module-equalizer-sink:

*fixed SSE2 optimized dsp logic (default if available)
    *cleaned up whitespace formatting (again)
This commit is contained in:
Jason Newton 2009-10-18 14:52:32 -07:00 committed by Lennart Poettering
parent ff903ef542
commit 16e77f3ab2

View file

@ -337,7 +337,7 @@ static void sink_set_mute_cb(pa_sink *s) {
pa_sink_input_set_mute(u->sink_input, s->muted, s->save_muted);
}
#ifndef __SSE2__
//reference implementation
static void dsp_logic(
float * restrict dst,//used as a temp array too, needs to be fft_length!
@ -351,12 +351,12 @@ static void dsp_logic(
fftwf_complex * restrict output_window,//The transformed window'd src
struct userdata *u){
//use a linear-phase sliding STFT and overlap-add method (for each channel)
//zero padd the data
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//window the data
for(size_t j = 0; j < u->window_size; ++j){
dst[j] = X * W[j] * src[j];
}
//zero padd the the remaining fft window
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
@ -390,112 +390,104 @@ static void dsp_logic(
(u->samples_gathered - u->R) * sizeof(float)
);
}
#else
typedef float v4sf __attribute__ ((__aligned__(v_size * sizeof(float))));
typedef union float_vector {
float f[v_size];
v4sf v;
#ifdef __SSE2__
__m128 m;
#endif
} float_vector_t;
////regardless of sse enabled, the loops in here assume
////16 byte aligned addresses and memory allocations divisible by v_size
//void dsp_logic(
// float * restrict dst,//used as a temp array too, needs to be fft_length!
// float * restrict src,/*input data w/ overlap at start,
// *automatically cycled in routine
// */
// float * restrict overlap,//The size of the overlap
// const float X,//multipliar
// const float * restrict H,//The freq. magnitude scalers filter
// const float * restrict W,//The windowing function
// fftwf_complex * restrict output_window,//The transformed window'd src
// struct userdata *u){//Collection of constants
//float_vector_t x = {X, X, X, X};
// const size_t window_size = PA_ROUND_UP(u->window_size,v_size);
// const size_t fft_h = PA_ROUND_UP(FILTER_SIZE, v_size / 2);
// //const size_t R = PA_ROUND_UP(u->R, v_size);
// const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
// overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
//
// //assert(u->samples_gathered >= u->R);
// //zero out the bit beyond the real overlap so we don't add garbage
// for(size_t j = overlap_size; j > u->overlap_size; --j){
// overlap[j-1] = 0;
// }
// //use a linear-phase sliding STFT and overlap-add method
// //zero padd the data
// memset(dst + u->window_size, 0, (u->fft_size - u->window_size)*sizeof(float));
// //window the data
// for(size_t j = 0; j < window_size; j += v_size){
// //dst[j] = W[j]*src[j];
// float_vector_t *d = (float_vector_t*) (dst+j);
// float_vector_t *w = (float_vector_t*) (W+j);
// float_vector_t *s = (float_vector_t*) (src+j);
//regardless of sse enabled, the loops in here assume
//16 byte aligned addresses and memory allocations divisible by v_size
static void dsp_logic(
float * restrict dst,//used as a temp array too, needs to be fft_length!
float * restrict src,/*input data w/ overlap at start,
*automatically cycled in routine
*/
float * restrict overlap,//The size of the overlap
const float X,//multipliar
const float * restrict H,//The freq. magnitude scalers filter
const float * restrict W,//The windowing function
fftwf_complex * restrict output_window,//The transformed window'd src
struct userdata *u){//Collection of constants
const size_t overlap_size = PA_ROUND_UP(u->overlap_size, v_size);
//assert(u->samples_gathered >= u->R);
//use a linear-phase sliding STFT and overlap-add method
for(size_t j = 0; j < u->window_size; j += v_size){
//dst[j] = W[j] * src[j];
float_vector_t *d = (float_vector_t*) (dst + j);
float_vector_t *w = (float_vector_t*) (W + j);
float_vector_t *s = (float_vector_t*) (src + j);
//#if __SSE2__
// d->m = _mm_mul_ps(x->m, _mm_mul_ps(w->m, s->m));
d->m = _mm_mul_ps(w->m, s->m);
//#else
// d->v = x->v * w->v * s->v;
// d->v = w->v * s->v;
//#endif
// }
// //Processing is done here!
// //do fft
// fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//
//
// //perform filtering - purely magnitude based
// for(size_t j = 0;j < fft_h; j+=v_size/2){
// //output_window[j][0]*=H[j];
// //output_window[j][1]*=H[j];
// float_vector_t *d = (float_vector_t*)(output_window+j);
// float_vector_t h;
// h.f[0] = h.f[1] = H[j];
// h.f[2] = h.f[3] = H[j+1];
}
//zero padd the the remaining fft window
memset(dst + u->window_size, 0, (u->fft_size - u->window_size) * sizeof(float));
//Processing is done here!
//do fft
fftwf_execute_dft_r2c(u->forward_plan, dst, output_window);
//perform filtering - purely magnitude based
for(size_t j = 0; j < FILTER_SIZE; j += v_size / 2){
//output_window[j][0]*=H[j];
//output_window[j][1]*=H[j];
float_vector_t *d = (float_vector_t*)( ((float *) output_window) + 2 * j);
float_vector_t h;
h.f[0] = h.f[1] = H[j];
h.f[2] = h.f[3] = H[j + 1];
//#if __SSE2__
// d->m = _mm_mul_ps(d->m, h.m);
d->m = _mm_mul_ps(d->m, h.m);
//#else
// d->v = d->v*h->v;
// d->v = d->v * h.v;
//#endif
}
//inverse fft
fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
////debug: tests overlaping add
////and negates ALL PREVIOUS processing
////yields a perfect reconstruction if COLA is held
//for(size_t j = 0; j < u->window_size; ++j){
// dst[j] = W[j] * src[j];
//}
// //inverse fft
// fftwf_execute_dft_c2r(u->inverse_plan, output_window, dst);
//
// ////debug: tests overlaping add
// ////and negates ALL PREVIOUS processing
// ////yields a perfect reconstruction if COLA is held
// //for(size_t j = 0; j < u->window_size; ++j){
// // dst[j] = W[j]*src[j];
// //}
//
// //overlap add and preserve overlap component from this window (linear phase)
// for(size_t j = 0; j < overlap_size; j+=v_size){
// //dst[j]+=overlap[j];
// //overlap[j]+=dst[j+R];
// float_vector_t *d = (float_vector_t*)(dst+j);
// float_vector_t *o = (float_vector_t*)(overlap+j);
//overlap add and preserve overlap component from this window (linear phase)
for(size_t j = 0; j < overlap_size; j += v_size){
//dst[j]+=overlap[j];
//overlap[j]+=dst[j+R];
float_vector_t *d = (float_vector_t*)(dst + j);
float_vector_t *o = (float_vector_t*)(overlap + j);
//#if __SSE2__
// d->m = _mm_add_ps(d->m, o->m);
// o->m = ((float_vector_t*)(dst+u->R+j))->m;
d->m = _mm_add_ps(d->m, o->m);
o->m = ((float_vector_t*)(dst + u->R + j))->m;
//#else
// d->v = d->v + o->v;
// o->v = ((float_vector_t*)(dst + u->R + j))->v;
//#endif
}
//memcpy(overlap, dst+u->R, u->overlap_size * sizeof(float)); //overlap preserve (debug)
//zero out the bit beyond the real overlap so we don't add garbage next iteration
memset(overlap + u->overlap_size, 0, overlap_size - u->overlap_size);
////debug: tests if basic buffering works
////shouldn't modify the signal AT ALL (beyond roundoff)
//for(size_t j = 0; j < u->window_size; ++j){
// dst[j] = src[j];
//}
// //memcpy(overlap, dst+u->R, u->overlap_size*sizeof(float));
//
// //////debug: tests if basic buffering works
// //////shouldn't modify the signal AT ALL (beyond roundoff)
// //for(size_t j = 0; j < u->window_size; ++j){
// // dst[j] = src[j];
// //}
//
// //preseve the needed input for the next window's overlap
// memmove(src, src + u->R,
// u->overlap_size * sizeof(float)
// );
//}
//preseve the needed input for the next window's overlap
memmove(src, src + u->R,
(u->samples_gathered - u->R) * sizeof(float)
);
}
#endif
static void process_samples(struct userdata *u, pa_memchunk *tchunk){
size_t fs = pa_frame_size(&(u->sink->sample_spec));
@ -685,7 +677,7 @@ static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
//invalidate the output q
pa_memblockq_seek(u->input_q, - (int64_t) amount, PA_SEEK_RELATIVE, TRUE);
pa_log("Resetting filter");
reset_filter(u);
//reset_filter(u); //this is the "proper" thing to do...
}
}
@ -1067,6 +1059,9 @@ int pa__init(pa_module*m) {
u->fft_size = pow(2, ceil(log(ss.rate) / log(2)));//probably unstable near corner cases of powers of 2
pa_log_debug("fft size: %ld", u->fft_size);
u->window_size = 15999;
if(u->window_size % 2 == 0){
u->window_size--;
}
u->R = (u->window_size + 1) / 2;
u->overlap_size = u->window_size - u->R;
u->samples_gathered = 0;
@ -1090,7 +1085,6 @@ int pa__init(pa_module*m) {
u->a_H[c] = pa_aupdate_new();
u->input[c] = NULL;
u->overlap_accum[c] = alloc(u->overlap_size, sizeof(float));
memset(u->overlap_accum[c], 0, u->overlap_size*sizeof(float));
}
u->output_window = alloc((FILTER_SIZE), sizeof(fftwf_complex));
u->forward_plan = fftwf_plan_dft_r2c_1d(u->fft_size, u->work_buffer, u->output_window, FFTW_ESTIMATE);