Add module-virtual-surround-sink.

It provides a virtual surround sound effect.

v2: Normalize hrir to avoid clipping, some cleanups
v3: use fabs, not abs
v4: implement changes proposed by Tanu Kaskinen
v5: likewise
v6: use channel map from hrir file
v7: remove hrir_ss and hrir_map form userdata
v8: update naming of sink
This commit is contained in:
Niels Ole Salscheider 2012-01-08 21:22:35 +01:00 committed by Tanu Kaskinen
parent 25c73a00c4
commit 6a9caff9dd
2 changed files with 857 additions and 0 deletions

View file

@ -1019,6 +1019,7 @@ modlibexec_LTLIBRARIES += \
module-loopback.la \
module-virtual-sink.la \
module-virtual-source.la \
module-virtual-surround-sink.la \
module-switch-on-connect.la \
module-filter-apply.la \
module-filter-heuristics.la
@ -1319,6 +1320,7 @@ SYMDEF_FILES = \
module-loopback-symdef.h \
module-virtual-sink-symdef.h \
module-virtual-source-symdef.h \
module-virtual-surround-sink-symdef.h \
module-switch-on-connect-symdef.h \
module-filter-apply-symdef.h \
module-filter-heuristics-symdef.h
@ -1535,6 +1537,11 @@ module_virtual_source_la_CFLAGS = $(AM_CFLAGS) $(SERVER_CFLAGS)
module_virtual_source_la_LDFLAGS = $(MODULE_LDFLAGS)
module_virtual_source_la_LIBADD = $(MODULE_LIBADD)
module_virtual_surround_sink_la_SOURCES = modules/module-virtual-surround-sink.c
module_virtual_surround_sink_la_CFLAGS = $(AM_CFLAGS) $(SERVER_CFLAGS)
module_virtual_surround_sink_la_LDFLAGS = $(MODULE_LDFLAGS)
module_virtual_surround_sink_la_LIBADD = $(MODULE_LIBADD)
# X11
module_x11_bell_la_SOURCES = modules/x11/module-x11-bell.c

View file

@ -0,0 +1,850 @@
/***
This file is part of PulseAudio.
Copyright 2010 Intel Corporation
Contributor: Pierre-Louis Bossart <pierre-louis.bossart@intel.com>
Copyright 2012 Niels Ole Salscheider <niels_ole@salscheider-online.de>
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <pulse/gccmacro.h>
#include <pulse/xmalloc.h>
#include <pulsecore/i18n.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/ltdl-helper.h>
#include <pulsecore/sound-file.h>
#include <pulsecore/resampler.h>
#include <math.h>
#include "module-virtual-surround-sink-symdef.h"
PA_MODULE_AUTHOR("Niels Ole Salscheider");
PA_MODULE_DESCRIPTION(_("Virtual surround sink"));
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(FALSE);
PA_MODULE_USAGE(
_("sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"master=<name of sink to filter> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels> "
"channel_map=<channel map> "
"use_volume_sharing=<yes or no> "
"force_flat_volume=<yes or no> "
"hrir=/path/to/left_hrir.wav "
));
#define MEMBLOCKQ_MAXLENGTH (16*1024*1024)
struct userdata {
pa_module *module;
/* FIXME: Uncomment this and take "autoloaded" as a modarg if this is a filter */
/* pa_bool_t autoloaded; */
pa_sink *sink;
pa_sink_input *sink_input;
pa_memblockq *memblockq;
pa_bool_t auto_desc;
unsigned channels;
unsigned hrir_channels;
unsigned fs, sink_fs;
unsigned *mapping_left;
unsigned *mapping_right;
unsigned hrir_samples;
float *hrir_data;
float *input_buffer;
int input_buffer_offset;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"master",
"format",
"rate",
"channels",
"channel_map",
"use_volume_sharing",
"force_flat_volume",
"hrir",
NULL
};
/* Called from I/O thread context */
static int sink_process_msg_cb(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY:
/* The sink is _put() before the sink input is, so let's
* make sure we don't access it in that time. Also, the
* sink input is first shut down, the sink second. */
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state)) {
*((pa_usec_t*) data) = 0;
return 0;
}
*((pa_usec_t*) data) =
/* Get the latency of the master sink */
