update sbc stuff

This commit is contained in:
Lennart Poettering 2009-02-02 01:44:37 +01:00
parent 537424a9a9
commit a41d72bb2e
11 changed files with 1692 additions and 309 deletions

View file

@ -46,6 +46,7 @@
#include "sbc_tables.h"
#include "sbc.h"
#include "sbc_primitives.h"
#define SBC_SYNCWORD 0x9C
@ -76,13 +77,16 @@ struct sbc_frame {
uint8_t joint;
/* only the lower 4 bits of every element are to be used */
uint8_t scale_factor[2][8];
uint32_t scale_factor[2][8];
/* raw integer subband samples in the frame */
int32_t SBC_ALIGNED sb_sample_f[16][2][8];
int32_t sb_sample_f[16][2][8];
int32_t sb_sample[16][2][8]; /* modified subband samples */
int16_t pcm_sample[2][16*8]; /* original pcm audio samples */
/* modified subband samples */
int32_t SBC_ALIGNED sb_sample[16][2][8];
/* original pcm audio samples */
int16_t SBC_ALIGNED pcm_sample[2][16*8];
};
struct sbc_decoder_state {
@ -91,16 +95,6 @@ struct sbc_decoder_state {
int offset[2][16];
};
struct sbc_encoder_state {
int subbands;
int position[2];
int16_t X[2][256];
void (*sbc_analyze_4b_4s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
void (*sbc_analyze_4b_8s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
};
/*
* Calculates the CRC-8 of the first len bits in data
*/
@ -368,7 +362,7 @@ static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8])
static int sbc_unpack_frame(const uint8_t *data, struct sbc_frame *frame,
size_t len)
{
int consumed;
unsigned int consumed;
/* Will copy the parts of the header that are relevant to crc
* calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
@ -653,180 +647,41 @@ static int sbc_synthesize_audio(struct sbc_decoder_state *state,
}
}
static inline void _sbc_analyze_four(const int16_t *in, int32_t *out)
{
FIXED_A t1[4];
FIXED_T t2[4];
int i = 0, hop = 0;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] =
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
/* low pass polyphase filter */
for (hop = 0; hop < 40; hop += 8) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed4[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed4[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed4[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed4[hop + 3];
t1[0] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed4[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed4[hop + 5];
t1[3] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed4[hop + 7];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 4; hop += 8, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_4[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_4[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_4[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_4[5 + hop]) >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}
}
static void sbc_analyze_4b_4s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{
int i;
/* Input 4 x 4 Audio Samples */
for (i = 0; i < 16; i += 4) {
x[64 + i] = x[0 + i] = pcm[15 - i];
x[65 + i] = x[1 + i] = pcm[14 - i];
x[66 + i] = x[2 + i] = pcm[13 - i];
x[67 + i] = x[3 + i] = pcm[12 - i];
}
/* Analyze four blocks */
_sbc_analyze_four(x + 12, out);
out += out_stride;
_sbc_analyze_four(x + 8, out);
out += out_stride;
_sbc_analyze_four(x + 4, out);
out += out_stride;
_sbc_analyze_four(x, out);
}
static inline void _sbc_analyze_eight(const int16_t *in, int32_t *out)
{
FIXED_A t1[8];
FIXED_T t2[8];
int i, hop;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
(FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
/* low pass polyphase filter */
for (hop = 0; hop < 80; hop += 16) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed8[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed8[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed8[hop + 2];
t1[3] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed8[hop + 3];
t1[4] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed8[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed8[hop + 5];
t1[2] += (FIXED_A) in[hop + 6] * _sbc_proto_fixed8[hop + 6];
t1[1] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed8[hop + 7];
t1[0] += (FIXED_A) in[hop + 8] * _sbc_proto_fixed8[hop + 8];
t1[5] += (FIXED_A) in[hop + 9] * _sbc_proto_fixed8[hop + 9];
t1[6] += (FIXED_A) in[hop + 10] * _sbc_proto_fixed8[hop + 10];
t1[7] += (FIXED_A) in[hop + 11] * _sbc_proto_fixed8[hop + 11];
t1[7] += (FIXED_A) in[hop + 13] * _sbc_proto_fixed8[hop + 13];
t1[6] += (FIXED_A) in[hop + 14] * _sbc_proto_fixed8[hop + 14];
t1[5] += (FIXED_A) in[hop + 15] * _sbc_proto_fixed8[hop + 15];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 8; hop += 16, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_8[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_8[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_8[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_8[3 + hop] +
(FIXED_A) t2[4] * cos_table_fixed_8[4 + hop] +
(FIXED_A) t2[5] * cos_table_fixed_8[9 + hop] +
(FIXED_A) t2[6] * cos_table_fixed_8[10 + hop] +
(FIXED_A) t2[7] * cos_table_fixed_8[11 + hop]) >>
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
}
static void sbc_analyze_4b_8s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{
int i;
/* Input 4 x 8 Audio Samples */
for (i = 0; i < 32; i += 8) {
x[128 + i] = x[0 + i] = pcm[31 - i];
x[129 + i] = x[1 + i] = pcm[30 - i];
x[130 + i] = x[2 + i] = pcm[29 - i];
x[131 + i] = x[3 + i] = pcm[28 - i];
x[132 + i] = x[4 + i] = pcm[27 - i];
x[133 + i] = x[5 + i] = pcm[26 - i];
x[134 + i] = x[6 + i] = pcm[25 - i];
x[135 + i] = x[7 + i] = pcm[24 - i];
}
/* Analyze four blocks */
_sbc_analyze_eight(x + 24, out);
out += out_stride;
_sbc_analyze_eight(x + 16, out);
out += out_stride;
_sbc_analyze_eight(x + 8, out);
out += out_stride;
_sbc_analyze_eight(x, out);
}
static int sbc_analyze_audio(struct sbc_encoder_state *state,
struct sbc_frame *frame)
{
int ch, blk;
int16_t *x;
switch (frame->subbands) {
case 4:
for (ch = 0; ch < frame->channels; ch++)
for (ch = 0; ch < frame->channels; ch++) {
x = &state->X[ch][state->position - 16 +
frame->blocks * 4];
for (blk = 0; blk < frame->blocks; blk += 4) {
state->sbc_analyze_4b_4s(
&frame->pcm_sample[ch][blk * 4],
&state->X[ch][state->position[ch]],
x,
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
state->position[ch] -= 16;
if (state->position[ch] < 0)
state->position[ch] = 64 - 16;
x -= 16;
}
}
return frame->blocks * 4;
case 8:
for (ch = 0; ch < frame->channels; ch++)
for (ch = 0; ch < frame->channels; ch++) {
x = &state->X[ch][state->position - 32 +
frame->blocks * 8];
for (blk = 0; blk < frame->blocks; blk += 4) {
state->sbc_analyze_4b_8s(
&frame->pcm_sample[ch][blk * 8],
&state->X[ch][state->position[ch]],
x,
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
state->position[ch] -= 32;
if (state->position[ch] < 0)
state->position[ch] = 128 - 32;
x -= 32;
}
}
return frame->blocks * 8;
default:
@ -836,23 +691,31 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
/* Supplementary bitstream writing macros for 'sbc_pack_frame' */
#define PUT_BITS(v, n)\
bits_cache = (v) | (bits_cache << (n));\
bits_count += (n);\
if (bits_count >= 16) {\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
}\
#define PUT_BITS(data_ptr, bits_cache, bits_count, v, n) \
do { \
bits_cache = (v) | (bits_cache << (n)); \
bits_count += (n); \
if (bits_count >= 16) { \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
} \
} while (0)
#define FLUSH_BITS()\
while (bits_count >= 8) {\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
}\
if (bits_count > 0)\
*data_ptr++ = (uint8_t) (bits_cache << (8 - bits_count));\
#define FLUSH_BITS(data_ptr, bits_cache, bits_count) \
do { \
while (bits_count >= 8) { \
bits_count -= 8; \
*data_ptr++ = (uint8_t) \
(bits_cache >> bits_count); \
} \
if (bits_count > 0) \
*data_ptr++ = (uint8_t) \
(bits_cache << (8 - bits_count)); \
} while (0)
/*
* Packs the SBC frame from frame into the memory at data. At most len
@ -869,7 +732,9 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
* -99 not implemented
*/
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
static SBC_ALWAYS_INLINE int sbc_pack_frame_internal(
uint8_t *data, struct sbc_frame *frame, size_t len,
int frame_subbands, int frame_channels)
{
/* Bitstream writer starts from the fourth byte */
uint8_t *data_ptr = data + 4;
@ -887,8 +752,6 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
uint32_t levels[2][8]; /* levels are derived from that */
uint32_t sb_sample_delta[2][8];
u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */
data[0] = SBC_SYNCWORD;
data[1] = (frame->frequency & 0x03) << 6;
@ -899,7 +762,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
data[1] |= (frame->allocation & 0x01) << 1;
switch (frame->subbands) {
switch (frame_subbands) {
case 4:
/* Nothing to do */
break;
@ -914,11 +777,11 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
data[2] = frame->bitpool;
if ((frame->mode == MONO || frame->mode == DUAL_CHANNEL) &&
frame->bitpool > frame->subbands << 4)
frame->bitpool > frame_subbands << 4)
return -5;
if ((frame->mode == STEREO || frame->mode == JOINT_STEREO) &&
frame->bitpool > frame->subbands << 5)
frame->bitpool > frame_subbands << 5)
return -5;
/* Can't fill in crc yet */
@ -927,36 +790,24 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
crc_header[1] = data[2];
crc_pos = 16;
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
frame->scale_factor[ch][sb] = 0;
scalefactor[ch][sb] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) {
while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) {
frame->scale_factor[ch][sb]++;
scalefactor[ch][sb] *= 2;
}
}
}
}
if (frame->mode == JOINT_STEREO) {
/* like frame->sb_sample but joint stereo */
int32_t sb_sample_j[16][2];
/* scalefactor and scale_factor in joint case */
u_int32_t scalefactor_j[2];
uint32_t scalefactor_j[2];
uint8_t scale_factor_j[2];
uint8_t joint = 0;
frame->joint = 0;
for (sb = 0; sb < frame->subbands - 1; sb++) {
for (sb = 0; sb < frame_subbands - 1; sb++) {
scale_factor_j[0] = 0;
scalefactor_j[0] = 2 << SCALE_OUT_BITS;
scale_factor_j[1] = 0;
scalefactor_j[1] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) {
uint32_t tmp;
/* Calculate joint stereo signal */
sb_sample_j[blk][0] =
ASR(frame->sb_sample_f[blk][0][sb], 1) +
@ -966,11 +817,13 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
ASR(frame->sb_sample_f[blk][1][sb], 1);
/* calculate scale_factor_j and scalefactor_j for joint case */
while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) {
tmp = fabs(sb_sample_j[blk][0]);
while (scalefactor_j[0] < tmp) {
scale_factor_j[0]++;
scalefactor_j[0] *= 2;
}
while (scalefactor_j[1] < fabs(sb_sample_j[blk][1])) {
tmp = fabs(sb_sample_j[blk][1]);
while (scalefactor_j[1] < tmp) {
scale_factor_j[1]++;
scalefactor_j[1] *= 2;
}
@ -982,7 +835,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
(scale_factor_j[0] +
scale_factor_j[1])) {
/* use joint stereo for this subband */
joint |= 1 << (frame->subbands - 1 - sb);
joint |= 1 << (frame_subbands - 1 - sb);
frame->joint |= 1 << sb;
frame->scale_factor[0][sb] = scale_factor_j[0];
frame->scale_factor[1][sb] = scale_factor_j[1];
@ -995,14 +848,16 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
}
}
PUT_BITS(joint, frame->subbands);
PUT_BITS(data_ptr, bits_cache, bits_count,
joint, frame_subbands);
crc_header[crc_pos >> 3] = joint;
crc_pos += frame->subbands;
crc_pos += frame_subbands;
}
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
PUT_BITS(frame->scale_factor[ch][sb] & 0x0F, 4);
for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame_subbands; sb++) {
PUT_BITS(data_ptr, bits_cache, bits_count,
frame->scale_factor[ch][sb] & 0x0F, 4);
crc_header[crc_pos >> 3] <<= 4;
crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
crc_pos += 4;
@ -1017,8 +872,8 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
sbc_calculate_bits(frame, bits);
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame_subbands; sb++) {
levels[ch][sb] = ((1 << bits[ch][sb]) - 1) <<
(32 - (frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 2));
@ -1029,8 +884,8 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
