||
// pa_memblock_unref(tchunk.memblock);
|
||||
// pa_memblockq_drop(u->rendered_q,l);
|
||||
// if(copied<chunk->length){
|
||||
// pa_assert_se(pa_memblockq_peek(u->rendered_q,&tchunk)==0);
|
||||
// }else{
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// pa_memblock_release(chunk->memblock);
|
||||
//}
|
||||
pa_assert_se(chunk->memblock);
|
||||
//pa_log("gave %ld",chunk->length/fs);
|
||||
//pa_log("end pop");
|
||||
|
|
@ -509,7 +582,8 @@ static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
|
|||
return;
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
|
||||
pa_sink_set_max_request_within_thread(u->sink, nbytes);
|
||||
//pa_sink_set_max_request_within_thread(u->sink, u->R*fs);
|
||||
}
|
||||
|
||||
/* Called from I/O thread context */
|
||||
|
|
@ -523,7 +597,8 @@ static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
|
|||
return;
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs );
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs ,u->latency*fs );
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
|
||||
}
|
||||
|
||||
|
|
@ -557,7 +632,12 @@ static void sink_input_attach_cb(pa_sink_input *i) {
|
|||
pa_sink_attach_within_thread(u->sink);
|
||||
|
||||
size_t fs=pa_frame_size(&(u->sink->sample_spec));
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, u->latency*fs, u->latency*fs);
|
||||
//pa_sink_set_latency_range_within_thread(u->sink,u->latency*fs, u->master->thread_info.max_latency);
|
||||
//TODO: setting this guy minimizes drop outs but doesn't get rid
|
||||
//of them completely, figure out why
|
||||
pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->latency*fs);
|
||||
//TODO: this guy causes dropouts constantly+rewinds, it's unusable
|
||||
//pa_sink_set_latency_range_within_thread(u->sink, u->master->thread_info.min_latency, u->master->thread_info.max_latency);
|
||||
}
|
||||
|
||||
|
|
@ -605,6 +685,16 @@ static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
|
|||
return u->sink != dest;
|
||||
}
|
||||
|
||||
|
||||
//ensure's memory allocated is a multiple of v_size
|
||||
//and aligned
|
||||
static void * alloc(size_t x,size_t s){
|
||||
size_t f=mround(x*s,sizeof(float)*v_size);
|
||||
//printf("requested %ld floats=%ld bytes, rem=%ld\n",x,x*sizeof(float),x*sizeof(float)%16);
|
||||
//printf("giving %ld floats=%ld bytes, rem=%ld\n",f,f*sizeof(float),f*sizeof(float)%16);
|
||||
return fftwf_malloc(f*s);
|
||||
}
|
||||
|
||||
int pa__init(pa_module*m) {
|
||||
struct userdata *u;
|
||||
pa_sample_spec ss;
|
||||
|
|
@ -649,7 +739,7 @@ int pa__init(pa_module*m) {
|
|||
u->channels=ss.channels;
|
||||
u->fft_size=pow(2,ceil(log(ss.rate)/log(2)));
|
||||
pa_log("fft size: %ld",u->fft_size);
|
||||
u->window_size=7999;
|
||||
u->window_size=15999;
|
||||
u->R=(u->window_size+1)/2;
|
||||
u->overlap_size=u->window_size-u->R;
|
||||
u->target_samples=1*u->R;
|
||||
|
|
@ -659,32 +749,28 @@ int pa__init(pa_module*m) {
|
|||
u->conv_buffer.memblock=pa_memblock_new(u->core->mempool,u->target_samples*fs);
|
||||
u->latency=u->R;
|
||||
|
||||
|
||||
