bluetooth: Update sbc from git upstream.

It contains encoding fixes, pass the conformance tests, and is now
vectorizable. Next update might include SSE and/or Neon code.
This commit is contained in:
Marc-André Lureau 2009-01-08 19:13:49 +02:00
parent d096ad78d3
commit 7e6309c77c
4 changed files with 455 additions and 342 deletions

View file

@ -2,7 +2,7 @@
* *
* Bluetooth low-complexity, subband codec (SBC) library * Bluetooth low-complexity, subband codec (SBC) library
* *
* Copyright (C) 2004-2008 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com> * Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com>
* *
@ -40,6 +40,7 @@
#include <string.h> #include <string.h>
#include <stdlib.h> #include <stdlib.h>
#include <sys/types.h> #include <sys/types.h>
#include <limits.h>
#include "sbc_math.h" #include "sbc_math.h"
#include "sbc_tables.h" #include "sbc_tables.h"
@ -68,7 +69,7 @@ struct sbc_frame {
uint8_t subband_mode; uint8_t subband_mode;
uint8_t subbands; uint8_t subbands;
uint8_t bitpool; uint8_t bitpool;
uint8_t codesize; uint16_t codesize;
uint8_t length; uint8_t length;
/* bit number x set means joint stereo has been used in subband x */ /* bit number x set means joint stereo has been used in subband x */
@ -93,7 +94,11 @@ struct sbc_decoder_state {
struct sbc_encoder_state { struct sbc_encoder_state {
int subbands; int subbands;
int position[2]; int position[2];
int32_t X[2][160]; int16_t X[2][256];
void (*sbc_analyze_4b_4s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
void (*sbc_analyze_4b_8s)(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride);
}; };
/* /*
@ -145,7 +150,7 @@ static uint8_t sbc_crc8(const uint8_t *data, size_t len)
octet = data[i]; octet = data[i];
for (i = 0; i < len % 8; i++) { for (i = 0; i < len % 8; i++) {
unsigned char bit = ((octet ^ crc) & 0x80) >> 7; char bit = ((octet ^ crc) & 0x80) >> 7;
crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0); crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0);
@ -563,7 +568,7 @@ static inline void sbc_synthesize_four(struct sbc_decoder_state *state,
k = (i + 4) & 0xf; k = (i + 4) & 0xf;
/* Store in output, Q0 */ /* Store in output, Q0 */
frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED2( frame->pcm_sample[ch][blk * 4 + i] = SCALE4_STAGED1(
MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0], MULA(v[offset[i] + 0], sbc_proto_4_40m0[idx + 0],
MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0], MULA(v[offset[k] + 1], sbc_proto_4_40m1[idx + 0],
MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1], MULA(v[offset[i] + 2], sbc_proto_4_40m0[idx + 1],
@ -609,7 +614,7 @@ static inline void sbc_synthesize_eight(struct sbc_decoder_state *state,
k = (i + 8) & 0xf; k = (i + 8) & 0xf;
/* Store in output */ /* Store in output */
frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED2( // Q0 frame->pcm_sample[ch][blk * 8 + i] = SCALE8_STAGED1( // Q0
MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0], MULA(state->V[ch][offset[i] + 0], sbc_proto_8_80m0[idx + 0],
MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0], MULA(state->V[ch][offset[k] + 1], sbc_proto_8_80m1[idx + 0],
MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1], MULA(state->V[ch][offset[i] + 2], sbc_proto_8_80m0[idx + 1],
@ -648,242 +653,144 @@ static int sbc_synthesize_audio(struct sbc_decoder_state *state,
} }
} }
static void sbc_encoder_init(struct sbc_encoder_state *state, static inline void _sbc_analyze_four(const int16_t *in, int32_t *out)
const struct sbc_frame *frame)
{ {
memset(&state->X, 0, sizeof(state->X)); FIXED_A t1[4];
state->subbands = frame->subbands; FIXED_T t2[4];
state->position[0] = state->position[1] = 9 * frame->subbands; int i = 0, hop = 0;
/* rounding coefficient */
t1[0] = t1[1] = t1[2] = t1[3] =
(FIXED_A) 1 << (SBC_PROTO_FIXED4_SCALE - 1);
/* low pass polyphase filter */
for (hop = 0; hop < 40; hop += 8) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed4[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed4[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed4[hop + 2];
t1[1] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed4[hop + 3];
t1[0] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed4[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed4[hop + 5];
t1[3] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed4[hop + 7];
}
/* scaling */
t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE;
t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 4; hop += 8, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_4[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_4[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_4[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_4[5 + hop]) >>
(SBC_COS_TABLE_FIXED4_SCALE - SCALE_OUT_BITS);
}
} }
static inline void _sbc_analyze_four(const int32_t *in, int32_t *out) static void sbc_analyze_4b_4s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{ {
sbc_fixed_t t[8], s[5]; int i;
t[0] = SCALE4_STAGE1( /* Q8 */ /* Input 4 x 4 Audio Samples */
MULA(_sbc_proto_4[0], in[8] - in[32], /* Q18 */ for (i = 0; i < 16; i += 4) {
MUL( _sbc_proto_4[1], in[16] - in[24]))); x[64 + i] = x[0 + i] = pcm[15 - i];
x[65 + i] = x[1 + i] = pcm[14 - i];
x[66 + i] = x[2 + i] = pcm[13 - i];
x[67 + i] = x[3 + i] = pcm[12 - i];
}
t[1] = SCALE4_STAGE1( /* Analyze four blocks */
MULA(_sbc_proto_4[2], in[1], _sbc_analyze_four(x + 12, out);
MULA(_sbc_proto_4[3], in[9], out += out_stride;
MULA(_sbc_proto_4[4], in[17], _sbc_analyze_four(x + 8, out);
MULA(_sbc_proto_4[5], in[25], out += out_stride;
MUL( _sbc_proto_4[6], in[33])))))); _sbc_analyze_four(x + 4, out);
out += out_stride;
t[2] = SCALE4_STAGE1( _sbc_analyze_four(x, out);
MULA(_sbc_proto_4[7], in[2],
MULA(_sbc_proto_4[8], in[10],
MULA(_sbc_proto_4[9], in[18],
MULA(_sbc_proto_4[10], in[26],
MUL( _sbc_proto_4[11], in[34]))))));
t[3] = SCALE4_STAGE1(
MULA(_sbc_proto_4[12], in[3],
MULA(_sbc_proto_4[13], in[11],
MULA(_sbc_proto_4[14], in[19],
MULA(_sbc_proto_4[15], in[27],
MUL( _sbc_proto_4[16], in[35]))))));
t[4] = SCALE4_STAGE1(
MULA(_sbc_proto_4[17], in[4] + in[36],
MULA(_sbc_proto_4[18], in[12] + in[28],
MUL( _sbc_proto_4[19], in[20]))));
t[5] = SCALE4_STAGE1(
MULA(_sbc_proto_4[16], in[5],
MULA(_sbc_proto_4[15], in[13],
MULA(_sbc_proto_4[14], in[21],
MULA(_sbc_proto_4[13], in[29],
MUL( _sbc_proto_4[12], in[37]))))));
/* don't compute t[6]... this term always multiplies
* with cos(pi/2) = 0 */
t[7] = SCALE4_STAGE1(
MULA(_sbc_proto_4[6], in[7],
MULA(_sbc_proto_4[5], in[15],
MULA(_sbc_proto_4[4], in[23],
MULA(_sbc_proto_4[3], in[31],
MUL( _sbc_proto_4[2], in[39]))))));
s[0] = MUL( _anamatrix4[0], t[0] + t[4]);
s[1] = MUL( _anamatrix4[2], t[2]);
s[2] = MULA(_anamatrix4[1], t[1] + t[3],
MUL(_anamatrix4[3], t[5]));
s[3] = MULA(_anamatrix4[3], t[1] + t[3],
MUL(_anamatrix4[1], -t[5] + t[7]));
s[4] = MUL( _anamatrix4[3], t[7]);
out[0] = SCALE4_STAGE2( s[0] + s[1] + s[2] + s[4]); /* Q0 */
out[1] = SCALE4_STAGE2(-s[0] + s[1] + s[3]);
out[2] = SCALE4_STAGE2(-s[0] + s[1] - s[3]);
out[3] = SCALE4_STAGE2( s[0] + s[1] - s[2] - s[4]);
} }
static inline void sbc_analyze_four(struct sbc_encoder_state *state, static inline void _sbc_analyze_eight(const int16_t *in, int32_t *out)
struct sbc_frame *frame, int ch, int blk)
{ {
int32_t *x = &state->X[ch][state->position[ch]]; FIXED_A t1[8];
int16_t *pcm = &frame->pcm_sample[ch][blk * 4]; FIXED_T t2[8];
int i, hop;
/* Input 4 Audio Samples */ /* rounding coefficient */
x[40] = x[0] = pcm[3]; t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] =
x[41] = x[1] = pcm[2]; (FIXED_A) 1 << (SBC_PROTO_FIXED8_SCALE-1);
x[42] = x[2] = pcm[1];
x[43] = x[3] = pcm[0];
_sbc_analyze_four(x, frame->sb_sample_f[blk][ch]); /* low pass polyphase filter */
for (hop = 0; hop < 80; hop += 16) {
t1[0] += (FIXED_A) in[hop] * _sbc_proto_fixed8[hop];
t1[1] += (FIXED_A) in[hop + 1] * _sbc_proto_fixed8[hop + 1];
t1[2] += (FIXED_A) in[hop + 2] * _sbc_proto_fixed8[hop + 2];
t1[3] += (FIXED_A) in[hop + 3] * _sbc_proto_fixed8[hop + 3];
t1[4] += (FIXED_A) in[hop + 4] * _sbc_proto_fixed8[hop + 4];
t1[3] += (FIXED_A) in[hop + 5] * _sbc_proto_fixed8[hop + 5];
t1[2] += (FIXED_A) in[hop + 6] * _sbc_proto_fixed8[hop + 6];
t1[1] += (FIXED_A) in[hop + 7] * _sbc_proto_fixed8[hop + 7];
t1[0] += (FIXED_A) in[hop + 8] * _sbc_proto_fixed8[hop + 8];
t1[5] += (FIXED_A) in[hop + 9] * _sbc_proto_fixed8[hop + 9];
t1[6] += (FIXED_A) in[hop + 10] * _sbc_proto_fixed8[hop + 10];
t1[7] += (FIXED_A) in[hop + 11] * _sbc_proto_fixed8[hop + 11];
t1[7] += (FIXED_A) in[hop + 13] * _sbc_proto_fixed8[hop + 13];
t1[6] += (FIXED_A) in[hop + 14] * _sbc_proto_fixed8[hop + 14];
t1[5] += (FIXED_A) in[hop + 15] * _sbc_proto_fixed8[hop + 15];
}
state->position[ch] -= 4; /* scaling */
if (state->position[ch] < 0) t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE;
state->position[ch] = 36; t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE;
t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE;
t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE;
t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE;
t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE;
t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE;
t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE;
/* do the cos transform */
for (i = 0, hop = 0; i < 8; hop += 16, i++) {
out[i] = ((FIXED_A) t2[0] * cos_table_fixed_8[0 + hop] +
(FIXED_A) t2[1] * cos_table_fixed_8[1 + hop] +
(FIXED_A) t2[2] * cos_table_fixed_8[2 + hop] +
(FIXED_A) t2[3] * cos_table_fixed_8[3 + hop] +
(FIXED_A) t2[4] * cos_table_fixed_8[4 + hop] +
(FIXED_A) t2[5] * cos_table_fixed_8[9 + hop] +
(FIXED_A) t2[6] * cos_table_fixed_8[10 + hop] +
(FIXED_A) t2[7] * cos_table_fixed_8[11 + hop]) >>
(SBC_COS_TABLE_FIXED8_SCALE - SCALE_OUT_BITS);
}
} }
static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out) static void sbc_analyze_4b_8s(int16_t *pcm, int16_t *x,
int32_t *out, int out_stride)
{ {
sbc_fixed_t t[8], s[8]; int i;
t[0] = SCALE8_STAGE1( /* Q10 */ /* Input 4 x 8 Audio Samples */
MULA(_sbc_proto_8[0], (in[16] - in[64]), /* Q18 = Q18 * Q0 */ for (i = 0; i < 32; i += 8) {
MULA(_sbc_proto_8[1], (in[32] - in[48]), x[128 + i] = x[0 + i] = pcm[31 - i];
MULA(_sbc_proto_8[2], in[4], x[129 + i] = x[1 + i] = pcm[30 - i];
MULA(_sbc_proto_8[3], in[20], x[130 + i] = x[2 + i] = pcm[29 - i];
MULA(_sbc_proto_8[4], in[36], x[131 + i] = x[3 + i] = pcm[28 - i];
MUL( _sbc_proto_8[5], in[52]))))))); x[132 + i] = x[4 + i] = pcm[27 - i];
x[133 + i] = x[5 + i] = pcm[26 - i];
x[134 + i] = x[6 + i] = pcm[25 - i];
x[135 + i] = x[7 + i] = pcm[24 - i];
}
t[1] = SCALE8_STAGE1( /* Analyze four blocks */
MULA(_sbc_proto_8[6], in[2], _sbc_analyze_eight(x + 24, out);
MULA(_sbc_proto_8[7], in[18], out += out_stride;
MULA(_sbc_proto_8[8], in[34], _sbc_analyze_eight(x + 16, out);
MULA(_sbc_proto_8[9], in[50], out += out_stride;
MUL(_sbc_proto_8[10], in[66])))))); _sbc_analyze_eight(x + 8, out);
out += out_stride;
t[2] = SCALE8_STAGE1( _sbc_analyze_eight(x, out);
MULA(_sbc_proto_8[11], in[1],
MULA(_sbc_proto_8[12], in[17],
MULA(_sbc_proto_8[13], in[33],
MULA(_sbc_proto_8[14], in[49],
MULA(_sbc_proto_8[15], in[65],
MULA(_sbc_proto_8[16], in[3],
MULA(_sbc_proto_8[17], in[19],
MULA(_sbc_proto_8[18], in[35],
MULA(_sbc_proto_8[19], in[51],
MUL( _sbc_proto_8[20], in[67])))))))))));
t[3] = SCALE8_STAGE1(
MULA( _sbc_proto_8[21], in[5],
MULA( _sbc_proto_8[22], in[21],
MULA( _sbc_proto_8[23], in[37],
MULA( _sbc_proto_8[24], in[53],
MULA( _sbc_proto_8[25], in[69],
MULA(-_sbc_proto_8[15], in[15],
MULA(-_sbc_proto_8[14], in[31],
MULA(-_sbc_proto_8[13], in[47],
MULA(-_sbc_proto_8[12], in[63],
MUL( -_sbc_proto_8[11], in[79])))))))))));
t[4] = SCALE8_STAGE1(
MULA( _sbc_proto_8[26], in[6],
MULA( _sbc_proto_8[27], in[22],
MULA( _sbc_proto_8[28], in[38],
MULA( _sbc_proto_8[29], in[54],
MULA( _sbc_proto_8[30], in[70],
MULA(-_sbc_proto_8[10], in[14],
MULA(-_sbc_proto_8[9], in[30],
MULA(-_sbc_proto_8[8], in[46],
MULA(-_sbc_proto_8[7], in[62],
MUL( -_sbc_proto_8[6], in[78])))))))))));
t[5] = SCALE8_STAGE1(
MULA( _sbc_proto_8[31], in[7],
MULA( _sbc_proto_8[32], in[23],
MULA( _sbc_proto_8[33], in[39],
MULA( _sbc_proto_8[34], in[55],
MULA( _sbc_proto_8[35], in[71],
MULA(-_sbc_proto_8[20], in[13],
MULA(-_sbc_proto_8[19], in[29],
MULA(-_sbc_proto_8[18], in[45],
MULA(-_sbc_proto_8[17], in[61],
MUL( -_sbc_proto_8[16], in[77])))))))))));
t[6] = SCALE8_STAGE1(
MULA( _sbc_proto_8[36], (in[8] + in[72]),
MULA( _sbc_proto_8[37], (in[24] + in[56]),
MULA( _sbc_proto_8[38], in[40],
MULA(-_sbc_proto_8[39], in[12],
MULA(-_sbc_proto_8[5], in[28],
MULA(-_sbc_proto_8[4], in[44],
MULA(-_sbc_proto_8[3], in[60],
MUL( -_sbc_proto_8[2], in[76])))))))));
t[7] = SCALE8_STAGE1(
MULA( _sbc_proto_8[35], in[9],
MULA( _sbc_proto_8[34], in[25],
MULA( _sbc_proto_8[33], in[41],
MULA( _sbc_proto_8[32], in[57],
MULA( _sbc_proto_8[31], in[73],
MULA(-_sbc_proto_8[25], in[11],
MULA(-_sbc_proto_8[24], in[27],
MULA(-_sbc_proto_8[23], in[43],
MULA(-_sbc_proto_8[22], in[59],
MUL( -_sbc_proto_8[21], in[75])))))))))));
s[0] = MULA( _anamatrix8[0], t[0],
MUL( _anamatrix8[1], t[6]));
s[1] = MUL( _anamatrix8[7], t[1]);
s[2] = MULA( _anamatrix8[2], t[2],
MULA( _anamatrix8[3], t[3],
MULA( _anamatrix8[4], t[5],
MUL( _anamatrix8[5], t[7]))));
s[3] = MUL( _anamatrix8[6], t[4]);
s[4] = MULA( _anamatrix8[3], t[2],
MULA(-_anamatrix8[5], t[3],
MULA(-_anamatrix8[2], t[5],
MUL( -_anamatrix8[4], t[7]))));
s[5] = MULA( _anamatrix8[4], t[2],
MULA(-_anamatrix8[2], t[3],
MULA( _anamatrix8[5], t[5],
MUL( _anamatrix8[3], t[7]))));
s[6] = MULA( _anamatrix8[1], t[0],
MUL( -_anamatrix8[0], t[6]));
s[7] = MULA( _anamatrix8[5], t[2],
MULA(-_anamatrix8[4], t[3],
MULA( _anamatrix8[3], t[5],
MUL( -_anamatrix8[2], t[7]))));
out[0] = SCALE8_STAGE2( s[0] + s[1] + s[2] + s[3]);
out[1] = SCALE8_STAGE2( s[1] - s[3] + s[4] + s[6]);
out[2] = SCALE8_STAGE2( s[1] - s[3] + s[5] - s[6]);
out[3] = SCALE8_STAGE2(-s[0] + s[1] + s[3] + s[7]);
out[4] = SCALE8_STAGE2(-s[0] + s[1] + s[3] - s[7]);
out[5] = SCALE8_STAGE2( s[1] - s[3] - s[5] - s[6]);
out[6] = SCALE8_STAGE2( s[1] - s[3] - s[4] + s[6]);
out[7] = SCALE8_STAGE2( s[0] + s[1] - s[2] + s[3]);
}
static inline void sbc_analyze_eight(struct sbc_encoder_state *state,
struct sbc_frame *frame, int ch,
int blk)
{
int32_t *x = &state->X[ch][state->position[ch]];
int16_t *pcm = &frame->pcm_sample[ch][blk * 8];
/* Input 8 Audio Samples */
x[80] = x[0] = pcm[7];
x[81] = x[1] = pcm[6];
x[82] = x[2] = pcm[5];
x[83] = x[3] = pcm[4];
x[84] = x[4] = pcm[3];
x[85] = x[5] = pcm[2];
x[86] = x[6] = pcm[1];
x[87] = x[7] = pcm[0];
_sbc_analyze_eight(x, frame->sb_sample_f[blk][ch]);
state->position[ch] -= 8;
if (state->position[ch] < 0)
state->position[ch] = 72;
} }
static int sbc_analyze_audio(struct sbc_encoder_state *state, static int sbc_analyze_audio(struct sbc_encoder_state *state,
@ -894,14 +801,32 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
switch (frame->subbands) { switch (frame->subbands) {
case 4: case 4:
for (ch = 0; ch < frame->channels; ch++) for (ch = 0; ch < frame->channels; ch++)
for (blk = 0; blk < frame->blocks; blk++) for (blk = 0; blk < frame->blocks; blk += 4) {
sbc_analyze_four(state, frame, ch, blk); state->sbc_analyze_4b_4s(
&frame->pcm_sample[ch][blk * 4],
&state->X[ch][state->position[ch]],
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
state->position[ch] -= 16;
if (state->position[ch] < 0)
state->position[ch] = 64 - 16;
}
return frame->blocks * 4; return frame->blocks * 4;
case 8: case 8:
for (ch = 0; ch < frame->channels; ch++) for (ch = 0; ch < frame->channels; ch++)
for (blk = 0; blk < frame->blocks; blk++) for (blk = 0; blk < frame->blocks; blk += 4) {
sbc_analyze_eight(state, frame, ch, blk); state->sbc_analyze_4b_8s(
&frame->pcm_sample[ch][blk * 8],
&state->X[ch][state->position[ch]],
frame->sb_sample_f[blk][ch],
frame->sb_sample_f[blk + 1][ch] -
frame->sb_sample_f[blk][ch]);
state->position[ch] -= 32;
if (state->position[ch] < 0)
state->position[ch] = 128 - 32;
}
return frame->blocks * 8; return frame->blocks * 8;
default: default:
@ -909,6 +834,26 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
} }
} }
/* Supplementary bitstream writing macros for 'sbc_pack_frame' */
#define PUT_BITS(v, n)\
bits_cache = (v) | (bits_cache << (n));\
bits_count += (n);\
if (bits_count >= 16) {\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
}\
#define FLUSH_BITS()\
while (bits_count >= 8) {\
bits_count -= 8;\
*data_ptr++ = (uint8_t) (bits_cache >> bits_count);\
}\
if (bits_count > 0)\
*data_ptr++ = (uint8_t) (bits_cache << (8 - bits_count));\
/* /*
* Packs the SBC frame from frame into the memory at data. At most len * Packs the SBC frame from frame into the memory at data. At most len
* bytes will be used, should more memory be needed an appropriate * bytes will be used, should more memory be needed an appropriate
@ -926,16 +871,21 @@ static int sbc_analyze_audio(struct sbc_encoder_state *state,
static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
{ {
int produced; /* Bitstream writer starts from the fourth byte */
uint8_t *data_ptr = data + 4;
uint32_t bits_cache = 0;
uint32_t bits_count = 0;
/* Will copy the header parts for CRC-8 calculation here */ /* Will copy the header parts for CRC-8 calculation here */
uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
int crc_pos = 0; int crc_pos = 0;
uint16_t audio_sample; uint32_t audio_sample;
int ch, sb, blk, bit; /* channel, subband, block and bit counters */ int ch, sb, blk; /* channel, subband, block and bit counters */
int bits[2][8]; /* bits distribution */ int bits[2][8]; /* bits distribution */
int levels[2][8]; /* levels are derived from that */ uint32_t levels[2][8]; /* levels are derived from that */
uint32_t sb_sample_delta[2][8];
u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */ u_int32_t scalefactor[2][8]; /* derived from frame->scale_factor */
@ -973,8 +923,6 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
/* Can't fill in crc yet */ /* Can't fill in crc yet */
produced = 32;
crc_header[0] = data[1]; crc_header[0] = data[1];
crc_header[1] = data[2]; crc_header[1] = data[2];
crc_pos = 16; crc_pos = 16;
@ -982,7 +930,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame->subbands; sb++) {
frame->scale_factor[ch][sb] = 0; frame->scale_factor[ch][sb] = 0;
scalefactor[ch][sb] = 2; scalefactor[ch][sb] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) { while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) {
frame->scale_factor[ch][sb]++; frame->scale_factor[ch][sb]++;
@ -999,22 +947,23 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
u_int32_t scalefactor_j[2]; u_int32_t scalefactor_j[2];
uint8_t scale_factor_j[2]; uint8_t scale_factor_j[2];
uint8_t joint = 0;
frame->joint = 0; frame->joint = 0;
for (sb = 0; sb < frame->subbands - 1; sb++) { for (sb = 0; sb < frame->subbands - 1; sb++) {
scale_factor_j[0] = 0; scale_factor_j[0] = 0;
scalefactor_j[0] = 2; scalefactor_j[0] = 2 << SCALE_OUT_BITS;
scale_factor_j[1] = 0; scale_factor_j[1] = 0;
scalefactor_j[1] = 2; scalefactor_j[1] = 2 << SCALE_OUT_BITS;
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
/* Calculate joint stereo signal */ /* Calculate joint stereo signal */
sb_sample_j[blk][0] = sb_sample_j[blk][0] =
(frame->sb_sample_f[blk][0][sb] + ASR(frame->sb_sample_f[blk][0][sb], 1) +
frame->sb_sample_f[blk][1][sb]) >> 1; ASR(frame->sb_sample_f[blk][1][sb], 1);
sb_sample_j[blk][1] = sb_sample_j[blk][1] =
(frame->sb_sample_f[blk][0][sb] - ASR(frame->sb_sample_f[blk][0][sb], 1) -
frame->sb_sample_f[blk][1][sb]) >> 1; ASR(frame->sb_sample_f[blk][1][sb], 1);