pa_sink_get_latency_within_thread(u->sink_input->sink) +
/* Add the latency internal to our sink input on top */
pa_bytes_to_usec(pa_memblockq_get_length(u->sink_input->thread_info.render_memblockq), &u->sink_input->sink->sample_spec);
return 0;
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from main context */
static int sink_set_state_cb(pa_sink *s, pa_sink_state_t state) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(state) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return 0;
pa_sink_input_cork(u->sink_input, state == PA_SINK_SUSPENDED);
return 0;
}
/* Called from I/O thread context */
static void sink_request_rewind_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_request_rewind(u->sink_input,
s->thread_info.rewind_nbytes +
pa_memblockq_get_length(u->memblockq), TRUE, FALSE, FALSE);
}
/* Called from I/O thread context */
static void sink_update_requested_latency_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(u->sink->thread_info.state) ||
!PA_SINK_INPUT_IS_LINKED(u->sink_input->thread_info.state))
return;
/* Just hand this one over to the master sink */
pa_sink_input_set_requested_latency_within_thread(
u->sink_input,
pa_sink_get_requested_latency_within_thread(s));
}
/* Called from main context */
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_volume(u->sink_input, &s->real_volume, s->save_volume, TRUE);
}
/* Called from main context */
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
if (!PA_SINK_IS_LINKED(pa_sink_get_state(s)) ||
!PA_SINK_INPUT_IS_LINKED(pa_sink_input_get_state(u->sink_input)))
return;
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t nbytes, pa_memchunk *chunk) {
struct userdata *u;
float *src, *dst;
unsigned n;
pa_memchunk tchunk;
unsigned j, k, l;
float sum_right, sum_left;
float current_sample;
pa_sink_input_assert_ref(i);
pa_assert(chunk);
pa_assert_se(u = i->userdata);
/* Hmm, process any rewind request that might be queued up */
pa_sink_process_rewind(u->sink, 0);
while (pa_memblockq_peek(u->memblockq, &tchunk) < 0) {
pa_memchunk nchunk;
pa_sink_render(u->sink, nbytes * u->sink_fs / u->fs, &nchunk);
pa_memblockq_push(u->memblockq, &nchunk);
pa_memblock_unref(nchunk.memblock);
}
tchunk.length = PA_MIN(nbytes * u->sink_fs / u->fs, tchunk.length);
pa_assert(tchunk.length > 0);
n = (unsigned) (tchunk.length / u->sink_fs);
pa_assert(n > 0);
chunk->index = 0;
chunk->length = n * u->fs;
chunk->memblock = pa_memblock_new(i->sink->core->mempool, chunk->length);
pa_memblockq_drop(u->memblockq, n * u->sink_fs);
src = (float*) ((uint8_t*) pa_memblock_acquire(tchunk.memblock) + tchunk.index);
dst = (float*) pa_memblock_acquire(chunk->memblock);
for (l = 0; l < n; l++) {
memcpy(((char*) u->input_buffer) + u->input_buffer_offset * u->sink_fs, ((char *) src) + l * u->sink_fs, u->sink_fs);
sum_right = 0;
sum_left = 0;
/* fold the input buffer with the impulse response */
for (j = 0; j < u->hrir_samples; j++) {
for (k = 0; k < u->channels; k++) {
current_sample = u->input_buffer[((u->input_buffer_offset + j) % u->hrir_samples) * u->channels + k];
sum_left += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_left[k]];
sum_right += current_sample * u->hrir_data[j * u->hrir_channels + u->mapping_right[k]];
}
}
dst[2 * l] = PA_CLAMP_UNLIKELY(sum_left, -1.0f, 1.0f);
dst[2 * l + 1] = PA_CLAMP_UNLIKELY(sum_right, -1.0f, 1.0f);
u->input_buffer_offset--;
if (u->input_buffer_offset < 0)
u->input_buffer_offset += u->hrir_samples;
}
pa_memblock_release(tchunk.memblock);
pa_memblock_release(chunk->memblock);
pa_memblock_unref(tchunk.memblock);
return 0;
}
/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
size_t amount = 0;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (u->sink->thread_info.rewind_nbytes > 0) {
size_t max_rewrite;
max_rewrite = nbytes * u->sink_fs / u->fs + pa_memblockq_get_length(u->memblockq);
amount = PA_MIN(u->sink->thread_info.rewind_nbytes * u->sink_fs / u->fs, max_rewrite);
u->sink->thread_info.rewind_nbytes = 0;
if (amount > 0) {
pa_memblockq_seek(u->memblockq, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
/* Reset the input buffer */
memset(u->input_buffer, 0, u->hrir_samples * u->sink_fs);
u->input_buffer_offset = 0;
}
}
pa_sink_process_rewind(u->sink, amount);
pa_memblockq_rewind(u->memblockq, nbytes * u->sink_fs / u->fs);
}
/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_memblockq_set_maxrewind(u->memblockq, nbytes * u->sink_fs / u->fs);
pa_sink_set_max_rewind_within_thread(u->sink, nbytes * u->sink_fs / u->fs);
}
/* Called from I/O thread context */
static void sink_input_update_max_request_cb(pa_sink_input *i, size_t nbytes) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_max_request_within_thread(u->sink, nbytes * u->sink_fs / u->fs);
}
/* Called from I/O thread context */
static void sink_input_update_sink_latency_range_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
}
/* Called from I/O thread context */
static void sink_input_update_sink_fixed_latency_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
}
/* Called from I/O thread context */
static void sink_input_detach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_detach_within_thread(u->sink);
pa_sink_set_rtpoll(u->sink, NULL);
}
/* Called from I/O thread context */
static void sink_input_attach_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_set_rtpoll(u->sink, i->sink->thread_info.rtpoll);
pa_sink_set_latency_range_within_thread(u->sink, i->sink->thread_info.min_latency, i->sink->thread_info.max_latency);
pa_sink_set_fixed_latency_within_thread(u->sink, i->sink->thread_info.fixed_latency);
pa_sink_set_max_request_within_thread(u->sink, pa_sink_input_get_max_request(i));
pa_sink_set_max_rewind_within_thread(u->sink, pa_sink_input_get_max_rewind(i));
pa_sink_attach_within_thread(u->sink);
}
/* Called from main context */
static void sink_input_kill_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* The order here matters! We first kill the sink input, followed
* by the sink. That means the sink callbacks must be protected
* against an unconnected sink input! */
pa_sink_input_unlink(u->sink_input);
pa_sink_unlink(u->sink);
pa_sink_input_unref(u->sink_input);
u->sink_input = NULL;
pa_sink_unref(u->sink);
u->sink = NULL;
pa_module_unload_request(u->module, TRUE);
}
/* Called from IO thread context */
static void sink_input_state_change_cb(pa_sink_input *i, pa_sink_input_state_t state) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
/* If we are added for the first time, ask for a rewinding so that
* we are heard right-away. */
if (PA_SINK_INPUT_IS_LINKED(state) &&
i->thread_info.state == PA_SINK_INPUT_INIT) {
pa_log_debug("Requesting rewind due to state change.");
pa_sink_input_request_rewind(i, 0, FALSE, TRUE, TRUE);
}
}
/* Called from main context */
static pa_bool_t sink_input_may_move_to_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
return u->sink != dest;
}
/* Called from main context */
static void sink_input_moving_cb(pa_sink_input *i, pa_sink *dest) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
if (dest) {
pa_sink_set_asyncmsgq(u->sink, dest->asyncmsgq);
pa_sink_update_flags(u->sink, PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY, dest->flags);
} else
pa_sink_set_asyncmsgq(u->sink, NULL);
if (u->auto_desc && dest) {
const char *z;
pa_proplist *pl;
pl = pa_proplist_new();
z = pa_proplist_gets(dest->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(pl, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s",
pa_proplist_gets(u->sink->proplist, "device.vsurroundsink.name"), z ? z : dest->name);
pa_sink_update_proplist(u->sink, PA_UPDATE_REPLACE, pl);
pa_proplist_free(pl);
}
}
/* Called from main context */
static void sink_input_volume_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_volume_changed(u->sink, &i->volume);
}
/* Called from main context */
static void sink_input_mute_changed_cb(pa_sink_input *i) {
struct userdata *u;
pa_sink_input_assert_ref(i);
pa_assert_se(u = i->userdata);
pa_sink_mute_changed(u->sink, i->muted);
}
static pa_channel_position_t mirror_channel(pa_channel_position_t channel) {
switch (channel) {
case PA_CHANNEL_POSITION_FRONT_LEFT:
return PA_CHANNEL_POSITION_FRONT_RIGHT;
case PA_CHANNEL_POSITION_FRONT_RIGHT:
return PA_CHANNEL_POSITION_FRONT_LEFT;
case PA_CHANNEL_POSITION_REAR_LEFT:
return PA_CHANNEL_POSITION_REAR_RIGHT;
case PA_CHANNEL_POSITION_REAR_RIGHT:
return PA_CHANNEL_POSITION_REAR_LEFT;
case PA_CHANNEL_POSITION_SIDE_LEFT:
return PA_CHANNEL_POSITION_SIDE_RIGHT;
case PA_CHANNEL_POSITION_SIDE_RIGHT:
return PA_CHANNEL_POSITION_SIDE_LEFT;
case PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
case PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER:
return PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
case PA_CHANNEL_POSITION_TOP_FRONT_LEFT:
return PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
case PA_CHANNEL_POSITION_TOP_FRONT_RIGHT:
return PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
case PA_CHANNEL_POSITION_TOP_REAR_LEFT:
return PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
case PA_CHANNEL_POSITION_TOP_REAR_RIGHT:
return PA_CHANNEL_POSITION_TOP_REAR_LEFT;
default:
return channel;
}
}
int pa__init(pa_module*m) {
struct userdata *u;
pa_sample_spec ss, sink_input_ss;
pa_channel_map map, sink_input_map;
pa_modargs *ma;
pa_sink *master=NULL;
pa_sink_input_new_data sink_input_data;
pa_sink_new_data sink_data;
pa_bool_t use_volume_sharing = TRUE;
pa_bool_t force_flat_volume = FALSE;
pa_memchunk silence;
const char *hrir_file;
unsigned i, j, found_channel_left, found_channel_right;
float hrir_sum, hrir_max;
float *hrir_data;
pa_sample_spec hrir_ss;
pa_channel_map hrir_map;
pa_sample_spec hrir_temp_ss;
pa_memchunk hrir_temp_chunk;
pa_resampler *resampler;
hrir_temp_chunk.memblock = NULL;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("Failed to parse module arguments.");
goto fail;
}
if (!(master = pa_namereg_get(m->core, pa_modargs_get_value(ma, "master", NULL), PA_NAMEREG_SINK))) {
pa_log("Master sink not found");
goto fail;
}
pa_assert(master);
u = pa_xnew0(struct userdata, 1);
u->module = m;
m->userdata = u;
/* Initialize hrir and input buffer */
/* this is the hrir file for the left ear! */
hrir_file = pa_modargs_get_value(ma, "hrir", NULL);
if (!(hrir_file = pa_modargs_get_value(ma, "hrir", NULL))) {
pa_log("The mandatory 'hrir' module argument is missing.");
goto fail;
}
if (pa_sound_file_load(master->core->mempool, hrir_file, &hrir_temp_ss, &hrir_map, &hrir_temp_chunk, NULL) < 0) {
pa_log("Cannot load hrir file.");
goto fail;
}
/* sample spec / map of hrir */
hrir_ss.format = PA_SAMPLE_FLOAT32;
hrir_ss.rate = master->sample_spec.rate;
hrir_ss.channels = hrir_temp_ss.channels;
/* sample spec of sink */
ss = hrir_ss;
map = hrir_map;
if (pa_modargs_get_sample_spec_and_channel_map(ma, &ss, &map, PA_CHANNEL_MAP_DEFAULT) < 0) {
pa_log("Invalid sample format specification or channel map");
goto fail;
}
ss.format = PA_SAMPLE_FLOAT32;
hrir_ss.rate = ss.rate;