u->H=(float*) fftwf_malloc((u->fft_size/2+1)*sizeof(float));
|
||||
u->W=(float*) fftwf_malloc((u->window_size)*sizeof(float));
|
||||
u->work_buffer=(float*) fftwf_malloc(u->fft_size*sizeof(float));
|
||||
u->H=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
|
||||
u->W=alloc(u->window_size,sizeof(float));
|
||||
u->work_buffer=alloc(u->fft_size,sizeof(float));
|
||||
memset(u->work_buffer,0,u->fft_size*sizeof(float));
|
||||
u->input=(float **)malloc(sizeof(float *)*u->channels);
|
||||
u->overlap_accum=(float **)malloc(sizeof(float *)*u->channels);
|
||||
u->output_buffer=(float **)malloc(sizeof(float *)*u->channels);
|
||||
for(size_t c=0;c<u->channels;++c){
|
||||
u->input[c]=(float*) fftwf_malloc((u->target_samples+u->overlap_size)*sizeof(float));
|
||||
u->input[c]=alloc(u->target_samples+u->overlap_size,sizeof(float));
|
||||
pa_assert_se(u->input[c]);
|
||||
memset(u->input[c],0,(u->target_samples+u->overlap_size)*sizeof(float));
|
||||
pa_assert_se(u->input[c]);
|
||||
u->overlap_accum[c]=(float*) fftwf_malloc(u->R*sizeof(float));
|
||||
u->overlap_accum[c]=alloc(u->overlap_size,sizeof(float));
|
||||
pa_assert_se(u->overlap_accum[c]);
|
||||
memset(u->overlap_accum[c],0,u->R*sizeof(float));
|
||||
u->output_buffer[c]=(float*) fftwf_malloc(u->window_size*sizeof(float));
|
||||
memset(u->overlap_accum[c],0,u->overlap_size*sizeof(float));
|
||||
u->output_buffer[c]=alloc(u->window_size,sizeof(float));
|
||||
pa_assert_se(u->output_buffer[c]);
|
||||
}
|
||||
u->output_window = (fftwf_complex *) fftwf_malloc(sizeof(fftwf_complex) * (u->fft_size/2+1));
|
||||
u->output_window=alloc((u->fft_size/2+1),sizeof(fftwf_complex));
|
||||
u->forward_plan=fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_MEASURE);
|
||||
u->inverse_plan=fftwf_plan_dft_c2r_1d(u->fft_size, u->output_window, u->work_buffer, FFTW_MEASURE);
|
||||
/*
|
||||
for(size_t j=0;j<u->window_size;++j){
|
||||
u->W[j]=.5;
|
||||
}
|
||||
*/
|
||||
|
||||
hanning_window(u->W,u->window_size);
|
||||
|
||||
const int freqs[]={0,25,50,100,200,300,400,800,1500,
|
||||
|
|
@ -735,6 +821,7 @@ int pa__init(pa_module*m) {
|
|||
}
|
||||
free(freq_translated);
|
||||
|
||||
|
||||
/* Create sink */
|
||||
pa_sink_new_data_init(&sink_data);
|
||||
sink_data.driver = __FILE__;
|
||||
|
|
@ -857,18 +944,18 @@ void pa__done(pa_module*m) {
|
|||
|
||||
fftwf_destroy_plan(u->inverse_plan);
|
||||
fftwf_destroy_plan(u->forward_plan);
|
||||
fftwf_free(u->output_window);
|
||||
free(u->output_window);
|
||||
for(size_t c=0;c<u->channels;++c){
|
||||
fftwf_free(u->output_buffer[c]);
|
||||
fftwf_free(u->overlap_accum[c]);
|
||||
fftwf_free(u->input[c]);
|
||||
free(u->output_buffer[c]);
|
||||
free(u->overlap_accum[c]);
|
||||
free(u->input[c]);
|
||||
}
|
||||
free(u->output_buffer);
|
||||
free(u->overlap_accum);
|
||||
free(u->input);
|
||||
fftwf_free(u->work_buffer);
|
||||
fftwf_free(u->W);
|
||||
fftwf_free(u->H);
|
||||
free(u->work_buffer);
|
||||
free(u->W);
|
||||
free(u->H);
|
||||
|
||||
pa_xfree(u);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue