update sbc stuff

This commit is contained in:
Lennart Poettering 2009-02-02 01:44:37 +01:00
parent 537424a9a9
commit a41d72bb2e
11 changed files with 1692 additions and 309 deletions

View file

@ -1448,7 +1448,7 @@ module_bluetooth_discover_la_LDFLAGS = $(MODULE_LDFLAGS)
module_bluetooth_discover_la_LIBADD = $(AM_LIBADD) $(DBUS_LIBS) libpulsecore-@PA_MAJORMINORMICRO@.la libdbus-util.la libbluetooth-util.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la module_bluetooth_discover_la_LIBADD = $(AM_LIBADD) $(DBUS_LIBS) libpulsecore-@PA_MAJORMINORMICRO@.la libdbus-util.la libbluetooth-util.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
module_bluetooth_discover_la_CFLAGS = $(AM_CFLAGS) $(DBUS_CFLAGS) module_bluetooth_discover_la_CFLAGS = $(AM_CFLAGS) $(DBUS_CFLAGS)
libbluetooth_sbc_la_SOURCES = modules/bluetooth/sbc.c modules/bluetooth/sbc.h modules/bluetooth/sbc_tables.h modules/bluetooth/sbc_math.h libbluetooth_sbc_la_SOURCES = modules/bluetooth/sbc.c modules/bluetooth/sbc.h modules/bluetooth/sbc_tables.h modules/bluetooth/sbc_math.h modules/bluetooth/sbc_primitives.h modules/bluetooth/sbc_primitives.c modules/bluetooth/sbc_primitives_mmx.h modules/bluetooth/sbc_primitives_neon.h modules/bluetooth/sbc_primitives_mmx.c modules/bluetooth/sbc_primitives_neon.c
libbluetooth_sbc_la_LDFLAGS = -avoid-version libbluetooth_sbc_la_LDFLAGS = -avoid-version
libbluetooth_sbc_la_LIBADD = $(AM_LIBADD) libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la libbluetooth_sbc_la_LIBADD = $(AM_LIBADD) libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
libbluetooth_sbc_la_CFLAGS = $(AM_CFLAGS) libbluetooth_sbc_la_CFLAGS = $(AM_CFLAGS)
@ -1457,7 +1457,7 @@ SBC_FILES = $(subst modules/bluetooth/,,$(libbluetooth_sbc_la_SOURCES))
libbluetooth_ipc_la_SOURCES = modules/bluetooth/ipc.c modules/bluetooth/ipc.h libbluetooth_ipc_la_SOURCES = modules/bluetooth/ipc.c modules/bluetooth/ipc.h
libbluetooth_ipc_la_LDFLAGS = -avoid-version libbluetooth_ipc_la_LDFLAGS = -avoid-version
libbluetooth_ipc_la_LIBADD = $(AM_LIBADD)libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la libbluetooth_ipc_la_LIBADD = $(AM_LIBADD)libpulsecore-@PA_MAJORMINORMICRO@.la libpulsecommon-@PA_MAJORMINORMICRO@.la libpulse.la
libbluetooth_ipc_la_CFLAGS = $(AM_CFLAGS) -w libbluetooth_ipc_la_CFLAGS = $(AM_CFLAGS)
libbluetooth_util_la_SOURCES = modules/bluetooth/bluetooth-util.c modules/bluetooth/bluetooth-util.h libbluetooth_util_la_SOURCES = modules/bluetooth/bluetooth-util.c modules/bluetooth/bluetooth-util.h
libbluetooth_util_la_LDFLAGS = -avoid-version libbluetooth_util_la_LDFLAGS = -avoid-version

View file

@ -46,6 +46,7 @@
#include "sbc_tables.h" #include "sbc_tables.h"
#include "sbc.h" #include "sbc.h"
#include "sbc_primitives.h"
#define SBC_SYNCWORD 0x9C #define SBC_SYNCWORD 0x9C
@ -76,13 +77,16 @@ struct sbc_frame {
uint8_t joint; uint8_t joint;
/* only the lower 4 bits of every element are to be used */ /* only the lower 4 bits of every element are to be used */
uint8_t scale_factor[2][8]; uint32_t scale_factor[2][8];
/* raw integer subband samples in the frame */ /* raw integer subband samples in the frame */
int32_t SBC_ALIGNED sb_sample_f[16][2][8];
int32_t sb_sample_f[16][2][8]; /* modified subband samples */
int32_t sb_sample[16][2][8]; /* modified subband samples */ int32_t SBC_ALIGNED sb_sample[16][2][8];
int16_t pcm_sample[2][16*8]; /* original pcm audio samples */
/* original pcm audio samples */
int16_t SBC_ALIGNED pcm_sample[2][16*8];
}; };
struct sbc_decoder_state { struct sbc_decoder_state {
@ -91,16 +95,6 @@ struct sbc_decoder_state {
int offset[2][16]; int offset[2][16];
}; };
struct sbc_encoder_state {
int subbands;
int position[2];
int16_t X[2][256];
void (*sbc_analyze_4b_4s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
void (*sbc_analyze_4b_8s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
};
/* /*
* Calculates the CRC-8 of the first len bits in data * Calculates the CRC-8 of the first len bits in data
*/ */
@ -368,7 +362,7 @@ static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8])
static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame, static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame,
size_t len) size_t len)
{ {
int consumed; unsigned int consumed;
/* Will copy the parts of the header that are relevant to crc /* Will copy the parts of the header that are relevant to crc
* calculation here */ * calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
@ -653,179 +647,40 @@ static int sbc_synthesize_audio(struct sbc_decoder_state *state,
} }
} }
static inline void _sbc_analyze_four(const int16_t *in, int32_t *out)
{
FIXED_A t1[4];
FIXED_T t2[4];
int i = 0, hop = 0;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] =
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
/* low pass polyphase filter */
for (hop = 0; hop < 40; hop += 8) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed4[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed4[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed4[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed4[hop + 3];
t1[0] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed4[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed4[hop + 5];
t1[3] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed4[hop + 7];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 4; hop += 8, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_4[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_4[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_4[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_4[5 + hop]) >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}
}
static void sbc_analyze_4b_4s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{
int i;
/* Input 4 x 4 Audio Samples */
for (i = 0; i < 16; i += 4) {
x[64 + i] = x[0 + i] = pcm[15 - i];
x[65 + i] = x[1 + i] = pcm[14 - i];
x[66 + i] = x[2 + i] = pcm[13 - i];
x[67 + i] = x[3 + i] = pcm[12 - i];
}
/* Analyze four blocks */
_sbc_analyze_four(x + 12, out);
out += out_stride;
_sbc_analyze_four(x + 8, out);
out += out_stride;
_sbc_analyze_four(x + 4, out);
out += out_stride;
_sbc_analyze_four(x, out);
}
static inline void _sbc_analyze_eight(const int16_t *in, int32_t *out)
{
FIXED_A t1[8];
FIXED_T t2[8];
int i, hop;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
/* low pass polyphase filter */
for (hop = 0; hop < 80; hop += 16) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed8[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed8[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed8[hop + 2];
t1[3] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed8[hop + 3];
t1[4] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed8[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed8[hop + 5];
t1[2] += (FIXED_A) in[hop + 6] * _sbc_proto_fixed8[hop + 6];
t1[1] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed8[hop + 7];
t1[0] += (FIXED_A) in[hop + 8] * _sbc_proto_fixed8[hop + 8];
t1[5] += (FIXED_A) in[hop + 9] * _sbc_proto_fixed8[hop + 9];
t1[6] += (FIXED_A) in[hop + 10] * _sbc_proto_fixed8[hop + 10];
t1[7] += (FIXED_A) in[hop + 11] * _sbc_proto_fixed8[hop + 11];
t1[7] += (FIXED_A) in[hop + 13] * _sbc_proto_fixed8[hop + 13];
t1[6] += (FIXED_A) in[hop + 14] * _sbc_proto_fixed8[hop + 14];
t1[5] += (FIXED_A) in[hop + 15] * _sbc_proto_fixed8[hop + 15];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 8; hop += 16, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_8[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_8[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_8[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_8[3 + hop] +
(FIXED_A) t2[4] * cos_table_fixed_8[4 + hop] +
(FIXED_A) t2[5] * cos_table_fixed_8[9 + hop] +
(FIXED_A) t2[6] * cos_table_fixed_8[10 + hop] +
(FIXED_A) t2[7] * cos_table_fixed_8[11 + hop]) >>
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
}
static void sbc_analyze_4b_8s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{
int i;
/* Input 4 x 8 Audio Samples */
for (i = 0; i < 32; i += 8) {
x[128 + i] = x[0 + i] = pcm[31 - i];
x[129 + i] = x[1 + i] = pcm[30 - i];
x[130 + i] = x[2 + i] = pcm[29 - i];
x[131 + i] = x[3 + i] = pcm[28 - i];
x[132 + i] = x[4 + i] = pcm[27 - i];
x[133 + i] = x[5 + i] = pcm[26 - i];
x[134 + i] = x[6 + i] = pcm[25 - i];
x[135 + i] = x[7 + i] = pcm[24 - i];
}
/* Analyze four blocks */
_sbc_analyze_eight(x + 24, out);
out += out_stride;
_sbc_analyze_eight(x + 16, out);
out += out_stride;
_sbc_analyze_eight(x + 8, out);
out += out_stride;
_sbc_analyze_eight(x, out);
}
static int sbc_analyze_audio(struct sbc_encoder_state *state, static int sbc_analyze_audio(struct sbc_encoder_state *state,
struct sbc_frame *frame) struct sbc_frame *frame)
{ {
int ch, blk; int ch, blk;
int16_t *x;
switch (frame->subbands) { switch (frame->subbands) {
case 4: case 4:
for (ch = 0; ch < frame->channels; ch++) for (ch = 0; ch < frame->channels; ch++) {
x = &state->X[ch][state->position - 16 +
frame->blocks * 4];
for (blk = 0; blk < frame->blocks; blk += 4) { for (blk = 0; blk < frame->blocks; blk += 4) {
state->sbc_analyze_4b_4s( state->sbc_analyze_4b_4s(
&frame->pcm_sample[ch][blk * 4], x,
&state->X[ch][state->position[ch]],
frame->sb_sample_f[blk][ch], frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] - frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]); frame->sb_sample_f[blk][ch]);
state->position[ch] -= 16; x -= 16;
if (state->position[ch] < 0) }
state->position[ch] = 64 - 16;
} }
return frame->blocks * 4; return frame->blocks * 4;
case 8: case 8:
for (ch = 0; ch < frame->channels; ch++) for (ch = 0; ch < frame->channels; ch++) {
x = &state->X[ch][state->position - 32 +
frame->blocks * 8];
for (blk = 0; blk < frame->blocks; blk += 4) { for (blk = 0; blk < frame->blocks; blk += 4) {
state->sbc_analyze_4b_8s( state->sbc_analyze_4b_8s(
&frame->pcm_sample[ch][blk * 8], x,
&state->X[ch][state->position[ch]],
frame->sb_sample_f[blk][ch], frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] - frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]); frame->sb_sample_f[blk][ch]);
state->position[ch] -= 32; x -= 32;
if (state->position[ch] < 0) }
state->position[ch] = 128 - 32;
} }
return frame->blocks * 8; return frame->blocks * 8;
@ -836,23 +691,31 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
/* Supplementary bitstream writing macros for 'sbc_pack_frame' */ /* Supplementary bitstream writing macros for 'sbc_pack_frame' */
#define PUT_BITS(v, n)\ #define PUT_BITS(data_ptr, bits_cache, bits_count, v, n) \
bits_cache = (v) | (bits_cache << (n));\ do { \
bits_count += (n);\ bits_cache = (v) | (bits_cache << (n)); \
if (bits_count >= 16) {\ bits_count += (n); \
bits_count -= 8;\ if (bits_count >= 16) { \
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ bits_count -= 8; \
bits_count -= 8;\ *data_ptr++ = (uint8_t) \
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ (bits_cache >> bits_count); \
}\ bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
} \
} while (0)
#define FLUSH_BITS()\ #define FLUSH_BITS(data_ptr, bits_cache, bits_count) \
while (bits_count >= 8) {\ do { \
bits_count -= 8;\ while (bits_count >= 8) { \
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\ bits_count -= 8; \
}\ *data_ptr++ = (uint8_t) \
if (bits_count > 0)\ (bits_cache >> bits_count); \
*data_ptr++ = (uint8_t) (bits_cache << (8 - bits_count));\ } \
if (bits_count > 0) \
*data_ptr++ = (uint8_t) \
(bits_cache << (8 - bits_count)); \
} while (0)
/* /*
* Packs the SBC frame from frame into the memory at data. At most len * Packs the SBC frame from frame into the memory at data. At most len
@ -869,7 +732,9 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
* -99 not implemented * -99 not implemented
*/ */
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) static SBC_ALWAYS_INLINE int sbc_pack_frame_internal(
uint8_t *data, struct sbc_frame *frame, size_t len,
int frame_subbands, int frame_channels)
{ {
/* Bitstream writer starts from the fourth byte */ /* Bitstream writer starts from the fourth byte */
uint8_t *data_ptr = data + 4; uint8_t *data_ptr = data + 4;
@ -887,8 +752,6 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
uint32_t levels[2][8]; /* levels are derived from that */ uint32_t levels[2][8]; /* levels are derived from that */
uint32_t sb_sample_delta[2][8]; uint32_t sb_sample_delta[2][8];
u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */
data[0] = SBC_SYNCWORD; data[0] = SBC_SYNCWORD;
data[1] = (frame->frequency & 0x03) << 6; data[1] = (frame->frequency & 0x03) << 6;
@ -899,7 +762,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
data[1] |= (frame->allocation & 0x01) << 1; data[1] |= (frame->allocation & 0x01) << 1;
switch (frame->subbands) { switch (frame_subbands) {
case 4: case 4:
/* Nothing to do */ /* Nothing to do */
break; break;
@ -914,11 +777,11 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
data[2] = frame->bitpool; data[2] = frame->bitpool;
if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) && if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
frame->bitpool > frame->subbands << 4) frame->bitpool > frame_subbands << 4)
return -5; return -5;
if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) && if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
frame->bitpool > frame->subbands << 5) frame->bitpool > frame_subbands << 5)
return -5; return -5;
/* Can't fill in crc yet */ /* Can't fill in crc yet */
@ -927,36 +790,24 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
crc_header[1] = data[2]; crc_header[1] = data[2];
crc_pos = 16; crc_pos = 16;
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
frame->scale_factor[ch][sb] = 0;
scalefactor[ch][sb] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) {
while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) {
frame->scale_factor[ch][sb]++;
scalefactor[ch][sb] *= 2;
}
}
}
}
if (frame->mode == JOINT_STEREO) { if (frame->mode == JOINT_STEREO) {
/* like frame->sb_sample but joint stereo */ /* like frame->sb_sample but joint stereo */
int32_t sb_sample_j[16][2]; int32_t sb_sample_j[16][2];
/* scalefactor and scale_factor in joint case */ /* scalefactor and scale_factor in joint case */
u_int32_t scalefactor_j[2]; uint32_t scalefactor_j[2];
uint8_t scale_factor_j[2]; uint8_t scale_factor_j[2];
uint8_t joint = 0; uint8_t joint = 0;
frame->joint = 0; frame->joint = 0;
for (sb = 0; sb < frame->subbands - 1; sb++) { for (sb = 0; sb < frame_subbands - 1; sb++) {
scale_factor_j[0] = 0; scale_factor_j[0] = 0;
scalefactor_j[0] = 2 << SCALE_OUT_BITS; scalefactor_j[0] = 2 << SCALE_OUT_BITS;
scale_factor_j[1] = 0; scale_factor_j[1] = 0;
scalefactor_j[1] = 2 << SCALE_OUT_BITS; scalefactor_j[1] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
uint32_t tmp;
/* Calculate joint stereo signal */ /* Calculate joint stereo signal */
sb_sample_j[blk][0] = sb_sample_j[blk][0] =
ASR(frame->sb_sample_f[blk][0][sb], 1) + ASR(frame->sb_sample_f[blk][0][sb], 1) +
@ -966,11 +817,13 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
ASR(frame->sb_sample_f[blk][1][sb], 1); ASR(frame->sb_sample_f[blk][1][sb], 1);
/* calculate scale_factor_j and scalefactor_j for joint case */ /* calculate scale_factor_j and scalefactor_j for joint case */
while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) { tmp = fabs(sb_sample_j[blk][0]);
while (scalefactor_j[0] < tmp) {
scale_factor_j[0]++; scale_factor_j[0]++;
scalefactor_j[0] *= 2; scalefactor_j[0] *= 2;
} }
while (scalefactor_j[1] < fabs(sb_sample_j[blk][1])) { tmp = fabs(sb_sample_j[blk][1]);
while (scalefactor_j[1] < tmp) {
scale_factor_j[1]++; scale_factor_j[1]++;
scalefactor_j[1] *= 2; scalefactor_j[1] *= 2;
} }
@ -982,7 +835,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
(scale_factor_j[0] + (scale_factor_j[0] +
scale_factor_j[1])) { scale_factor_j[1])) {
/* use joint stereo for this subband */ /* use joint stereo for this subband */
joint |= 1 << (frame->subbands - 1 - sb); joint |= 1 << (frame_subbands - 1 - sb);
frame->joint |= 1 << sb; frame->joint |= 1 << sb;
frame->scale_factor[0][sb] = scale_factor_j[0]; frame->scale_factor[0][sb] = scale_factor_j[0];
frame->scale_factor[1][sb] = scale_factor_j[1]; frame->scale_factor[1][sb] = scale_factor_j[1];
@ -995,14 +848,16 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
} }
} }
PUT_BITS(joint, frame->subbands); PUT_BITS(data_ptr, bits_cache, bits_count,
joint, frame_subbands);
crc_header[crc_pos >> 3] = joint; crc_header[crc_pos >> 3] = joint;
crc_pos += frame->subbands; crc_pos += frame_subbands;
} }
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame_subbands; sb++) {
PUT_BITS(frame->scale_factor[ch][sb] & 0x0F, 4); PUT_BITS(data_ptr, bits_cache, bits_count,
frame->scale_factor[ch][sb] & 0x0F, 4);
crc_header[crc_pos >> 3] <<= 4; crc_header[crc_pos >> 3] <<= 4;
crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F; crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
crc_pos += 4; crc_pos += 4;
@ -1017,8 +872,8 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
sbc_calculate_bits(frame, bits); sbc_calculate_bits(frame, bits);
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame_subbands; sb++) {
levels[ch][sb] = ((1 << bits[ch][sb]) - 1) << levels[ch][sb] = ((1 << bits[ch][sb]) - 1) <<
(32 - (frame->scale_factor[ch][sb] + (32 - (frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 2)); SCALE_OUT_BITS + 2));
@ -1029,8 +884,8 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
} }
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame_subbands; sb++) {
if (bits[ch][sb] == 0) if (bits[ch][sb] == 0)
continue; continue;
@ -1039,33 +894,46 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
(sb_sample_delta[ch][sb] + (sb_sample_delta[ch][sb] +
frame->sb_sample_f[blk][ch][sb])) >> 32; frame->sb_sample_f[blk][ch][sb])) >> 32;
PUT_BITS(audio_sample, bits[ch][sb]); PUT_BITS(data_ptr, bits_cache, bits_count,
audio_sample, bits[ch][sb]);
} }
} }
} }
FLUSH_BITS(); FLUSH_BITS(data_ptr, bits_cache, bits_count);
return data_ptr - data; return data_ptr - data;
} }
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
{
if (frame->subbands == 4) {
if (frame->channels == 1)
return sbc_pack_frame_internal(data, frame, len, 4, 1);
else
return sbc_pack_frame_internal(data, frame, len, 4, 2);
} else {
if (frame->channels == 1)
return sbc_pack_frame_internal(data, frame, len, 8, 1);
else
return sbc_pack_frame_internal(data, frame, len, 8, 2);
}
}
static void sbc_encoder_init(struct sbc_encoder_state *state, static void sbc_encoder_init(struct sbc_encoder_state *state,
const struct sbc_frame *frame) const struct sbc_frame *frame)
{ {
memset(&state->X, 0, sizeof(state->X)); memset(&state->X, 0, sizeof(state->X));
state->subbands = frame->subbands; state->position = SBC_X_BUFFER_SIZE - frame->subbands * 9;
state->position[0] = state->position[1] = 12 * frame->subbands;
/* Default implementation for analyze function */ sbc_init_primitives(state);
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s;
} }
struct sbc_priv { struct sbc_priv {
int init; int init;
struct sbc_frame frame; struct SBC_ALIGNED sbc_frame frame;
struct sbc_decoder_state dec_state; struct SBC_ALIGNED sbc_decoder_state dec_state;
struct sbc_encoder_state enc_state; struct SBC_ALIGNED sbc_encoder_state enc_state;
}; };
static void sbc_set_defaults(sbc_t *sbc, unsigned long flags) static void sbc_set_defaults(sbc_t *sbc, unsigned long flags)
@ -1091,10 +959,13 @@ int sbc_init(sbc_t *sbc, unsigned long flags)
memset(sbc, 0, sizeof(sbc_t)); memset(sbc, 0, sizeof(sbc_t));
sbc->priv = malloc(sizeof(struct sbc_priv)); sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK);
if (!sbc->priv) if (!sbc->priv_alloc_base)
return -ENOMEM; return -ENOMEM;
sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base +
SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK));
memset(sbc->priv, 0, sizeof(struct sbc_priv)); memset(sbc->priv, 0, sizeof(struct sbc_priv));
sbc_set_defaults(sbc, flags); sbc_set_defaults(sbc, flags);
@ -1177,8 +1048,10 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
int output_len, int *written) int output_len, int *written)
{ {
struct sbc_priv *priv; struct sbc_priv *priv;
char *ptr; int framelen, samples;
int i, ch, framelen, samples; int (*sbc_enc_process_input)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
if (!sbc && !input) if (!sbc && !input)
return -EIO; return -EIO;
@ -1213,22 +1086,34 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
if (!output || output_len < priv->frame.length) if (!output || output_len < priv->frame.length)
return -ENOSPC; return -ENOSPC;
ptr = input; /* Select the needed input data processing function and call it */
if (priv->frame.subbands == 8) {
for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
for (ch = 0; ch < priv->frame.channels; ch++) {
int16_t s;
if (sbc->endian == SBC_BE) if (sbc->endian == SBC_BE)
s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff); sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_8s_be;
else else
s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8; sbc_enc_process_input =
ptr += 2; priv->enc_state.sbc_enc_process_input_8s_le;
priv->frame.pcm_sample[ch][i] = s; } else {
} if (sbc->endian == SBC_BE)
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_be;
else
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_le;
} }
priv->enc_state.position = sbc_enc_process_input(
priv->enc_state.position, (const uint8_t *) input,
priv->enc_state.X, priv->frame.subbands * priv->frame.blocks,
priv->frame.channels);
samples = sbc_analyze_audio(&priv->enc_state, &priv->frame); samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
priv->enc_state.sbc_calc_scalefactors(
priv->frame.sb_sample_f, priv->frame.scale_factor,
priv->frame.blocks, priv->frame.channels, priv->frame.subbands);
framelen = sbc_pack_frame(output, &priv->frame, output_len); framelen = sbc_pack_frame(output, &priv->frame, output_len);
if (written) if (written)
@ -1242,8 +1127,8 @@ void sbc_finish(sbc_t *sbc)
if (!sbc) if (!sbc)
return; return;
if (sbc->priv) if (sbc->priv_alloc_base)
free(sbc->priv); free(sbc->priv_alloc_base);
memset(sbc, 0, sizeof(sbc_t)); memset(sbc, 0, sizeof(sbc_t));
} }

View file

@ -74,6 +74,7 @@ struct sbc_struct {
uint8_t endian; uint8_t endian;
void *priv; void *priv;
void *priv_alloc_base;
}; };
typedef struct sbc_struct sbc_t; typedef struct sbc_struct sbc_t;

View file

@ -29,8 +29,6 @@
#define ASR(val, bits) ((-2 >> 1 == -1) ? \ #define ASR(val, bits) ((-2 >> 1 == -1) ? \
((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits)))
#define SCALE_OUT_BITS 15
#define SCALE_SPROTO4_TBL 12 #define SCALE_SPROTO4_TBL 12
#define SCALE_SPROTO8_TBL 14 #define SCALE_SPROTO8_TBL 14
#define SCALE_NPROTO4_TBL 11 #define SCALE_NPROTO4_TBL 11

View file

@ -0,0 +1,469 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdint.h>
#include <limits.h>
#include <string.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc_primitives.h"
#include "sbc_primitives_mmx.h"
#include "sbc_primitives_neon.h"
/*
* A reference C code of analysis filter with SIMD-friendly tables
* reordering and code layout. This code can be used to develop platform
* specific SIMD optimizations. Also it may be used as some kind of test
* for compiler autovectorization capabilities (who knows, if the compiler
* is very good at this stuff, hand optimized assembly may be not strictly
* needed for some platform).
*
* Note: It is also possible to make a simple variant of analysis filter,
* which needs only a single constants table without taking care about
* even/odd cases. This simple variant of filter can be implemented without
* input data permutation. The only thing that would be lost is the
* possibility to use pairwise SIMD multiplications. But for some simple
* CPU cores without SIMD extensions it can be useful. If anybody is
* interested in implementing such variant of a filter, sourcecode from
* bluez versions 4.26/4.27 can be used as a reference and the history of
* the changes in git repository done around that time may be worth checking.
*/
static inline void sbc_analyze_four_simd(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
FIXED_A t1[4];
FIXED_T t2[4];
int hop = 0;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] =
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
/* low pass polyphase filter */
for (hop = 0; hop < 40; hop += 8) {
t1[0] += (FIXED_A) in[hop] * consts[hop];
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
/* do the cos transform */
t1[0] = (FIXED_A) t2[0] * consts[40 + 0];
t1[0] += (FIXED_A) t2[1] * consts[40 + 1];
t1[1] = (FIXED_A) t2[0] * consts[40 + 2];
t1[1] += (FIXED_A) t2[1] * consts[40 + 3];
t1[2] = (FIXED_A) t2[0] * consts[40 + 4];
t1[2] += (FIXED_A) t2[1] * consts[40 + 5];
t1[3] = (FIXED_A) t2[0] * consts[40 + 6];
t1[3] += (FIXED_A) t2[1] * consts[40 + 7];
t1[0] += (FIXED_A) t2[2] * consts[40 + 8];
t1[0] += (FIXED_A) t2[3] * consts[40 + 9];
t1[1] += (FIXED_A) t2[2] * consts[40 + 10];
t1[1] += (FIXED_A) t2[3] * consts[40 + 11];
t1[2] += (FIXED_A) t2[2] * consts[40 + 12];
t1[2] += (FIXED_A) t2[3] * consts[40 + 13];
t1[3] += (FIXED_A) t2[2] * consts[40 + 14];
t1[3] += (FIXED_A) t2[3] * consts[40 + 15];
out[0] = t1[0] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[1] = t1[1] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[2] = t1[2] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
out[3] = t1[3] >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}
static inline void sbc_analyze_eight_simd(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
FIXED_A t1[8];
FIXED_T t2[8];
int i, hop;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
/* low pass polyphase filter */
for (hop = 0; hop < 80; hop += 16) {
t1[0] += (FIXED_A) in[hop] * consts[hop];
t1[0] += (FIXED_A) in[hop + 1] * consts[hop + 1];
t1[1] += (FIXED_A) in[hop + 2] * consts[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * consts[hop + 3];
t1[2] += (FIXED_A) in[hop + 4] * consts[hop + 4];
t1[2] += (FIXED_A) in[hop + 5] * consts[hop + 5];
t1[3] += (FIXED_A) in[hop + 6] * consts[hop + 6];
t1[3] += (FIXED_A) in[hop + 7] * consts[hop + 7];
t1[4] += (FIXED_A) in[hop + 8] * consts[hop + 8];
t1[4] += (FIXED_A) in[hop + 9] * consts[hop + 9];
t1[5] += (FIXED_A) in[hop + 10] * consts[hop + 10];
t1[5] += (FIXED_A) in[hop + 11] * consts[hop + 11];
t1[6] += (FIXED_A) in[hop + 12] * consts[hop + 12];
t1[6] += (FIXED_A) in[hop + 13] * consts[hop + 13];
t1[7] += (FIXED_A) in[hop + 14] * consts[hop + 14];
t1[7] += (FIXED_A) in[hop + 15] * consts[hop + 15];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
/* do the cos transform */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = 0;
for (i = 0; i < 4; i++) {
t1[0] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 0];
t1[0] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 1];
t1[1] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 2];
t1[1] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 3];
t1[2] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 4];
t1[2] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 5];
t1[3] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 6];
t1[3] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 7];
t1[4] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 8];
t1[4] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 9];
t1[5] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 10];
t1[5] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 11];
t1[6] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 12];
t1[6] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 13];
t1[7] += (FIXED_A) t2[i * 2 + 0] * consts[80 + i * 16 + 14];
t1[7] += (FIXED_A) t2[i * 2 + 1] * consts[80 + i * 16 + 15];
}
for (i = 0; i < 8; i++)
out[i] = t1[i] >>
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
static inline void sbc_analyze_4b_4s_simd(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
sbc_analyze_four_simd(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_simd(x + 8, out, analysis_consts_fixed4_simd_even);
out += out_stride;
sbc_analyze_four_simd(x + 4, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_simd(x + 0, out, analysis_consts_fixed4_simd_even);
}
static inline void sbc_analyze_4b_8s_simd(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
sbc_analyze_eight_simd(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_simd(x + 16, out, analysis_consts_fixed8_simd_even);
out += out_stride;
sbc_analyze_eight_simd(x + 8, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_simd(x + 0, out, analysis_consts_fixed8_simd_even);
}
static inline int16_t unaligned16_be(const uint8_t *ptr)
{
return (int16_t) ((ptr[0] << 8) | ptr[1]);
}
static inline int16_t unaligned16_le(const uint8_t *ptr)
{
return (int16_t) (ptr[0] | (ptr[1] << 8));
}
/*
* Internal helper functions for input data processing. In order to get
* optimal performance, it is important to have "nsamples", "nchannels"
* and "big_endian" arguments used with this inline function as compile
* time constants.
*/
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s4_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
/* handle X buffer wraparound */
if (position < nsamples) {
if (nchannels > 0)
memcpy(&X[0][SBC_X_BUFFER_SIZE - 36], &X[0][position],
36 * sizeof(int16_t));
if (nchannels > 1)
memcpy(&X[1][SBC_X_BUFFER_SIZE - 36], &X[1][position],
36 * sizeof(int16_t));
position = SBC_X_BUFFER_SIZE - 36;
}
#define PCM(i) (big_endian ? \
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
/* copy/permutate audio samples */
while ((nsamples -= 8) >= 0) {
position -= 8;
if (nchannels > 0) {
int16_t *x = &X[0][position];
x[0] = PCM(0 + 7 * nchannels);
x[1] = PCM(0 + 3 * nchannels);
x[2] = PCM(0 + 6 * nchannels);
x[3] = PCM(0 + 4 * nchannels);
x[4] = PCM(0 + 0 * nchannels);
x[5] = PCM(0 + 2 * nchannels);
x[6] = PCM(0 + 1 * nchannels);
x[7] = PCM(0 + 5 * nchannels);
}
if (nchannels > 1) {
int16_t *x = &X[1][position];
x[0] = PCM(1 + 7 * nchannels);
x[1] = PCM(1 + 3 * nchannels);
x[2] = PCM(1 + 6 * nchannels);
x[3] = PCM(1 + 4 * nchannels);
x[4] = PCM(1 + 0 * nchannels);
x[5] = PCM(1 + 2 * nchannels);
x[6] = PCM(1 + 1 * nchannels);
x[7] = PCM(1 + 5 * nchannels);
}
pcm += 16 * nchannels;
}
#undef PCM
return position;
}
static SBC_ALWAYS_INLINE int sbc_encoder_process_input_s8_internal(
int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels, int big_endian)
{
/* handle X buffer wraparound */
if (position < nsamples) {
if (nchannels > 0)
memcpy(&X[0][SBC_X_BUFFER_SIZE - 72], &X[0][position],
72 * sizeof(int16_t));
if (nchannels > 1)
memcpy(&X[1][SBC_X_BUFFER_SIZE - 72], &X[1][position],
72 * sizeof(int16_t));
position = SBC_X_BUFFER_SIZE - 72;
}
#define PCM(i) (big_endian ? \
unaligned16_be(pcm + (i) * 2) : unaligned16_le(pcm + (i) * 2))
/* copy/permutate audio samples */
while ((nsamples -= 16) >= 0) {
position -= 16;
if (nchannels > 0) {
int16_t *x = &X[0][position];
x[0] = PCM(0 + 15 * nchannels);
x[1] = PCM(0 + 7 * nchannels);
x[2] = PCM(0 + 14 * nchannels);
x[3] = PCM(0 + 8 * nchannels);
x[4] = PCM(0 + 13 * nchannels);
x[5] = PCM(0 + 9 * nchannels);
x[6] = PCM(0 + 12 * nchannels);
x[7] = PCM(0 + 10 * nchannels);
x[8] = PCM(0 + 11 * nchannels);
x[9] = PCM(0 + 3 * nchannels);
x[10] = PCM(0 + 6 * nchannels);
x[11] = PCM(0 + 0 * nchannels);
x[12] = PCM(0 + 5 * nchannels);
x[13] = PCM(0 + 1 * nchannels);
x[14] = PCM(0 + 4 * nchannels);
x[15] = PCM(0 + 2 * nchannels);
}
if (nchannels > 1) {
int16_t *x = &X[1][position];
x[0] = PCM(1 + 15 * nchannels);
x[1] = PCM(1 + 7 * nchannels);
x[2] = PCM(1 + 14 * nchannels);
x[3] = PCM(1 + 8 * nchannels);
x[4] = PCM(1 + 13 * nchannels);
x[5] = PCM(1 + 9 * nchannels);
x[6] = PCM(1 + 12 * nchannels);
x[7] = PCM(1 + 10 * nchannels);
x[8] = PCM(1 + 11 * nchannels);
x[9] = PCM(1 + 3 * nchannels);
x[10] = PCM(1 + 6 * nchannels);
x[11] = PCM(1 + 0 * nchannels);
x[12] = PCM(1 + 5 * nchannels);
x[13] = PCM(1 + 1 * nchannels);
x[14] = PCM(1 + 4 * nchannels);
x[15] = PCM(1 + 2 * nchannels);
}
pcm += 32 * nchannels;
}
#undef PCM
return position;
}
/*
* Input data processing functions. The data is endian converted if needed,
* channels are deintrleaved and audio samples are reordered for use in
* SIMD-friendly analysis filter function. The results are put into "X"
* array, getting appended to the previous data (or it is better to say
* prepended, as the buffer is filled from top to bottom). Old data is
* discarded when neededed, but availability of (10 * nrof_subbands)
* contiguous samples is always guaranteed for the input to the analysis
* filter. This is achieved by copying a sufficient part of old data
* to the top of the buffer on buffer wraparound.
*/
static int sbc_enc_process_input_4s_le(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 2, 0);
else
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 1, 0);
}
static int sbc_enc_process_input_4s_be(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 2, 1);
else
return sbc_encoder_process_input_s4_internal(
position, pcm, X, nsamples, 1, 1);
}
static int sbc_enc_process_input_8s_le(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 2, 0);
else
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 1, 0);
}
static int sbc_enc_process_input_8s_be(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels)
{
if (nchannels > 1)
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 2, 1);
else
return sbc_encoder_process_input_s8_internal(
position, pcm, X, nsamples, 1, 1);
}
/* Supplementary function to count the number of leading zeros */
static inline int sbc_clz(uint32_t x)
{
#ifdef __GNUC__
return __builtin_clz(x);
#else
/* TODO: this should be replaced with something better if good
* performance is wanted when using compilers other than gcc */
int cnt = 0;
while (x) {
cnt++;
x >>= 1;
}
return 32 - cnt;
#endif
}
static void sbc_calc_scalefactors(
int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int channels, int subbands)
{
int ch, sb, blk;
for (ch = 0; ch < channels; ch++) {
for (sb = 0; sb < subbands; sb++) {
uint32_t x = 1 << SCALE_OUT_BITS;
for (blk = 0; blk < blocks; blk++) {
int32_t tmp = fabs(sb_sample_f[blk][ch][sb]);
if (tmp != 0)
x |= tmp - 1;
}
scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) -
sbc_clz(x);
}
}
}
/*
* Detect CPU features and setup function pointers
*/
void sbc_init_primitives(struct sbc_encoder_state *state)
{
/* Default implementation for analyze functions */
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_simd;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_simd;
/* Default implementation for input reordering / deinterleaving */
state->sbc_enc_process_input_4s_le = sbc_enc_process_input_4s_le;
state->sbc_enc_process_input_4s_be = sbc_enc_process_input_4s_be;
state->sbc_enc_process_input_8s_le = sbc_enc_process_input_8s_le;
state->sbc_enc_process_input_8s_be = sbc_enc_process_input_8s_be;
/* Default implementation for scale factors calculation */
state->sbc_calc_scalefactors = sbc_calc_scalefactors;
/* X86/AMD64 optimizations */
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
sbc_init_primitives_mmx(state);
#endif
/* ARM optimizations */
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
sbc_init_primitives_neon(state);
#endif
}

View file

@ -0,0 +1,74 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef __SBC_PRIMITIVES_H
#define __SBC_PRIMITIVES_H
#define SCALE_OUT_BITS 15
#define SBC_X_BUFFER_SIZE 328
#ifdef __GNUC__
#define SBC_ALWAYS_INLINE __attribute__((always_inline))
#else
#define SBC_ALWAYS_INLINE inline
#endif
struct sbc_encoder_state {
int position;
int16_t SBC_ALIGNED X[2][SBC_X_BUFFER_SIZE];
/* Polyphase analysis filter for 4 subbands configuration,
* it handles 4 blocks at once */
void (*sbc_analyze_4b_4s)(int16_t *x, int32_t *out, int out_stride);
/* Polyphase analysis filter for 8 subbands configuration,
* it handles 4 blocks at once */
void (*sbc_analyze_4b_8s)(int16_t *x, int32_t *out, int out_stride);
/* Process input data (deinterleave, endian conversion, reordering),
* depending on the number of subbands and input data byte order */
int (*sbc_enc_process_input_4s_le)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
int (*sbc_enc_process_input_4s_be)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
int (*sbc_enc_process_input_8s_le)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
int (*sbc_enc_process_input_8s_be)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
/* Scale factors calculation */
void (*sbc_calc_scalefactors)(int32_t sb_sample_f[16][2][8],
uint32_t scale_factor[2][8],
int blocks, int channels, int subbands);
};
/*
* Initialize pointers to the functions which are the basic "building bricks"
* of SBC codec. Best implementation is selected based on target CPU
* capabilities.
*/
void sbc_init_primitives(struct sbc_encoder_state *encoder_state);
#endif