u->channels = ss.channels;
if (pa_modargs_get_value_boolean(ma, "use_volume_sharing", &use_volume_sharing) < 0) {
pa_log("use_volume_sharing= expects a boolean argument");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "force_flat_volume", &force_flat_volume) < 0) {
pa_log("force_flat_volume= expects a boolean argument");
goto fail;
}
if (use_volume_sharing && force_flat_volume) {
pa_log("Flat volume can't be forced when using volume sharing.");
goto fail;
}
/* sample spec / map of sink input */
pa_channel_map_init_stereo(&sink_input_map);
sink_input_ss.channels = 2;
sink_input_ss.format = PA_SAMPLE_FLOAT32;
sink_input_ss.rate = ss.rate;
u->sink_fs = pa_frame_size(&ss);
u->fs = pa_frame_size(&sink_input_ss);
/* Create sink */
pa_sink_new_data_init(&sink_data);
sink_data.driver = __FILE__;
sink_data.module = m;
if (!(sink_data.name = pa_xstrdup(pa_modargs_get_value(ma, "sink_name", NULL))))
sink_data.name = pa_sprintf_malloc("%s.vsurroundsink", master->name);
pa_sink_new_data_set_sample_spec(&sink_data, &ss);
pa_sink_new_data_set_channel_map(&sink_data, &map);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_MASTER_DEVICE, master->name);
pa_proplist_sets(sink_data.proplist, PA_PROP_DEVICE_CLASS, "filter");
pa_proplist_sets(sink_data.proplist, "device.vsurroundsink.name", sink_data.name);
if (pa_modargs_get_proplist(ma, "sink_properties", sink_data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&sink_data);
goto fail;
}
if ((u->auto_desc = !pa_proplist_contains(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION))) {
const char *z;
z = pa_proplist_gets(master->proplist, PA_PROP_DEVICE_DESCRIPTION);
pa_proplist_setf(sink_data.proplist, PA_PROP_DEVICE_DESCRIPTION, "Virtual Surround Sink %s on %s", sink_data.name, z ? z : master->name);
}
u->sink = pa_sink_new(m->core, &sink_data, (master->flags & (PA_SINK_LATENCY|PA_SINK_DYNAMIC_LATENCY))
| (use_volume_sharing ? PA_SINK_SHARE_VOLUME_WITH_MASTER : 0));
pa_sink_new_data_done(&sink_data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg_cb;
u->sink->set_state = sink_set_state_cb;
u->sink->update_requested_latency = sink_update_requested_latency_cb;
u->sink->request_rewind = sink_request_rewind_cb;
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
if (!use_volume_sharing) {
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_enable_decibel_volume(u->sink, TRUE);
}
/* Normally this flag would be enabled automatically be we can force it. */
if (force_flat_volume)
u->sink->flags |= PA_SINK_FLAT_VOLUME;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, master->asyncmsgq);
/* Create sink input */
pa_sink_input_new_data_init(&sink_input_data);
sink_input_data.driver = __FILE__;
sink_input_data.module = m;
pa_sink_input_new_data_set_sink(&sink_input_data, master, FALSE);
sink_input_data.origin_sink = u->sink;
pa_proplist_setf(sink_input_data.proplist, PA_PROP_MEDIA_NAME, "Virtual Surround Sink Stream from %s", pa_proplist_gets(u->sink->proplist, PA_PROP_DEVICE_DESCRIPTION));
pa_proplist_sets(sink_input_data.proplist, PA_PROP_MEDIA_ROLE, "filter");
pa_sink_input_new_data_set_sample_spec(&sink_input_data, &sink_input_ss);
pa_sink_input_new_data_set_channel_map(&sink_input_data, &sink_input_map);
pa_sink_input_new(&u->sink_input, m->core, &sink_input_data);
pa_sink_input_new_data_done(&sink_input_data);
if (!u->sink_input)
goto fail;
u->sink_input->pop = sink_input_pop_cb;
u->sink_input->process_rewind = sink_input_process_rewind_cb;
u->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
u->sink_input->update_max_request = sink_input_update_max_request_cb;
u->sink_input->update_sink_latency_range = sink_input_update_sink_latency_range_cb;