}
for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) {
for (ch = 0; ch < frame_channels; ch++) {
for (sb = 0; sb < frame_subbands; sb++) {
if (bits[ch][sb] == 0)
continue;
@ -1039,33 +894,46 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
(sb_sample_delta[ch][sb] +
frame->sb_sample_f[blk][ch][sb])) >> 32;
PUT_BITS(audio_sample, bits[ch][sb]);
PUT_BITS(data_ptr, bits_cache, bits_count,
audio_sample, bits[ch][sb]);
}
}
}
FLUSH_BITS();
FLUSH_BITS(data_ptr, bits_cache, bits_count);
return data_ptr - data;
}
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
{
if (frame->subbands == 4) {
if (frame->channels == 1)
return sbc_pack_frame_internal(data, frame, len, 4, 1);
else
return sbc_pack_frame_internal(data, frame, len, 4, 2);
} else {
if (frame->channels == 1)
return sbc_pack_frame_internal(data, frame, len, 8, 1);
else
return sbc_pack_frame_internal(data, frame, len, 8, 2);
}
}
static void sbc_encoder_init(struct sbc_encoder_state *state,
const struct sbc_frame *frame)
{
memset(&state->X, 0, sizeof(state->X));
state->subbands = frame->subbands;
state->position[0] = state->position[1] = 12 * frame->subbands;
state->position = SBC_X_BUFFER_SIZE - frame->subbands * 9;
/* Default implementation for analyze function */
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s;
sbc_init_primitives(state);
}
struct sbc_priv {
int init;
struct sbc_frame frame;
struct sbc_decoder_state dec_state;
struct sbc_encoder_state enc_state;
struct SBC_ALIGNED sbc_frame frame;
struct SBC_ALIGNED sbc_decoder_state dec_state;
struct SBC_ALIGNED sbc_encoder_state enc_state;
};
static void sbc_set_defaults(sbc_t *sbc, unsigned long flags)
@ -1091,10 +959,13 @@ int sbc_init(sbc_t *sbc, unsigned long flags)
memset(sbc, 0, sizeof(sbc_t));
sbc->priv = malloc(sizeof(struct sbc_priv));
if (!sbc->priv)
sbc->priv_alloc_base = malloc(sizeof(struct sbc_priv) + SBC_ALIGN_MASK);
if (!sbc->priv_alloc_base)
return -ENOMEM;
sbc->priv = (void *) (((uintptr_t) sbc->priv_alloc_base +
SBC_ALIGN_MASK) & ~((uintptr_t) SBC_ALIGN_MASK));
memset(sbc->priv, 0, sizeof(struct sbc_priv));
sbc_set_defaults(sbc, flags);
@ -1177,8 +1048,10 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
int output_len, int *written)
{
struct sbc_priv *priv;
char *ptr;
int i, ch, framelen, samples;
int framelen, samples;
int (*sbc_enc_process_input)(int position,
const uint8_t *pcm, int16_t X[2][SBC_X_BUFFER_SIZE],
int nsamples, int nchannels);
if (!sbc && !input)
return -EIO;
@ -1213,22 +1086,34 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
if (!output || output_len < priv->frame.length)
return -ENOSPC;
ptr = input;
for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
for (ch = 0; ch < priv->frame.channels; ch++) {
int16_t s;
if (sbc->endian == SBC_BE)
s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff);
else
s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8;
ptr += 2;
priv->frame.pcm_sample[ch][i] = s;
}
/* Select the needed input data processing function and call it */
if (priv->frame.subbands == 8) {
if (sbc->endian == SBC_BE)
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_8s_be;
else
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_8s_le;
} else {
if (sbc->endian == SBC_BE)
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_be;
else
sbc_enc_process_input =
priv->enc_state.sbc_enc_process_input_4s_le;
}
priv->enc_state.position = sbc_enc_process_input(
priv->enc_state.position, (const uint8_t *) input,
priv->enc_state.X, priv->frame.subbands * priv->frame.blocks,
priv->frame.channels);
samples = sbc_analyze_audio(&priv->enc_state, &priv->frame);
priv->enc_state.sbc_calc_scalefactors(
priv->frame.sb_sample_f, priv->frame.scale_factor,
priv->frame.blocks, priv->frame.channels, priv->frame.subbands);
framelen = sbc_pack_frame(output, &priv->frame, output_len);
if (written)
@ -1242,8 +1127,8 @@ void sbc_finish(sbc_t *sbc)
if (!sbc)
return;
if (sbc->priv)
free(sbc->priv);
if (sbc->priv_alloc_base)
free(sbc->priv_alloc_base);
memset(sbc, 0, sizeof(sbc_t));
}