View file

@ -0,0 +1,319 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdint.h>
#include <limits.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc_primitives_mmx.h"
/*
* MMX optimizations
*/
#ifdef SBC_BUILD_WITH_MMX_SUPPORT
static inline void sbc_analyze_four_mmx(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
static const SBC_ALIGNED int32_t round_c[2] = {
1 << (SBC_PROTO_FIXED4_SCALE - 1),
1 << (SBC_PROTO_FIXED4_SCALE - 1),
};
asm volatile (
"movq (%0), %%mm0\n"
"movq 8(%0), %%mm1\n"
"pmaddwd (%1), %%mm0\n"
"pmaddwd 8(%1), %%mm1\n"
"paddd (%2), %%mm0\n"
"paddd (%2), %%mm1\n"
"\n"
"movq 16(%0), %%mm2\n"
"movq 24(%0), %%mm3\n"
"pmaddwd 16(%1), %%mm2\n"
"pmaddwd 24(%1), %%mm3\n"
"paddd %%mm2, %%mm0\n"
"paddd %%mm3, %%mm1\n"
"\n"
"movq 32(%0), %%mm2\n"
"movq 40(%0), %%mm3\n"
"pmaddwd 32(%1), %%mm2\n"
"pmaddwd 40(%1), %%mm3\n"
"paddd %%mm2, %%mm0\n"
"paddd %%mm3, %%mm1\n"
"\n"
"movq 48(%0), %%mm2\n"
"movq 56(%0), %%mm3\n"
"pmaddwd 48(%1), %%mm2\n"
"pmaddwd 56(%1), %%mm3\n"
"paddd %%mm2, %%mm0\n"
"paddd %%mm3, %%mm1\n"
"\n"
"movq 64(%0), %%mm2\n"
"movq 72(%0), %%mm3\n"
"pmaddwd 64(%1), %%mm2\n"
"pmaddwd 72(%1), %%mm3\n"
"paddd %%mm2, %%mm0\n"
"paddd %%mm3, %%mm1\n"
"\n"
"psrad %4, %%mm0\n"
"psrad %4, %%mm1\n"
"packssdw %%mm0, %%mm0\n"
"packssdw %%mm1, %%mm1\n"
"\n"
"movq %%mm0, %%mm2\n"
"pmaddwd 80(%1), %%mm0\n"
"pmaddwd 88(%1), %%mm2\n"
"\n"
"movq %%mm1, %%mm3\n"
"pmaddwd 96(%1), %%mm1\n"
"pmaddwd 104(%1), %%mm3\n"
"paddd %%mm1, %%mm0\n"
"paddd %%mm3, %%mm2\n"
"\n"
"movq %%mm0, (%3)\n"
"movq %%mm2, 8(%3)\n"
:
: "r" (in), "r" (consts), "r" (&round_c), "r" (out),
"i" (SBC_PROTO_FIXED4_SCALE)
: "memory");
}
static inline void sbc_analyze_eight_mmx(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
static const SBC_ALIGNED int32_t round_c[2] = {
1 << (SBC_PROTO_FIXED8_SCALE - 1),
1 << (SBC_PROTO_FIXED8_SCALE - 1),
};
asm volatile (
"movq (%0), %%mm0\n"
"movq 8(%0), %%mm1\n"
"movq 16(%0), %%mm2\n"
"movq 24(%0), %%mm3\n"
"pmaddwd (%1), %%mm0\n"
"pmaddwd 8(%1), %%mm1\n"
"pmaddwd 16(%1), %%mm2\n"
"pmaddwd 24(%1), %%mm3\n"
"paddd (%2), %%mm0\n"
"paddd (%2), %%mm1\n"
"paddd (%2), %%mm2\n"
"paddd (%2), %%mm3\n"
"\n"
"movq 32(%0), %%mm4\n"
"movq 40(%0), %%mm5\n"
"movq 48(%0), %%mm6\n"
"movq 56(%0), %%mm7\n"
"pmaddwd 32(%1), %%mm4\n"
"pmaddwd 40(%1), %%mm5\n"
"pmaddwd 48(%1), %%mm6\n"
"pmaddwd 56(%1), %%mm7\n"
"paddd %%mm4, %%mm0\n"
"paddd %%mm5, %%mm1\n"
"paddd %%mm6, %%mm2\n"
"paddd %%mm7, %%mm3\n"
"\n"
"movq 64(%0), %%mm4\n"
"movq 72(%0), %%mm5\n"
"movq 80(%0), %%mm6\n"
"movq 88(%0), %%mm7\n"
"pmaddwd 64(%1), %%mm4\n"
"pmaddwd 72(%1), %%mm5\n"
"pmaddwd 80(%1), %%mm6\n"
"pmaddwd 88(%1), %%mm7\n"
"paddd %%mm4, %%mm0\n"
"paddd %%mm5, %%mm1\n"
"paddd %%mm6, %%mm2\n"
"paddd %%mm7, %%mm3\n"
"\n"
"movq 96(%0), %%mm4\n"
"movq 104(%0), %%mm5\n"
"movq 112(%0), %%mm6\n"
"movq 120(%0), %%mm7\n"
"pmaddwd 96(%1), %%mm4\n"
"pmaddwd 104(%1), %%mm5\n"
"pmaddwd 112(%1), %%mm6\n"
"pmaddwd 120(%1), %%mm7\n"
"paddd %%mm4, %%mm0\n"
"paddd %%mm5, %%mm1\n"
"paddd %%mm6, %%mm2\n"
"paddd %%mm7, %%mm3\n"
"\n"
"movq 128(%0), %%mm4\n"
"movq 136(%0), %%mm5\n"
"movq 144(%0), %%mm6\n"
"movq 152(%0), %%mm7\n"
"pmaddwd 128(%1), %%mm4\n"
"pmaddwd 136(%1), %%mm5\n"
"pmaddwd 144(%1), %%mm6\n"
"pmaddwd 152(%1), %%mm7\n"
"paddd %%mm4, %%mm0\n"
"paddd %%mm5, %%mm1\n"
"paddd %%mm6, %%mm2\n"
"paddd %%mm7, %%mm3\n"
"\n"
"psrad %4, %%mm0\n"
"psrad %4, %%mm1\n"
"psrad %4, %%mm2\n"
"psrad %4, %%mm3\n"
"\n"
"packssdw %%mm0, %%mm0\n"
"packssdw %%mm1, %%mm1\n"
"packssdw %%mm2, %%mm2\n"
"packssdw %%mm3, %%mm3\n"
"\n"
"movq %%mm0, %%mm4\n"
"movq %%mm0, %%mm5\n"
"pmaddwd 160(%1), %%mm4\n"
"pmaddwd 168(%1), %%mm5\n"
"\n"
"movq %%mm1, %%mm6\n"
"movq %%mm1, %%mm7\n"
"pmaddwd 192(%1), %%mm6\n"
"pmaddwd 200(%1), %%mm7\n"
"paddd %%mm6, %%mm4\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm2, %%mm6\n"
"movq %%mm2, %%mm7\n"
"pmaddwd 224(%1), %%mm6\n"
"pmaddwd 232(%1), %%mm7\n"
"paddd %%mm6, %%mm4\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm3, %%mm6\n"
"movq %%mm3, %%mm7\n"
"pmaddwd 256(%1), %%mm6\n"
"pmaddwd 264(%1), %%mm7\n"
"paddd %%mm6, %%mm4\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm4, (%3)\n"
"movq %%mm5, 8(%3)\n"
"\n"
"movq %%mm0, %%mm5\n"
"pmaddwd 176(%1), %%mm0\n"
"pmaddwd 184(%1), %%mm5\n"
"\n"
"movq %%mm1, %%mm7\n"
"pmaddwd 208(%1), %%mm1\n"
"pmaddwd 216(%1), %%mm7\n"
"paddd %%mm1, %%mm0\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm2, %%mm7\n"
"pmaddwd 240(%1), %%mm2\n"
"pmaddwd 248(%1), %%mm7\n"
"paddd %%mm2, %%mm0\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm3, %%mm7\n"
"pmaddwd 272(%1), %%mm3\n"
"pmaddwd 280(%1), %%mm7\n"
"paddd %%mm3, %%mm0\n"
"paddd %%mm7, %%mm5\n"
"\n"
"movq %%mm0, 16(%3)\n"
"movq %%mm5, 24(%3)\n"
:
: "r" (in), "r" (consts), "r" (&round_c), "r" (out),
"i" (SBC_PROTO_FIXED8_SCALE)
: "memory");
}
static inline void sbc_analyze_4b_4s_mmx(int16_t *x, int32_t *out,
int out_stride)
{
/* Analyze blocks */
sbc_analyze_four_mmx(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_mmx(x + 8, out, analysis_consts_fixed4_simd_even);
out += out_stride;
sbc_analyze_four_mmx(x + 4, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
sbc_analyze_four_mmx(x + 0, out, analysis_consts_fixed4_simd_even);
asm volatile ("emms\n");
}
static inline void sbc_analyze_4b_8s_mmx(int16_t *x, int32_t *out,
int out_stride)
{
/* Analyze blocks */
sbc_analyze_eight_mmx(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_mmx(x + 16, out, analysis_consts_fixed8_simd_even);
out += out_stride;
sbc_analyze_eight_mmx(x + 8, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
sbc_analyze_eight_mmx(x + 0, out, analysis_consts_fixed8_simd_even);
asm volatile ("emms\n");
}
static int check_mmx_support()
{
#ifdef __amd64__
return 1; /* We assume that all 64-bit processors have MMX support */
#else
int cpuid_feature_information;
asm volatile (
/* According to Intel manual, CPUID instruction is supported
* if the value of ID bit (bit 21) in EFLAGS can be modified */
"pushf\n"
"movl (%%esp), %0\n"
"xorl $0x200000, (%%esp)\n" /* try to modify ID bit */
"popf\n"
"pushf\n"
"xorl (%%esp), %0\n" /* check if ID bit changed */
"jz 1f\n"
"push %%eax\n"
"push %%ebx\n"
"push %%ecx\n"
"mov $1, %%eax\n"
"cpuid\n"
"pop %%ecx\n"
"pop %%ebx\n"
"pop %%eax\n"
"1:\n"
"popf\n"
: "=d" (cpuid_feature_information)
:
: "cc");
return cpuid_feature_information & (1 << 23);
#endif
}
void sbc_init_primitives_mmx(struct sbc_encoder_state *state)
{
if (check_mmx_support()) {
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_mmx;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_mmx;
}
}
#endif