u->sink_input->update_sink_fixed_latency = sink_input_update_sink_fixed_latency_cb;
u->sink_input->kill = sink_input_kill_cb;
u->sink_input->attach = sink_input_attach_cb;
u->sink_input->detach = sink_input_detach_cb;
u->sink_input->state_change = sink_input_state_change_cb;
u->sink_input->may_move_to = sink_input_may_move_to_cb;
u->sink_input->moving = sink_input_moving_cb;
u->sink_input->volume_changed = use_volume_sharing ? NULL : sink_input_volume_changed_cb;
u->sink_input->mute_changed = sink_input_mute_changed_cb;
u->sink_input->userdata = u;
u->sink->input_to_master = u->sink_input;
pa_sink_input_get_silence(u->sink_input, &silence);
u->memblockq = pa_memblockq_new("module-virtual-surround-sink memblockq", 0, MEMBLOCKQ_MAXLENGTH, 0, &sink_input_ss, 1, 1, 0, &silence);
pa_memblock_unref(silence.memblock);
/* resample hrir */
resampler = pa_resampler_new(u->sink->core->mempool, &hrir_temp_ss, &hrir_map, &hrir_ss, &hrir_map,
PA_RESAMPLER_SRC_SINC_BEST_QUALITY, PA_RESAMPLER_NO_REMAP);
pa_resampler_run(resampler, &hrir_temp_chunk, &hrir_temp_chunk);
pa_resampler_free(resampler);
u->hrir_samples = hrir_temp_chunk.length / pa_frame_size(&hrir_ss);
u->hrir_channels = hrir_ss.channels;
/* copy hrir data */
hrir_data = (float *) pa_memblock_acquire(hrir_temp_chunk.memblock);
u->hrir_data = (float *) pa_xmalloc(hrir_temp_chunk.length);
memcpy(u->hrir_data, hrir_data, hrir_temp_chunk.length);
pa_memblock_release(hrir_temp_chunk.memblock);
pa_memblock_unref(hrir_temp_chunk.memblock);
hrir_temp_chunk.memblock = NULL;
if (hrir_map.channels < map.channels) {
pa_log("hrir file does not have enough channels!");
goto fail;
}
/* normalize hrir to avoid clipping */
hrir_max = 0;
for (i = 0; i < u->hrir_samples; i++) {
hrir_sum = 0;
for (j = 0; j < u->hrir_channels; j++)
hrir_sum += fabs(u->hrir_data[i * u->hrir_channels + j]);
if (hrir_sum > hrir_max)
hrir_max = hrir_sum;
}
if (hrir_max > 1) {
for (i = 0; i < u->hrir_samples; i++) {
for (j = 0; j < u->hrir_channels; j++)
u->hrir_data[i * u->hrir_channels + j] /= hrir_max * 1.2;
}
}
/* create mapping between hrir and input */
u->mapping_left = (unsigned *) pa_xnew0(unsigned, u->channels);
u->mapping_right = (unsigned *) pa_xnew0(unsigned, u->channels);
for (i = 0; i < map.channels; i++) {
found_channel_left = 0;
found_channel_right = 0;
for (j = 0; j < hrir_map.channels; j++) {
if (hrir_map.map[j] == map.map[i]) {
u->mapping_left[i] = j;
found_channel_left = 1;
}
if (hrir_map.map[j] == mirror_channel(map.map[i])) {
u->mapping_right[i] = j;
found_channel_right = 1;
}
}
if (!found_channel_left) {
pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(map.map[i]));
goto fail;
}
if (!found_channel_right) {
pa_log("Cannot find mapping for channel %s", pa_channel_position_to_string(mirror_channel(map.map[i])));
goto fail;
}
}
u->input_buffer = pa_xmalloc0(u->hrir_samples * u->sink_fs);
u->input_buffer_offset = 0;
pa_sink_put(u->sink);
pa_sink_input_put(u->sink_input);
pa_modargs_free(ma);
return 0;
fail:
if (hrir_temp_chunk.memblock)
pa_memblock_unref(hrir_temp_chunk.memblock);
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
/* See comments in sink_input_kill_cb() above regarding
* destruction order! */
if (u->sink_input)
pa_sink_input_unlink(u->sink_input);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->sink_input)
pa_sink_input_unref(u->sink_input);
if (u->sink)
pa_sink_unref(u->sink);
if (u->memblockq)
pa_memblockq_free(u->memblockq);
if (u->hrir_data)
pa_xfree(u->hrir_data);
if (u->input_buffer)
pa_xfree(u->input_buffer);
if (u->mapping_left)
pa_xfree(u->mapping_left);
if (u->mapping_right)
pa_xfree(u->mapping_right);
pa_xfree(u);
}