pulseaudio/src/modules/module-waveout.c

622 lines
16 KiB
C
Raw Normal View History

/* $Id$ */
/***
This file is part of polypaudio.
polypaudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
polypaudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with polypaudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <windows.h>
#include <mmsystem.h>
#include <assert.h>
#include <polyp/mainloop-api.h>
#include <polypcore/sink.h>
#include <polypcore/source.h>
#include <polypcore/module.h>
#include <polypcore/modargs.h>
#include <polypcore/sample-util.h>
#include <polypcore/util.h>
#include <polypcore/log.h>
#include <polypcore/xmalloc.h>
#include "module-waveout-symdef.h"
PA_MODULE_AUTHOR("Pierre Ossman")
PA_MODULE_DESCRIPTION("Windows waveOut Sink/Source")
PA_MODULE_VERSION(PACKAGE_VERSION)
PA_MODULE_USAGE("sink_name=<name for the sink> source_name=<name for the source> record=<enable source?> playback=<enable sink?> format=<sample format> channels=<number of channels> rate=<sample rate> fragments=<number of fragments> fragment_size=<fragment size>")
#define DEFAULT_SINK_NAME "wave_output"
#define DEFAULT_SOURCE_NAME "wave_input"
#define WAVEOUT_MAX_VOLUME 0xFFFF
struct userdata {
pa_sink *sink;
pa_source *source;
pa_core *core;
pa_time_event *event;
pa_defer_event *defer;
pa_usec_t poll_timeout;
uint32_t fragments, fragment_size;
uint32_t free_ofrags, free_ifrags;
DWORD written_bytes;
int cur_ohdr, cur_ihdr;
unsigned int oremain;
WAVEHDR *ohdrs, *ihdrs;
pa_memchunk silence;
HWAVEOUT hwo;
HWAVEIN hwi;
pa_module *module;
CRITICAL_SECTION crit;
};
static const char* const valid_modargs[] = {
"sink_name",
"source_name",
"record",
"playback",
"fragments",
"fragment_size",
"format",
"rate",
"channels",
NULL
};
static void update_usage(struct userdata *u) {
pa_module_set_used(u->module,
(u->sink ? pa_idxset_size(u->sink->inputs) : 0) +
(u->sink ? pa_idxset_size(u->sink->monitor_source->outputs) : 0) +
(u->source ? pa_idxset_size(u->source->outputs) : 0));
}
static void do_write(struct userdata *u)
{
uint32_t free_frags, remain;
pa_memchunk memchunk, *cur_chunk;
WAVEHDR *hdr;
MMRESULT res;
if (!u->sink)
return;
EnterCriticalSection(&u->crit);
free_frags = u->free_ofrags;
u->free_ofrags = 0;
LeaveCriticalSection(&u->crit);
while (free_frags) {
hdr = &u->ohdrs[u->cur_ohdr];
if (hdr->dwFlags & WHDR_PREPARED)
waveOutUnprepareHeader(u->hwo, hdr, sizeof(WAVEHDR));
remain = u->oremain;
while (remain) {
cur_chunk = &memchunk;
if (pa_sink_render(u->sink, remain, cur_chunk) < 0) {
/*
* Don't fill with silence unless we're getting close to
* underflowing.