View file

@ -0,0 +1,40 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef __SBC_PRIMITIVES_MMX_H
#define __SBC_PRIMITIVES_MMX_H
#include "sbc_primitives.h"
#if defined(__GNUC__) && (defined(__i386__) || defined(__amd64__)) && \
!defined(SBC_HIGH_PRECISION) && (SCALE_OUT_BITS == 15)
#define SBC_BUILD_WITH_MMX_SUPPORT
void sbc_init_primitives_mmx(struct sbc_encoder_state *encoder_state);
#endif
#endif

View file

@ -0,0 +1,245 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <stdint.h>
#include <limits.h>
#include "sbc.h"
#include "sbc_math.h"
#include "sbc_tables.h"
#include "sbc_primitives_neon.h"
/*
* ARM NEON optimizations
*/
#ifdef SBC_BUILD_WITH_NEON_SUPPORT
static inline void _sbc_analyze_four_neon(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
/* TODO: merge even and odd cases (or even merge all four calls to this
* function) in order to have only aligned reads from 'in' array
* and reduce number of load instructions */
asm volatile (
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmull.s16 q0, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmull.s16 q1, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q0, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q1, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q0, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q1, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q0, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q1, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q0, d4, d8\n"
"vmlal.s16 q1, d5, d9\n"
"vpadd.s32 d0, d0, d1\n"
"vpadd.s32 d1, d2, d3\n"
"vrshrn.s32 d0, q0, %3\n"
"vld1.16 {d2, d3, d4, d5}, [%1, :128]!\n"
"vdup.i32 d1, d0[1]\n" /* TODO: can be eliminated */
"vdup.i32 d0, d0[0]\n" /* TODO: can be eliminated */
"vmull.s16 q3, d2, d0\n"
"vmull.s16 q4, d3, d0\n"
"vmlal.s16 q3, d4, d1\n"
"vmlal.s16 q4, d5, d1\n"
"vpadd.s32 d0, d6, d7\n" /* TODO: can be eliminated */
"vpadd.s32 d1, d8, d9\n" /* TODO: can be eliminated */
"vst1.32 {d0, d1}, [%2, :128]\n"
: "+r" (in), "+r" (consts)
: "r" (out),
"i" (SBC_PROTO_FIXED4_SCALE)
: "memory",
"d0", "d1", "d2", "d3", "d4", "d5",
"d6", "d7", "d8", "d9", "d10", "d11");
}
static inline void _sbc_analyze_eight_neon(const int16_t *in, int32_t *out,
const FIXED_T *consts)
{
/* TODO: merge even and odd cases (or even merge all four calls to this
* function) in order to have only aligned reads from 'in' array
* and reduce number of load instructions */
asm volatile (
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmull.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmull.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmull.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmull.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vld1.16 {d4, d5}, [%0, :64]!\n"
"vmlal.s16 q9, d7, d11\n"
"vld1.16 {d8, d9}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d8\n"
"vld1.16 {d6, d7}, [%0, :64]!\n"
"vmlal.s16 q7, d5, d9\n"
"vld1.16 {d10, d11}, [%1, :128]!\n"
"vmlal.s16 q8, d6, d10\n"
"vmlal.s16 q9, d7, d11\n"
"vpadd.s32 d0, d12, d13\n"
"vpadd.s32 d1, d14, d15\n"
"vpadd.s32 d2, d16, d17\n"
"vpadd.s32 d3, d18, d19\n"
"vrshr.s32 q0, q0, %3\n"
"vrshr.s32 q1, q1, %3\n"
"vmovn.s32 d0, q0\n"
"vmovn.s32 d1, q1\n"
"vdup.i32 d3, d1[1]\n" /* TODO: can be eliminated */
"vdup.i32 d2, d1[0]\n" /* TODO: can be eliminated */
"vdup.i32 d1, d0[1]\n" /* TODO: can be eliminated */
"vdup.i32 d0, d0[0]\n" /* TODO: can be eliminated */
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmull.s16 q6, d4, d0\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmull.s16 q7, d5, d0\n"
"vmull.s16 q8, d6, d0\n"
"vmull.s16 q9, d7, d0\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d1\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d1\n"
"vmlal.s16 q8, d6, d1\n"
"vmlal.s16 q9, d7, d1\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d2\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d2\n"
"vmlal.s16 q8, d6, d2\n"
"vmlal.s16 q9, d7, d2\n"
"vld1.16 {d4, d5}, [%1, :128]!\n"
"vmlal.s16 q6, d4, d3\n"
"vld1.16 {d6, d7}, [%1, :128]!\n"
"vmlal.s16 q7, d5, d3\n"
"vmlal.s16 q8, d6, d3\n"
"vmlal.s16 q9, d7, d3\n"
"vpadd.s32 d0, d12, d13\n" /* TODO: can be eliminated */
"vpadd.s32 d1, d14, d15\n" /* TODO: can be eliminated */
"vpadd.s32 d2, d16, d17\n" /* TODO: can be eliminated */
"vpadd.s32 d3, d18, d19\n" /* TODO: can be eliminated */
"vst1.32 {d0, d1, d2, d3}, [%2, :128]\n"
: "+r" (in), "+r" (consts)
: "r" (out),
"i" (SBC_PROTO_FIXED8_SCALE)
: "memory",
"d0", "d1", "d2", "d3", "d4", "d5",
"d6", "d7", "d8", "d9", "d10", "d11",
"d12", "d13", "d14", "d15", "d16", "d17",
"d18", "d19");
}
static inline void sbc_analyze_4b_4s_neon(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
_sbc_analyze_four_neon(x + 12, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
_sbc_analyze_four_neon(x + 8, out, analysis_consts_fixed4_simd_even);
out += out_stride;
_sbc_analyze_four_neon(x + 4, out, analysis_consts_fixed4_simd_odd);
out += out_stride;
_sbc_analyze_four_neon(x + 0, out, analysis_consts_fixed4_simd_even);
}
static inline void sbc_analyze_4b_8s_neon(int16_t *x,
int32_t *out, int out_stride)
{
/* Analyze blocks */
_sbc_analyze_eight_neon(x + 24, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
_sbc_analyze_eight_neon(x + 16, out, analysis_consts_fixed8_simd_even);
out += out_stride;
_sbc_analyze_eight_neon(x + 8, out, analysis_consts_fixed8_simd_odd);
out += out_stride;
_sbc_analyze_eight_neon(x + 0, out, analysis_consts_fixed8_simd_even);
}
void sbc_init_primitives_neon(struct sbc_encoder_state *state)
{
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s_neon;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s_neon;
}
#endif

View file

@ -0,0 +1,40 @@
/*
*
* Bluetooth low-complexity, subband codec (SBC) library
*
* Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef __SBC_PRIMITIVES_NEON_H
#define __SBC_PRIMITIVES_NEON_H
#include "sbc_primitives.h"
#if defined(__GNUC__) && defined(__ARM_NEON__) && \
!defined(SBC_HIGH_PRECISION) && (SCALE_OUT_BITS == 15)
#define SBC_BUILD_WITH_NEON_SUPPORT
void sbc_init_primitives_neon(struct sbc_encoder_state *encoder_state);
#endif
#endif