/* calculate scale_factor_j and scalefactor_j for joint case */ /* calculate scale_factor_j and scalefactor_j for joint case */
while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) { while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) {
@ -1028,14 +977,15 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
} }
/* decide whether to join this subband */ /* decide whether to join this subband */
if ((scalefactor[0][sb] + scalefactor[1][sb]) > if ((frame->scale_factor[0][sb] +
(scalefactor_j[0] + scalefactor_j[1]) ) { frame->scale_factor[1][sb]) >
(scale_factor_j[0] +
scale_factor_j[1])) {
/* use joint stereo for this subband */ /* use joint stereo for this subband */
joint |= 1 << (frame->subbands - 1 - sb);
frame->joint |= 1 << sb; frame->joint |= 1 << sb;
frame->scale_factor[0][sb] = scale_factor_j[0]; frame->scale_factor[0][sb] = scale_factor_j[0];
frame->scale_factor[1][sb] = scale_factor_j[1]; frame->scale_factor[1][sb] = scale_factor_j[1];
scalefactor[0][sb] = scalefactor_j[0];
scalefactor[1][sb] = scalefactor_j[1];
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
frame->sb_sample_f[blk][0][sb] = frame->sb_sample_f[blk][0][sb] =
sb_sample_j[blk][0]; sb_sample_j[blk][0];
@ -1045,24 +995,16 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
} }
} }
data[4] = 0; PUT_BITS(joint, frame->subbands);
for (sb = 0; sb < frame->subbands - 1; sb++) crc_header[crc_pos >> 3] = joint;
data[4] |= ((frame->joint >> sb) & 0x01) << (frame->subbands - 1 - sb);
crc_header[crc_pos >> 3] = data[4];
produced += frame->subbands;
crc_pos += frame->subbands; crc_pos += frame->subbands;
} }
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame->subbands; sb++) {
data[produced >> 3] <<= 4; PUT_BITS(frame->scale_factor[ch][sb] & 0x0F, 4);
crc_header[crc_pos >> 3] <<= 4; crc_header[crc_pos >> 3] <<= 4;
data[produced >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F; crc_header[crc_pos >> 3] |= frame->scale_factor[ch][sb] & 0x0F;
produced += 4;
crc_pos += 4; crc_pos += 4;
} }
} }
@ -1076,37 +1018,47 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len)
sbc_calculate_bits(frame, bits); sbc_calculate_bits(frame, bits);
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) for (sb = 0; sb < frame->subbands; sb++) {
levels[ch][sb] = (1 << bits[ch][sb]) - 1; levels[ch][sb] = ((1 << bits[ch][sb]) - 1) <<
(32 - (frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 2));
sb_sample_delta[ch][sb] = (uint32_t) 1 <<
(frame->scale_factor[ch][sb] +
SCALE_OUT_BITS + 1);
}
} }
for (blk = 0; blk < frame->blocks; blk++) { for (blk = 0; blk < frame->blocks; blk++) {
for (ch = 0; ch < frame->channels; ch++) { for (ch = 0; ch < frame->channels; ch++) {
for (sb = 0; sb < frame->subbands; sb++) { for (sb = 0; sb < frame->subbands; sb++) {
if (levels[ch][sb] > 0) {
audio_sample = if (bits[ch][sb] == 0)
(uint16_t) ((((frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >> continue;
(frame->scale_factor[ch][sb] + 1)) +
levels[ch][sb]) >> 1); audio_sample = ((uint64_t) levels[ch][sb] *
audio_sample <<= 16 - bits[ch][sb]; (sb_sample_delta[ch][sb] +
for (bit = 0; bit < bits[ch][sb]; bit++) { frame->sb_sample_f[blk][ch][sb])) >> 32;
data[produced >> 3] <<= 1;
if (audio_sample & 0x8000) PUT_BITS(audio_sample, bits[ch][sb]);
data[produced >> 3] |= 0x1;
audio_sample <<= 1;
produced++;
}
}
} }
} }
} }
/* align the last byte */ FLUSH_BITS();
if (produced % 8) {
data[produced >> 3] <<= 8 - (produced % 8);
}
return (produced + 7) >> 3; return data_ptr - data;
}
static void sbc_encoder_init(struct sbc_encoder_state *state,
const struct sbc_frame *frame)
{
memset(&state->X, 0, sizeof(state->X));
state->subbands = frame->subbands;
state->position[0] = state->position[1] = 12 * frame->subbands;
/* Default implementation for analyze function */
state->sbc_analyze_4b_4s = sbc_analyze_4b_4s;
state->sbc_analyze_4b_8s = sbc_analyze_4b_8s;
} }
struct sbc_priv { struct sbc_priv {
@ -1190,6 +1142,9 @@ int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output,
if (written) if (written)
*written = 0; *written = 0;
if (framelen <= 0)
return framelen;
samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame); samples = sbc_synthesize_audio(&priv->dec_state, &priv->frame);
ptr = output; ptr = output;
@ -1202,13 +1157,7 @@ int sbc_decode(sbc_t *sbc, void *input, int input_len, void *output,
int16_t s; int16_t s;
s = priv->frame.pcm_sample[ch][i]; s = priv->frame.pcm_sample[ch][i];
#if __BYTE_ORDER == __LITTLE_ENDIAN
if (sbc->endian == SBC_BE) { if (sbc->endian == SBC_BE) {
#elif __BYTE_ORDER == __BIG_ENDIAN
if (sbc->endian == SBC_LE) {
#else
#error "Unknown byte order"
#endif
*ptr++ = (s & 0xff00) >> 8; *ptr++ = (s & 0xff00) >> 8;
*ptr++ = (s & 0x00ff); *ptr++ = (s & 0x00ff);
} else { } else {
@ -1269,13 +1218,7 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) { for (i = 0; i < priv->frame.subbands * priv->frame.blocks; i++) {
for (ch = 0; ch < priv->frame.channels; ch++) { for (ch = 0; ch < priv->frame.channels; ch++) {
int16_t s; int16_t s;
#if __BYTE_ORDER == __LITTLE_ENDIAN
if (sbc->endian == SBC_BE) if (sbc->endian == SBC_BE)
#elif __BYTE_ORDER == __BIG_ENDIAN
if (sbc->endian == SBC_LE)
#else
#error "Unknown byte order"
#endif
s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff); s = (ptr[0] & 0xff) << 8 | (ptr[1] & 0xff);
else else
s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8; s = (ptr[0] & 0xff) | (ptr[1] & 0xff) << 8;
@ -1374,9 +1317,9 @@ int sbc_get_frame_duration(sbc_t *sbc)
return (1000000 * blocks * subbands) / frequency; return (1000000 * blocks * subbands) / frequency;
} }
int sbc_get_codesize(sbc_t *sbc) uint16_t sbc_get_codesize(sbc_t *sbc)
{ {
uint8_t subbands, channels, blocks; uint16_t subbands, channels, blocks;
struct sbc_priv *priv; struct sbc_priv *priv;
priv = sbc->priv; priv = sbc->priv;

View file

@ -2,7 +2,7 @@
* *
* Bluetooth low-complexity, subband codec (SBC) library * Bluetooth low-complexity, subband codec (SBC) library
* *
* Copyright (C) 2004-2008 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com> * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
* *
@ -87,7 +87,7 @@ int sbc_encode(sbc_t *sbc, void *input, int input_len, void *output,
int output_len, int *written); int output_len, int *written);
int sbc_get_frame_length(sbc_t *sbc); int sbc_get_frame_length(sbc_t *sbc);
int sbc_get_frame_duration(sbc_t *sbc); int sbc_get_frame_duration(sbc_t *sbc);
int sbc_get_codesize(sbc_t *sbc); uint16_t sbc_get_codesize(sbc_t *sbc);
void sbc_finish(sbc_t *sbc); void sbc_finish(sbc_t *sbc);
#ifdef __cplusplus #ifdef __cplusplus

View file

@ -2,7 +2,7 @@
* *
* Bluetooth low-complexity, subband codec (SBC) library * Bluetooth low-complexity, subband codec (SBC) library
* *
* Copyright (C) 2004-2008 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com> * Copyright (C) 2005-2008 Brad Midgley <bmidgley@xmission.com>
* *
@ -29,31 +29,21 @@
#define ASR(val, bits) ((-2 >> 1 == -1) ? \ #define ASR(val, bits) ((-2 >> 1 == -1) ? \
((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits)))
#define SCALE_PROTO4_TBL 15 #define SCALE_OUT_BITS 15
#define SCALE_ANA4_TBL 17
#define SCALE_PROTO8_TBL 16
#define SCALE_ANA8_TBL 17
#define SCALE_SPROTO4_TBL 12 #define SCALE_SPROTO4_TBL 12
#define SCALE_SPROTO8_TBL 14 #define SCALE_SPROTO8_TBL 14
#define SCALE_NPROTO4_TBL 11 #define SCALE_NPROTO4_TBL 11
#define SCALE_NPROTO8_TBL 11 #define SCALE_NPROTO8_TBL 11
#define SCALE4_STAGE1_BITS 15
#define SCALE4_STAGE2_BITS 16
#define SCALE4_STAGED1_BITS 15 #define SCALE4_STAGED1_BITS 15
#define SCALE4_STAGED2_BITS 16 #define SCALE4_STAGED2_BITS 16
#define SCALE8_STAGE1_BITS 15
#define SCALE8_STAGE2_BITS 15
#define SCALE8_STAGED1_BITS 15 #define SCALE8_STAGED1_BITS 15
#define SCALE8_STAGED2_BITS 16 #define SCALE8_STAGED2_BITS 16
typedef int32_t sbc_fixed_t; typedef int32_t sbc_fixed_t;
#define SCALE4_STAGE1(src) ASR(src, SCALE4_STAGE1_BITS)
#define SCALE4_STAGE2(src) ASR(src, SCALE4_STAGE2_BITS)
#define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS) #define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS)
#define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS) #define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS)
#define SCALE8_STAGE1(src) ASR(src, SCALE8_STAGE1_BITS)
#define SCALE8_STAGE2(src) ASR(src, SCALE8_STAGE2_BITS)
#define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS) #define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS)
#define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS) #define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS)

View file

@ -2,7 +2,7 @@
* *
* Bluetooth low-complexity, subband codec (SBC) library * Bluetooth low-complexity, subband codec (SBC) library
* *
* Copyright (C) 2004-2008 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2004-2009 Marcel Holtmann <marcel@holtmann.org>
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch>
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com> * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com>
* *
@ -39,40 +39,12 @@ static const int sbc_offset8[4][8] = {
{ -4, 0, 0, 0, 0, 0, 1, 2 } { -4, 0, 0, 0, 0, 0, 1, 2 }
}; };
#define SP4(val) ASR(val, SCALE_PROTO4_TBL)
#define SA4(val) ASR(val, SCALE_ANA4_TBL)
#define SP8(val) ASR(val, SCALE_PROTO8_TBL)
#define SA8(val) ASR(val, SCALE_ANA8_TBL)
#define SS4(val) ASR(val, SCALE_SPROTO4_TBL) #define SS4(val) ASR(val, SCALE_SPROTO4_TBL)
#define SS8(val) ASR(val, SCALE_SPROTO8_TBL) #define SS8(val) ASR(val, SCALE_SPROTO8_TBL)
#define SN4(val) ASR(val, SCALE_NPROTO4_TBL) #define SN4(val) ASR(val, SCALE_NPROTO4_TBL)
#define SN8(val) ASR(val, SCALE_NPROTO8_TBL) #define SN8(val) ASR(val, SCALE_NPROTO8_TBL)
static const int32_t _sbc_proto_4[20] = {
SP4(0x02cb3e8c), SP4(0x22b63dc0), SP4(0x002329cc), SP4(0x053b7548),
SP4(0x31eab940), SP4(0xec1f5e60), SP4(0xff3773a8), SP4(0x0061c5a7),
SP4(0x07646680), SP4(0x3f239480), SP4(0xf89f23a8), SP4(0x007a4737),
SP4(0x00b32807), SP4(0x083ddc80), SP4(0x4825e480), SP4(0x0191e578),
SP4(0x00ff11ca), SP4(0x00fb7991), SP4(0x069fdc58), SP4(0x4b584000)
};
static const int32_t _anamatrix4[4] = {
SA4(0x2d413cc0), SA4(0x3b20d780), SA4(0x40000000), SA4(0x187de2a0)
};
static const int32_t _sbc_proto_8[40] = {
SP8(0x02e5cd20), SP8(0x22d0c200), SP8(0x006bfe27), SP8(0x07808930),
SP8(0x3f1c8800), SP8(0xf8810d70), SP8(0x002cfdc6), SP8(0x055acf28),
SP8(0x31f566c0), SP8(0xebfe57e0), SP8(0xff27c437), SP8(0x001485cc),
SP8(0x041c6e58), SP8(0x2a7cfa80), SP8(0xe4c4a240), SP8(0xfe359e4c),
SP8(0x0048b1f8), SP8(0x0686ce30), SP8(0x38eec5c0), SP8(0xf2a1b9f0),
SP8(0xffe8904a), SP8(0x0095698a), SP8(0x0824a480), SP8(0x443b3c00),
SP8(0xfd7badc8), SP8(0x00d3e2d9), SP8(0x00c183d2), SP8(0x084e1950),
SP8(0x4810d800), SP8(0x017f43fe), SP8(0x01056dd8), SP8(0x00e9cb9f),
SP8(0x07d7d090), SP8(0x4a708980), SP8(0x0488fae8), SP8(0x0113bd20),
SP8(0x0107b1a8), SP8(0x069fb3c0), SP8(0x4b3db200), SP8(0x00763f48)
};
static const int32_t sbc_proto_4_40m0[] = { static const int32_t sbc_proto_4_40m0[] = {
SS4(0x00000000), SS4(0xffa6982f), SS4(0xfba93848), SS4(0x0456c7b8), SS4(0x00000000), SS4(0xffa6982f), SS4(0xfba93848), SS4(0x0456c7b8),
SS4(0x005967d1), SS4(0xfffb9ac7), SS4(0xff589157), SS4(0xf9c2a8d8), SS4(0x005967d1), SS4(0xfffb9ac7), SS4(0xff589157), SS4(0xf9c2a8d8),
@ -115,11 +87,6 @@ static const int32_t sbc_proto_8_80m1[] = {
SS8(0x0d9daee0), SS8(0xeac182c0), SS8(0xfdf1c8d4), SS8(0xfff5bd1a) SS8(0x0d9daee0), SS8(0xeac182c0), SS8(0xfdf1c8d4), SS8(0xfff5bd1a)
}; };
static const int32_t _anamatrix8[8] = {
SA8(0x3b20d780), SA8(0x187de2a0), SA8(0x3ec52f80), SA8(0x3536cc40),
SA8(0x238e7680), SA8(0x0c7c5c20), SA8(0x2d413cc0), SA8(0x40000000)
};
static const int32_t synmatrix4[8][4] = { static const int32_t synmatrix4[8][4] = {
{ SN4(0x05a82798), SN4(0xfa57d868), SN4(0xfa57d868), SN4(0x05a82798) }, { SN4(0x05a82798), SN4(0xfa57d868), SN4(0xfa57d868), SN4(0x05a82798) },
{ SN4(0x030fbc54), SN4(0xf89be510), SN4(0x07641af0), SN4(0xfcf043ac) }, { SN4(0x030fbc54), SN4(0xf89be510), SN4(0x07641af0), SN4(0xfcf043ac) },
@ -165,3 +132,216 @@ static const int32_t synmatrix8[16][8] = {
{ SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0), { SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0),
SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) } SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) }
}; };
/* Uncomment the following line to enable high precision build of SBC encoder */
/* #define SBC_HIGH_PRECISION */
#ifdef SBC_HIGH_PRECISION
#define FIXED_A int64_t /* data type for fixed point accumulator */
#define FIXED_T int32_t /* data type for fixed point constants */
#define SBC_FIXED_EXTRA_BITS 16
#else
#define FIXED_A int32_t /* data type for fixed point accumulator */
#define FIXED_T int16_t /* data type for fixed point constants */
#define SBC_FIXED_EXTRA_BITS 0
#endif
/* A2DP specification: Section 12.8 Tables
*
* Original values are premultiplied by 2 for better precision (that is the
* maximum which is possible without overflows)
*
* Note: in each block of 8 numbers sign was changed for elements 2 and 7
* in order to compensate the same change applied to cos_table_fixed_4
*/
#define SBC_PROTO_FIXED4_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 1)
#define F(x) (FIXED_A) ((x * 2) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
static const FIXED_T _sbc_proto_fixed4[40] = {
F(0.00000000E+00), F(5.36548976E-04),
-F(1.49188357E-03), F(2.73370904E-03),
F(3.83720193E-03), F(3.89205149E-03),
F(1.86581691E-03), F(3.06012286E-03),
F(1.09137620E-02), F(2.04385087E-02),
-F(2.88757392E-02), F(3.21939290E-02),
F(2.58767811E-02), F(6.13245186E-03),
-F(2.88217274E-02), F(7.76463494E-02),
F(1.35593274E-01), F(1.94987841E-01),
-F(2.46636662E-01), F(2.81828203E-01),
F(2.94315332E-01), F(2.81828203E-01),
F(2.46636662E-01), -F(1.94987841E-01),
-F(1.35593274E-01), -F(7.76463494E-02),
F(2.88217274E-02), F(6.13245186E-03),
F(2.58767811E-02), F(3.21939290E-02),
F(2.88757392E-02), -F(2.04385087E-02),
-F(1.09137620E-02), -F(3.06012286E-03),
-F(1.86581691E-03), F(3.89205149E-03),
F(3.83720193E-03), F(2.73370904E-03),
F(1.49188357E-03), -F(5.36548976E-04),
};
#undef F
/*
* To produce this cosine matrix in Octave:
*
* b = zeros(4, 8);
* for i = 0:3
* for j = 0:7 b(i+1, j+1) = cos((i + 0.5) * (j - 2) * (pi/4))
* endfor
* endfor;
* printf("%.10f, ", b');
*
* Note: in each block of 8 numbers sign was changed for elements 2 and 7
*
* Change of sign for element 2 allows to replace constant 1.0 (not
* representable in Q15 format) with -1.0 (fine with Q15).
* Changed sign for element 7 allows to have more similar constants
* and simplify subband filter function code.
*/
#define SBC_COS_TABLE_FIXED4_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS)
#define F(x) (FIXED_A) ((x) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
static const FIXED_T cos_table_fixed_4[32] = {
F(0.7071067812), F(0.9238795325), -F(1.0000000000), F(0.9238795325),
F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324),
-F(0.7071067812), F(0.3826834324), -F(1.0000000000), F(0.3826834324),
-F(0.7071067812), -F(0.9238795325), -F(0.0000000000), -F(0.9238795325),
-F(0.7071067812), -F(0.3826834324), -F(1.0000000000), -F(0.3826834324),
-F(0.7071067812), F(0.9238795325), F(0.0000000000), F(0.9238795325),
F(0.7071067812), -F(0.9238795325), -F(1.0000000000), -F(0.9238795325),
F(0.7071067812), -F(0.3826834324), -F(0.0000000000), -F(0.3826834324),
};
#undef F
/* A2DP specification: Section 12.8 Tables
*
* Original values are premultiplied by 4 for better precision (that is the
* maximum which is possible without overflows)
*
* Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15
* in order to compensate the same change applied to cos_table_fixed_8
*/
#define SBC_PROTO_FIXED8_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) - SBC_FIXED_EXTRA_BITS + 2)
#define F(x) (FIXED_A) ((x * 4) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
static const FIXED_T _sbc_proto_fixed8[80] = {
F(0.00000000E+00), F(1.56575398E-04),
F(3.43256425E-04), F(5.54620202E-04),
-F(8.23919506E-04), F(1.13992507E-03),
F(1.47640169E-03), F(1.78371725E-03),
F(2.01182542E-03), F(2.10371989E-03),
F(1.99454554E-03), F(1.61656283E-03),
F(9.02154502E-04), F(1.78805361E-04),
F(1.64973098E-03), F(3.49717454E-03),
F(5.65949473E-03), F(8.02941163E-03),
F(1.04584443E-02), F(1.27472335E-02),
-F(1.46525263E-02), F(1.59045603E-02),
F(1.62208471E-02), F(1.53184106E-02),
F(1.29371806E-02), F(8.85757540E-03),
F(2.92408442E-03), -F(4.91578024E-03),
-F(1.46404076E-02), F(2.61098752E-02),
F(3.90751381E-02), F(5.31873032E-02),
F(6.79989431E-02), F(8.29847578E-02),
F(9.75753918E-02), F(1.11196689E-01),
-F(1.23264548E-01), F(1.33264415E-01),
F(1.40753505E-01), F(1.45389847E-01),
F(1.46955068E-01), F(1.45389847E-01),
F(1.40753505E-01), F(1.33264415E-01),
F(1.23264548E-01), -F(1.11196689E-01),
-F(9.75753918E-02), -F(8.29847578E-02),
-F(6.79989431E-02), -F(5.31873032E-02),
-F(3.90751381E-02), -F(2.61098752E-02),
F(1.46404076E-02), -F(4.91578024E-03),
F(2.92408442E-03), F(8.85757540E-03),
F(1.29371806E-02), F(1.53184106E-02),
F(1.62208471E-02), F(1.59045603E-02),
F(1.46525263E-02), -F(1.27472335E-02),
-F(1.04584443E-02), -F(8.02941163E-03),
-F(5.65949473E-03), -F(3.49717454E-03),
-F(1.64973098E-03), -F(1.78805361E-04),
-F(9.02154502E-04), F(1.61656283E-03),
F(1.99454554E-03), F(2.10371989E-03),
F(2.01182542E-03), F(1.78371725E-03),
F(1.47640169E-03), F(1.13992507E-03),
F(8.23919506E-04), -F(5.54620202E-04),
-F(3.43256425E-04), -F(1.56575398E-04),
};
#undef F
/*
* To produce this cosine matrix in Octave:
*
* b = zeros(8, 16);
* for i = 0:7
* for j = 0:15 b(i+1, j+1) = cos((i + 0.5) * (j - 4) * (pi/8))
* endfor endfor;
* printf("%.10f, ", b');
*
* Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15
*
* Change of sign for element 4 allows to replace constant 1.0 (not
* representable in Q15 format) with -1.0 (fine with Q15).
* Changed signs for elements 13, 14, 15 allow to have more similar constants
* and simplify subband filter function code.
*/
#define SBC_COS_TABLE_FIXED8_SCALE \
((sizeof(FIXED_T) * CHAR_BIT - 1) + SBC_FIXED_EXTRA_BITS)
#define F(x) (FIXED_A) ((x) * \
((FIXED_A) 1 << (sizeof(FIXED_T) * CHAR_BIT - 1)) + 0.5)
static const FIXED_T cos_table_fixed_8[128] = {
F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804),
-F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123),
F(0.7071067812), F(0.5555702330), F(0.3826834324), F(0.1950903220),
F(0.0000000000), F(0.1950903220), F(0.3826834324), F(0.5555702330),
-F(0.7071067812), -F(0.1950903220), F(0.3826834324), F(0.8314696123),
-F(1.0000000000), F(0.8314696123), F(0.3826834324), -F(0.1950903220),
-F(0.7071067812), -F(0.9807852804), -F(0.9238795325), -F(0.5555702330),
-F(0.0000000000), -F(0.5555702330), -F(0.9238795325), -F(0.9807852804),
-F(0.7071067812), -F(0.9807852804), -F(0.3826834324), F(0.5555702330),
-F(1.0000000000), F(0.5555702330), -F(0.3826834324), -F(0.9807852804),
-F(0.7071067812), F(0.1950903220), F(0.9238795325), F(0.8314696123),
F(0.0000000000), F(0.8314696123), F(0.9238795325), F(0.1950903220),
F(0.7071067812), -F(0.5555702330), -F(0.9238795325), F(0.1950903220),
-F(1.0000000000), F(0.1950903220), -F(0.9238795325), -F(0.5555702330),
F(0.7071067812), F(0.8314696123), -F(0.3826834324), -F(0.9807852804),
-F(0.0000000000), -F(0.9807852804), -F(0.3826834324), F(0.8314696123),
F(0.7071067812), F(0.5555702330), -F(0.9238795325), -F(0.1950903220),
-F(1.0000000000), -F(0.1950903220), -F(0.9238795325), F(0.5555702330),
F(0.7071067812), -F(0.8314696123), -F(0.3826834324), F(0.9807852804),
F(0.0000000000), F(0.9807852804), -F(0.3826834324), -F(0.8314696123),
-F(0.7071067812), F(0.9807852804), -F(0.3826834324), -F(0.5555702330),
-F(1.0000000000), -F(0.5555702330), -F(0.3826834324), F(0.9807852804),
-F(0.7071067812), -F(0.1950903220), F(0.9238795325), -F(0.8314696123),
-F(0.0000000000), -F(0.8314696123), F(0.9238795325), -F(0.1950903220),
-F(0.7071067812), F(0.1950903220), F(0.3826834324), -F(0.8314696123),
-F(1.0000000000), -F(0.8314696123), F(0.3826834324), F(0.1950903220),
-F(0.7071067812), F(0.9807852804), -F(0.9238795325), F(0.5555702330),
-F(0.0000000000), F(0.5555702330), -F(0.9238795325), F(0.9807852804),
F(0.7071067812), -F(0.8314696123), F(0.9238795325), -F(0.9807852804),
-F(1.0000000000), -F(0.9807852804), F(0.9238795325), -F(0.8314696123),
F(0.7071067812), -F(0.5555702330), F(0.3826834324), -F(0.1950903220),
-F(0.0000000000), -F(0.1950903220), F(0.3826834324), -F(0.5555702330),
};
#undef F