*/
if (free_frags > u->fragments/2)
cur_chunk = &u->silence;
else {
EnterCriticalSection(&u->crit);
u->free_ofrags += free_frags;
LeaveCriticalSection(&u->crit);
u->oremain = remain;
return;
}
}
assert(cur_chunk->memblock);
assert(cur_chunk->memblock->data);
assert(cur_chunk->length);
memcpy(hdr->lpData + u->fragment_size - remain,
(char*)cur_chunk->memblock->data + cur_chunk->index,
(cur_chunk->length < remain)?cur_chunk->length:remain);
remain -= (cur_chunk->length < remain)?cur_chunk->length:remain;
if (cur_chunk != &u->silence) {
pa_memblock_unref(cur_chunk->memblock);
cur_chunk->memblock = NULL;
}
}
res = waveOutPrepareHeader(u->hwo, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR) {
pa_log_error(__FILE__ ": ERROR: Unable to prepare waveOut block: %d",
res);
}
res = waveOutWrite(u->hwo, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR) {
pa_log_error(__FILE__ ": ERROR: Unable to write waveOut block: %d",
res);
}
u->written_bytes += u->fragment_size;
free_frags--;
u->cur_ohdr++;
u->cur_ohdr %= u->fragments;
u->oremain = u->fragment_size;
}
}
static void do_read(struct userdata *u)
{
uint32_t free_frags;
pa_memchunk memchunk;
WAVEHDR *hdr;
MMRESULT res;
if (!u->source)
return;
EnterCriticalSection(&u->crit);
free_frags = u->free_ifrags;
u->free_ifrags = 0;
LeaveCriticalSection(&u->crit);
while (free_frags) {
hdr = &u->ihdrs[u->cur_ihdr];
if (hdr->dwFlags & WHDR_PREPARED)
waveInUnprepareHeader(u->hwi, hdr, sizeof(WAVEHDR));
if (hdr->dwBytesRecorded) {
memchunk.memblock = pa_memblock_new(hdr->dwBytesRecorded, u->core->memblock_stat);
assert(memchunk.memblock);
memcpy((char*)memchunk.memblock->data, hdr->lpData, hdr->dwBytesRecorded);
memchunk.length = memchunk.memblock->length = hdr->dwBytesRecorded;
memchunk.index = 0;
pa_source_post(u->source, &memchunk);
pa_memblock_unref(memchunk.memblock);
}
res = waveInPrepareHeader(u->hwi, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR) {
pa_log_error(__FILE__ ": ERROR: Unable to prepare waveIn block: %d",
res);
}
res = waveInAddBuffer(u->hwi, hdr, sizeof(WAVEHDR));
if (res != MMSYSERR_NOERROR) {
pa_log_error(__FILE__ ": ERROR: Unable to add waveIn block: %d",
res);
}
free_frags--;
u->cur_ihdr++;
u->cur_ihdr %= u->fragments;
}
}
static void poll_cb(pa_mainloop_api*a, pa_time_event *e, const struct timeval *tv, void *userdata) {
struct userdata *u = userdata;
struct timeval ntv;
assert(u);
update_usage(u);
do_write(u);
do_read(u);
pa_gettimeofday(&ntv);
pa_timeval_add(&ntv, u->poll_timeout);
a->time_restart(e, &ntv);
}
static void defer_cb(pa_mainloop_api*a, pa_defer_event *e, void *userdata) {
struct userdata *u = userdata;
assert(u);
a->defer_enable(e, 0);
do_write(u);
do_read(u);
}
static void CALLBACK chunk_done_cb(HWAVEOUT hwo, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) {
struct userdata *u = (struct userdata *)inst;
if (msg != WOM_DONE)
return;
EnterCriticalSection(&u->crit);
u->free_ofrags++;
assert(u->free_ofrags <= u->fragments);
LeaveCriticalSection(&u->crit);
}
static void CALLBACK chunk_ready_cb(HWAVEIN hwi, UINT msg, DWORD_PTR inst, DWORD param1, DWORD param2) {
struct userdata *u = (struct userdata *)inst;
if (msg != WIM_DATA)
return;
EnterCriticalSection(&u->crit);
u->free_ifrags++;
assert(u->free_ifrags <= u->fragments);
LeaveCriticalSection(&u->crit);
}
static pa_usec_t sink_get_latency_cb(pa_sink *s) {
struct userdata *u = s->userdata;
uint32_t free_frags;
MMTIME mmt;
assert(s && u && u->sink);
memset(&mmt, 0, sizeof(mmt));
mmt.wType = TIME_BYTES;
if (waveOutGetPosition(u->hwo, &mmt, sizeof(mmt)) == MMSYSERR_NOERROR)
return pa_bytes_to_usec(u->written_bytes - mmt.u.cb, &s->sample_spec);
else {
EnterCriticalSection(&u->crit);
free_frags = u->free_ofrags;
LeaveCriticalSection(&u->crit);
return pa_bytes_to_usec((u->fragments - free_frags) * u->fragment_size,
&s->sample_spec);
}
}
static pa_usec_t source_get_latency_cb(pa_source *s) {
pa_usec_t r = 0;
struct userdata *u = s->userdata;
uint32_t free_frags;
assert(s && u && u->sink);
EnterCriticalSection(&u->crit);
free_frags = u->free_ifrags;
LeaveCriticalSection(&u->crit);
r += pa_bytes_to_usec((free_frags + 1) * u->fragment_size, &s->sample_spec);
return r;
}
static void notify_sink_cb(pa_sink *s) {
struct userdata *u = s->userdata;
assert(u);
u->core->mainloop->defer_enable(u->defer, 1);
}
static void notify_source_cb(pa_source *s) {
struct userdata *u = s->userdata;
assert(u);
u->core->mainloop->defer_enable(u->defer, 1);
}
static int sink_get_hw_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
DWORD vol;
pa_volume_t left, right;
if (waveOutGetVolume(u->hwo, &vol) != MMSYSERR_NOERROR)
return -1;
left = (vol & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME;
right = ((vol >> 16) & 0xFFFF) * PA_VOLUME_NORM / WAVEOUT_MAX_VOLUME;
/* Windows supports > 2 channels, except for volume control */
if (s->hw_volume.channels > 2)
pa_cvolume_set(&s->hw_volume, s->hw_volume.channels, (left + right)/2);
s->hw_volume.values[0] = left;
if (s->hw_volume.channels > 1)
s->hw_volume.values[1] = right;
return 0;
}
static int sink_set_hw_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
DWORD vol;
vol = s->hw_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM;
if (s->hw_volume.channels > 1)
vol |= (s->hw_volume.values[0] * WAVEOUT_MAX_VOLUME / PA_VOLUME_NORM) << 16;
if (waveOutSetVolume(u->hwo, vol) != MMSYSERR_NOERROR)
return -1;
return 0;
}
static int ss_to_waveformat(pa_sample_spec *ss, LPWAVEFORMATEX wf) {
wf->wFormatTag = WAVE_FORMAT_PCM;
if (ss->channels > 2) {
pa_log_error(__FILE__": ERROR: More than two channels not supported.");
return -1;
}
wf->nChannels = ss->channels;
switch (ss->rate) {
case 8000:
case 11025:
case 22005:
case 44100:
break;
default:
pa_log_error(__FILE__": ERROR: Unsupported sample rate.");
return -1;
}
wf->nSamplesPerSec = ss->rate;
if (ss->format == PA_SAMPLE_U8)
wf->wBitsPerSample = 8;
else if (ss->format == PA_SAMPLE_S16NE)
wf->wBitsPerSample = 16;
else {
pa_log_error(__FILE__": ERROR: Unsupported sample format.");
return -1;
}
wf->nBlockAlign = wf->nChannels * wf->wBitsPerSample/8;
wf->nAvgBytesPerSec = wf->nSamplesPerSec * wf->nBlockAlign;
wf->cbSize = 0;
return 0;
}
int pa__init(pa_core *c, pa_module*m) {
struct userdata *u = NULL;
HWAVEOUT hwo = INVALID_HANDLE_VALUE;
HWAVEIN hwi = INVALID_HANDLE_VALUE;
WAVEFORMATEX wf;
int nfrags, frag_size;
int record = 1, playback = 1;
pa_sample_spec ss;
pa_modargs *ma = NULL;
unsigned int i;
struct timeval tv;
assert(c && m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log(__FILE__": failed to parse module arguments.");
goto fail;
}
if (pa_modargs_get_value_boolean(ma, "record", &record) < 0 || pa_modargs_get_value_boolean(ma, "playback", &playback) < 0) {
pa_log(__FILE__": record= and playback= expect boolean argument.");
goto fail;
}
if (!playback && !record) {
pa_log(__FILE__": neither playback nor record enabled for device.");
goto fail;
}
nfrags = 20;
frag_size = 1024;
if (pa_modargs_get_value_s32(ma, "fragments", &nfrags) < 0 || pa_modargs_get_value_s32(ma, "fragment_size", &frag_size) < 0) {
pa_log(__FILE__": failed to parse fragments arguments");
goto fail;
}
ss = c->default_sample_spec;
if (pa_modargs_get_sample_spec(ma, &ss) < 0) {