View file

@ -157,8 +157,9 @@ static const int32_t synmatrix8[16][8] = {
*/ */
#define SBC_PROTO_FIXED4_SCALE \ #define SBC_PROTO_FIXED4_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1) ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1)
#define F(x) (FIXED_A) ((x * 2) * \ #define F_PROTO4(x) (FIXED_A) ((x * 2) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
#define F(x) F_PROTO4(x)
static const FIXED_T _sbc_proto_fixed4[40] = { static const FIXED_T _sbc_proto_fixed4[40] = {
F(0.00000000E+00), F(5.36548976E-04), F(0.00000000E+00), F(5.36548976E-04),
-F(1.49188357E-03), F(2.73370904E-03), -F(1.49188357E-03), F(2.73370904E-03),
@ -206,8 +207,9 @@ static const FIXED_T _sbc_proto_fixed4[40] = {
*/ */
#define SBC_COS_TABLE_FIXED4_SCALE \ #define SBC_COS_TABLE_FIXED4_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS)
#define F(x) (FIXED_A) ((x) * \ #define F_COS4(x) (FIXED_A) ((x) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
#define F(x) F_COS4(x)
static const FIXED_T cos_table_fixed_4[32] = { static const FIXED_T cos_table_fixed_4[32] = {
F(0.7071067812), F(0.9238795325), -F(1.0000000000), F(0.9238795325), F(0.7071067812), F(0.9238795325), -F(1.0000000000), F(0.9238795325),
F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324), F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324),
@ -232,9 +234,10 @@ static const FIXED_T cos_table_fixed_4[32] = {
* in order to compensate the same change applied to cos_table_fixed_8 * in order to compensate the same change applied to cos_table_fixed_8
*/ */
#define SBC_PROTO_FIXED8_SCALE \ #define SBC_PROTO_FIXED8_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 2) ((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1)
#define F(x) (FIXED_A) ((x * 4) * \ #define F_PROTO8(x) (FIXED_A) ((x * 2) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
#define F(x) F_PROTO8(x)
static const FIXED_T _sbc_proto_fixed8[80] = { static const FIXED_T _sbc_proto_fixed8[80] = {
F(0.00000000E+00), F(1.56575398E-04), F(0.00000000E+00), F(1.56575398E-04),
F(3.43256425E-04), F(5.54620202E-04), F(3.43256425E-04), F(5.54620202E-04),
@ -301,8 +304,9 @@ static const FIXED_T _sbc_proto_fixed8[80] = {
*/ */
#define SBC_COS_TABLE_FIXED8_SCALE \ #define SBC_COS_TABLE_FIXED8_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS) ((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS)
#define F(x) (FIXED_A) ((x) * \ #define F_COS8(x) (FIXED_A) ((x) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5) ((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
#define F(x) F_COS8(x)
static const FIXED_T cos_table_fixed_8[128] = { static const FIXED_T cos_table_fixed_8[128] = {
F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804), F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804),
-F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123), -F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123),
@ -345,3 +349,311 @@ static const FIXED_T cos_table_fixed_8[128] = {
-F(0.0000000000), -F(0.1950903220), F(0.3826834324), -F(0.5555702330), -F(0.0000000000), -F(0.1950903220), F(0.3826834324), -F(0.5555702330),
}; };
#undef F #undef F
/*
* Enforce 16 byte alignment for the data, which is supposed to be used
* with SIMD optimized code.
*/
#define SBC_ALIGN_BITS 4
#define SBC_ALIGN_MASK ((1 << (SBC_ALIGN_BITS)) - 1)
#ifdef __GNUC__
#define SBC_ALIGNED __attribute__((aligned(1 << (SBC_ALIGN_BITS))))
#else
#define SBC_ALIGNED
#endif
/*
* Constant tables for the use in SIMD optimized analysis filters
* Each table consists of two parts:
* 1. reordered "proto" table
* 2. reordered "cos" table
*
* Due to non-symmetrical reordering, separate tables for "even"
* and "odd" cases are needed
*/
static const FIXED_T SBC_ALIGNED analysis_consts_fixed4_simd_even[40 + 16] = {
#define C0 1.0932568993
#define C1 1.3056875580
#define C2 1.3056875580
#define C3 1.6772280856
#define F(x) F_PROTO4(x)
F(0.00000000E+00 * C0), F(3.83720193E-03 * C0),
F(5.36548976E-04 * C1), F(2.73370904E-03 * C1),
F(3.06012286E-03 * C2), F(3.89205149E-03 * C2),
F(0.00000000E+00 * C3), -F(1.49188357E-03 * C3),
F(1.09137620E-02 * C0), F(2.58767811E-02 * C0),
F(2.04385087E-02 * C1), F(3.21939290E-02 * C1),
F(7.76463494E-02 * C2), F(6.13245186E-03 * C2),
F(0.00000000E+00 * C3), -F(2.88757392E-02 * C3),
F(1.35593274E-01 * C0), F(2.94315332E-01 * C0),
F(1.94987841E-01 * C1), F(2.81828203E-01 * C1),
-F(1.94987841E-01 * C2), F(2.81828203E-01 * C2),
F(0.00000000E+00 * C3), -F(2.46636662E-01 * C3),
-F(1.35593274E-01 * C0), F(2.58767811E-02 * C0),
-F(7.76463494E-02 * C1), F(6.13245186E-03 * C1),
-F(2.04385087E-02 * C2), F(3.21939290E-02 * C2),
F(0.00000000E+00 * C3), F(2.88217274E-02 * C3),
-F(1.09137620E-02 * C0), F(3.83720193E-03 * C0),
-F(3.06012286E-03 * C1), F(3.89205149E-03 * C1),
-F(5.36548976E-04 * C2), F(2.73370904E-03 * C2),
F(0.00000000E+00 * C3), -F(1.86581691E-03 * C3),
#undef F
#define F(x) F_COS4(x)
F(0.7071067812 / C0), F(0.9238795325 / C1),
-F(0.7071067812 / C0), F(0.3826834324 / C1),
-F(0.7071067812 / C0), -F(0.3826834324 / C1),
F(0.7071067812 / C0), -F(0.9238795325 / C1),
F(0.3826834324 / C2), -F(1.0000000000 / C3),
-F(0.9238795325 / C2), -F(1.0000000000 / C3),
F(0.9238795325 / C2), -F(1.0000000000 / C3),
-F(0.3826834324 / C2), -F(1.0000000000 / C3),
#undef F
#undef C0
#undef C1
#undef C2
#undef C3
};
static const FIXED_T SBC_ALIGNED analysis_consts_fixed4_simd_odd[40 + 16] = {
#define C0 1.3056875580
#define C1 1.6772280856
#define C2 1.0932568993
#define C3 1.3056875580
#define F(x) F_PROTO4(x)
F(2.73370904E-03 * C0), F(5.36548976E-04 * C0),
-F(1.49188357E-03 * C1), F(0.00000000E+00 * C1),
F(3.83720193E-03 * C2), F(1.09137620E-02 * C2),
F(3.89205149E-03 * C3), F(3.06012286E-03 * C3),
F(3.21939290E-02 * C0), F(2.04385087E-02 * C0),
-F(2.88757392E-02 * C1), F(0.00000000E+00 * C1),
F(2.58767811E-02 * C2), F(1.35593274E-01 * C2),
F(6.13245186E-03 * C3), F(7.76463494E-02 * C3),
F(2.81828203E-01 * C0), F(1.94987841E-01 * C0),
-F(2.46636662E-01 * C1), F(0.00000000E+00 * C1),
F(2.94315332E-01 * C2), -F(1.35593274E-01 * C2),
F(2.81828203E-01 * C3), -F(1.94987841E-01 * C3),
F(6.13245186E-03 * C0), -F(7.76463494E-02 * C0),
F(2.88217274E-02 * C1), F(0.00000000E+00 * C1),
F(2.58767811E-02 * C2), -F(1.09137620E-02 * C2),
F(3.21939290E-02 * C3), -F(2.04385087E-02 * C3),
F(3.89205149E-03 * C0), -F(3.06012286E-03 * C0),
-F(1.86581691E-03 * C1), F(0.00000000E+00 * C1),
F(3.83720193E-03 * C2), F(0.00000000E+00 * C2),
F(2.73370904E-03 * C3), -F(5.36548976E-04 * C3),
#undef F
#define F(x) F_COS4(x)
F(0.9238795325 / C0), -F(1.0000000000 / C1),
F(0.3826834324 / C0), -F(1.0000000000 / C1),
-F(0.3826834324 / C0), -F(1.0000000000 / C1),
-F(0.9238795325 / C0), -F(1.0000000000 / C1),
F(0.7071067812 / C2), F(0.3826834324 / C3),
-F(0.7071067812 / C2), -F(0.9238795325 / C3),
-F(0.7071067812 / C2), F(0.9238795325 / C3),
F(0.7071067812 / C2), -F(0.3826834324 / C3),
#undef F
#undef C0
#undef C1
#undef C2
#undef C3
};
static const FIXED_T SBC_ALIGNED analysis_consts_fixed8_simd_even[80 + 64] = {
#define C0 2.7906148894
#define C1 2.4270044280
#define C2 2.8015616024
#define C3 3.1710363741
#define C4 2.5377944043
#define C5 2.4270044280
#define C6 2.8015616024
#define C7 3.1710363741
#define F(x) F_PROTO8(x)
F(0.00000000E+00 * C0), F(2.01182542E-03 * C0),
F(1.56575398E-04 * C1), F(1.78371725E-03 * C1),
F(3.43256425E-04 * C2), F(1.47640169E-03 * C2),
F(5.54620202E-04 * C3), F(1.13992507E-03 * C3),
-F(8.23919506E-04 * C4), F(0.00000000E+00 * C4),
F(2.10371989E-03 * C5), F(3.49717454E-03 * C5),
F(1.99454554E-03 * C6), F(1.64973098E-03 * C6),
F(1.61656283E-03 * C7), F(1.78805361E-04 * C7),
F(5.65949473E-03 * C0), F(1.29371806E-02 * C0),
F(8.02941163E-03 * C1), F(1.53184106E-02 * C1),
F(1.04584443E-02 * C2), F(1.62208471E-02 * C2),
F(1.27472335E-02 * C3), F(1.59045603E-02 * C3),
-F(1.46525263E-02 * C4), F(0.00000000E+00 * C4),
F(8.85757540E-03 * C5), F(5.31873032E-02 * C5),
F(2.92408442E-03 * C6), F(3.90751381E-02 * C6),
-F(4.91578024E-03 * C7), F(2.61098752E-02 * C7),
F(6.79989431E-02 * C0), F(1.46955068E-01 * C0),
F(8.29847578E-02 * C1), F(1.45389847E-01 * C1),
F(9.75753918E-02 * C2), F(1.40753505E-01 * C2),
F(1.11196689E-01 * C3), F(1.33264415E-01 * C3),
-F(1.23264548E-01 * C4), F(0.00000000E+00 * C4),
F(1.45389847E-01 * C5), -F(8.29847578E-02 * C5),
F(1.40753505E-01 * C6), -F(9.75753918E-02 * C6),
F(1.33264415E-01 * C7), -F(1.11196689E-01 * C7),
-F(6.79989431E-02 * C0), F(1.29371806E-02 * C0),
-F(5.31873032E-02 * C1), F(8.85757540E-03 * C1),
-F(3.90751381E-02 * C2), F(2.92408442E-03 * C2),
-F(2.61098752E-02 * C3), -F(4.91578024E-03 * C3),
F(1.46404076E-02 * C4), F(0.00000000E+00 * C4),
F(1.53184106E-02 * C5), -F(8.02941163E-03 * C5),
F(1.62208471E-02 * C6), -F(1.04584443E-02 * C6),
F(1.59045603E-02 * C7), -F(1.27472335E-02 * C7),
-F(5.65949473E-03 * C0), F(2.01182542E-03 * C0),
-F(3.49717454E-03 * C1), F(2.10371989E-03 * C1),
-F(1.64973098E-03 * C2), F(1.99454554E-03 * C2),
-F(1.78805361E-04 * C3), F(1.61656283E-03 * C3),
-F(9.02154502E-04 * C4), F(0.00000000E+00 * C4),
F(1.78371725E-03 * C5), -F(1.56575398E-04 * C5),
F(1.47640169E-03 * C6), -F(3.43256425E-04 * C6),
F(1.13992507E-03 * C7), -F(5.54620202E-04 * C7),
#undef F
#define F(x) F_COS8(x)
F(0.7071067812 / C0), F(0.8314696123 / C1),
-F(0.7071067812 / C0), -F(0.1950903220 / C1),
-F(0.7071067812 / C0), -F(0.9807852804 / C1),
F(0.7071067812 / C0), -F(0.5555702330 / C1),
F(0.7071067812 / C0), F(0.5555702330 / C1),
-F(0.7071067812 / C0), F(0.9807852804 / C1),
-F(0.7071067812 / C0), F(0.1950903220 / C1),
F(0.7071067812 / C0), -F(0.8314696123 / C1),
F(0.9238795325 / C2), F(0.9807852804 / C3),
F(0.3826834324 / C2), F(0.8314696123 / C3),
-F(0.3826834324 / C2), F(0.5555702330 / C3),
-F(0.9238795325 / C2), F(0.1950903220 / C3),
-F(0.9238795325 / C2), -F(0.1950903220 / C3),
-F(0.3826834324 / C2), -F(0.5555702330 / C3),
F(0.3826834324 / C2), -F(0.8314696123 / C3),
F(0.9238795325 / C2), -F(0.9807852804 / C3),
-F(1.0000000000 / C4), F(0.5555702330 / C5),
-F(1.0000000000 / C4), -F(0.9807852804 / C5),
-F(1.0000000000 / C4), F(0.1950903220 / C5),
-F(1.0000000000 / C4), F(0.8314696123 / C5),
-F(1.0000000000 / C4), -F(0.8314696123 / C5),
-F(1.0000000000 / C4), -F(0.1950903220 / C5),
-F(1.0000000000 / C4), F(0.9807852804 / C5),
-F(1.0000000000 / C4), -F(0.5555702330 / C5),
F(0.3826834324 / C6), F(0.1950903220 / C7),
-F(0.9238795325 / C6), -F(0.5555702330 / C7),
F(0.9238795325 / C6), F(0.8314696123 / C7),
-F(0.3826834324 / C6), -F(0.9807852804 / C7),
-F(0.3826834324 / C6), F(0.9807852804 / C7),
F(0.9238795325 / C6), -F(0.8314696123 / C7),
-F(0.9238795325 / C6), F(0.5555702330 / C7),
F(0.3826834324 / C6), -F(0.1950903220 / C7),
#undef F
#undef C0
#undef C1
#undef C2
#undef C3
#undef C4
#undef C5
#undef C6
#undef C7
};
static const FIXED_T SBC_ALIGNED analysis_consts_fixed8_simd_odd[80 + 64] = {
#define C0 2.5377944043
#define C1 2.4270044280
#define C2 2.8015616024
#define C3 3.1710363741
#define C4 2.7906148894
#define C5 2.4270044280
#define C6 2.8015616024
#define C7 3.1710363741
#define F(x) F_PROTO8(x)
F(0.00000000E+00 * C0), -F(8.23919506E-04 * C0),
F(1.56575398E-04 * C1), F(1.78371725E-03 * C1),
F(3.43256425E-04 * C2), F(1.47640169E-03 * C2),
F(5.54620202E-04 * C3), F(1.13992507E-03 * C3),
F(2.01182542E-03 * C4), F(5.65949473E-03 * C4),
F(2.10371989E-03 * C5), F(3.49717454E-03 * C5),
F(1.99454554E-03 * C6), F(1.64973098E-03 * C6),
F(1.61656283E-03 * C7), F(1.78805361E-04 * C7),
F(0.00000000E+00 * C0), -F(1.46525263E-02 * C0),
F(8.02941163E-03 * C1), F(1.53184106E-02 * C1),
F(1.04584443E-02 * C2), F(1.62208471E-02 * C2),
F(1.27472335E-02 * C3), F(1.59045603E-02 * C3),
F(1.29371806E-02 * C4), F(6.79989431E-02 * C4),
F(8.85757540E-03 * C5), F(5.31873032E-02 * C5),
F(2.92408442E-03 * C6), F(3.90751381E-02 * C6),
-F(4.91578024E-03 * C7), F(2.61098752E-02 * C7),
F(0.00000000E+00 * C0), -F(1.23264548E-01 * C0),
F(8.29847578E-02 * C1), F(1.45389847E-01 * C1),
F(9.75753918E-02 * C2), F(1.40753505E-01 * C2),
F(1.11196689E-01 * C3), F(1.33264415E-01 * C3),
F(1.46955068E-01 * C4), -F(6.79989431E-02 * C4),
F(1.45389847E-01 * C5), -F(8.29847578E-02 * C5),
F(1.40753505E-01 * C6), -F(9.75753918E-02 * C6),
F(1.33264415E-01 * C7), -F(1.11196689E-01 * C7),
F(0.00000000E+00 * C0), F(1.46404076E-02 * C0),
-F(5.31873032E-02 * C1), F(8.85757540E-03 * C1),
-F(3.90751381E-02 * C2), F(2.92408442E-03 * C2),
-F(2.61098752E-02 * C3), -F(4.91578024E-03 * C3),
F(1.29371806E-02 * C4), -F(5.65949473E-03 * C4),
F(1.53184106E-02 * C5), -F(8.02941163E-03 * C5),
F(1.62208471E-02 * C6), -F(1.04584443E-02 * C6),
F(1.59045603E-02 * C7), -F(1.27472335E-02 * C7),
F(0.00000000E+00 * C0), -F(9.02154502E-04 * C0),
-F(3.49717454E-03 * C1), F(2.10371989E-03 * C1),
-F(1.64973098E-03 * C2), F(1.99454554E-03 * C2),
-F(1.78805361E-04 * C3), F(1.61656283E-03 * C3),
F(2.01182542E-03 * C4), F(0.00000000E+00 * C4),
F(1.78371725E-03 * C5), -F(1.56575398E-04 * C5),
F(1.47640169E-03 * C6), -F(3.43256425E-04 * C6),
F(1.13992507E-03 * C7), -F(5.54620202E-04 * C7),
#undef F
#define F(x) F_COS8(x)
-F(1.0000000000 / C0), F(0.8314696123 / C1),
-F(1.0000000000 / C0), -F(0.1950903220 / C1),
-F(1.0000000000 / C0), -F(0.9807852804 / C1),
-F(1.0000000000 / C0), -F(0.5555702330 / C1),
-F(1.0000000000 / C0), F(0.5555702330 / C1),
-F(1.0000000000 / C0), F(0.9807852804 / C1),
-F(1.0000000000 / C0), F(0.1950903220 / C1),
-F(1.0000000000 / C0), -F(0.8314696123 / C1),
F(0.9238795325 / C2), F(0.9807852804 / C3),
F(0.3826834324 / C2), F(0.8314696123 / C3),
-F(0.3826834324 / C2), F(0.5555702330 / C3),
-F(0.9238795325 / C2), F(0.1950903220 / C3),
-F(0.9238795325 / C2), -F(0.1950903220 / C3),
-F(0.3826834324 / C2), -F(0.5555702330 / C3),
F(0.3826834324 / C2), -F(0.8314696123 / C3),
F(0.9238795325 / C2), -F(0.9807852804 / C3),
F(0.7071067812 / C4), F(0.5555702330 / C5),
-F(0.7071067812 / C4), -F(0.9807852804 / C5),
-F(0.7071067812 / C4), F(0.1950903220 / C5),
F(0.7071067812 / C4), F(0.8314696123 / C5),
F(0.7071067812 / C4), -F(0.8314696123 / C5),
-F(0.7071067812 / C4), -F(0.1950903220 / C5),
-F(0.7071067812 / C4), F(0.9807852804 / C5),
F(0.7071067812 / C4), -F(0.5555702330 / C5),
F(0.3826834324 / C6), F(0.1950903220 / C7),
-F(0.9238795325 / C6), -F(0.5555702330 / C7),
F(0.9238795325 / C6), F(0.8314696123 / C7),
-F(0.3826834324 / C6), -F(0.9807852804 / C7),
-F(0.3826834324 / C6), F(0.9807852804 / C7),
F(0.9238795325 / C6), -F(0.8314696123 / C7),
-F(0.9238795325 / C6), F(0.5555702330 / C7),
F(0.3826834324 / C6), -F(0.1950903220 / C7),
#undef F
#undef C0
#undef C1
#undef C2
#undef C3
#undef C4
#undef C5
#undef C6
#undef C7
};