pa_log(__FILE__": failed to parse sample specification");
goto fail;
}
if (ss_to_waveformat(&ss, &wf) < 0)
goto fail;
u = pa_xmalloc(sizeof(struct userdata));
if (record) {
if (waveInOpen(&hwi, WAVE_MAPPER, &wf, (DWORD_PTR)chunk_ready_cb, (DWORD_PTR)u, CALLBACK_FUNCTION) != MMSYSERR_NOERROR)
goto fail;
if (waveInStart(hwi) != MMSYSERR_NOERROR)
goto fail;
pa_log_debug(__FILE__": Opened waveIn subsystem.");
}
if (playback) {
if (waveOutOpen(&hwo, WAVE_MAPPER, &wf, (DWORD_PTR)chunk_done_cb, (DWORD_PTR)u, CALLBACK_FUNCTION) != MMSYSERR_NOERROR)
goto fail;
pa_log_debug(__FILE__": Opened waveOut subsystem.");
}
InitializeCriticalSection(&u->crit);
if (hwi != INVALID_HANDLE_VALUE) {
u->source = pa_source_new(c, __FILE__, pa_modargs_get_value(ma, "source_name", DEFAULT_SOURCE_NAME), 0, &ss, NULL);
assert(u->source);
u->source->userdata = u;
u->source->notify = notify_source_cb;
u->source->get_latency = source_get_latency_cb;
pa_source_set_owner(u->source, m);
u->source->description = pa_sprintf_malloc("Windows waveIn PCM");
} else
u->source = NULL;
if (hwo != INVALID_HANDLE_VALUE) {
u->sink = pa_sink_new(c, __FILE__, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME), 0, &ss, NULL);
assert(u->sink);
u->sink->notify = notify_sink_cb;
u->sink->get_latency = sink_get_latency_cb;
u->sink->get_hw_volume = sink_get_hw_volume_cb;
u->sink->set_hw_volume = sink_set_hw_volume_cb;
u->sink->userdata = u;
pa_sink_set_owner(u->sink, m);
u->sink->description = pa_sprintf_malloc("Windows waveOut PCM");
} else
u->sink = NULL;
assert(u->source || u->sink);
u->core = c;
u->hwi = hwi;
u->hwo = hwo;
u->fragments = nfrags;
u->free_ifrags = u->fragments;
u->free_ofrags = u->fragments;
u->fragment_size = frag_size - (frag_size % pa_frame_size(&ss));
u->written_bytes = 0;
u->oremain = u->fragment_size;
u->poll_timeout = pa_bytes_to_usec(u->fragments * u->fragment_size / 3, &ss);
pa_gettimeofday(&tv);
pa_timeval_add(&tv, u->poll_timeout);
u->event = c->mainloop->time_new(c->mainloop, &tv, poll_cb, u);
assert(u->event);
u->defer = c->mainloop->defer_new(c->mainloop, defer_cb, u);
assert(u->defer);
c->mainloop->defer_enable(u->defer, 0);
u->cur_ihdr = 0;
u->cur_ohdr = 0;
u->ihdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments);
assert(u->ihdrs);
u->ohdrs = pa_xmalloc0(sizeof(WAVEHDR) * u->fragments);
assert(u->ohdrs);
for (i = 0;i < u->fragments;i++) {
u->ihdrs[i].dwBufferLength = u->fragment_size;
u->ohdrs[i].dwBufferLength = u->fragment_size;
u->ihdrs[i].lpData = pa_xmalloc(u->fragment_size);
assert(u->ihdrs);
u->ohdrs[i].lpData = pa_xmalloc(u->fragment_size);
assert(u->ohdrs);
}
u->silence.length = u->fragment_size;
u->silence.memblock = pa_memblock_new(u->silence.length, u->core->memblock_stat);
assert(u->silence.memblock);
pa_silence_memblock(u->silence.memblock, &ss);
u->silence.index = 0;
u->module = m;
m->userdata = u;
pa_modargs_free(ma);
return 0;
fail:
if (hwi != INVALID_HANDLE_VALUE)
waveInClose(hwi);
if (hwo != INVALID_HANDLE_VALUE)
waveOutClose(hwo);
if (u)
pa_xfree(u);
if (ma)
pa_modargs_free(ma);
return -1;
}
void pa__done(pa_core *c, pa_module*m) {
struct userdata *u;
unsigned int i;
assert(c && m);
if (!(u = m->userdata))
return;
if (u->event)
c->mainloop->time_free(u->event);
if (u->defer)
c->mainloop->defer_free(u->defer);
if (u->sink) {
pa_sink_disconnect(u->sink);
pa_sink_unref(u->sink);
}
if (u->source) {
pa_source_disconnect(u->source);
pa_source_unref(u->source);
}
if (u->hwi != INVALID_HANDLE_VALUE) {
waveInReset(u->hwi);
waveInClose(u->hwi);
}
if (u->hwo != INVALID_HANDLE_VALUE) {
waveOutReset(u->hwo);
waveOutClose(u->hwo);
}
for (i = 0;i < u->fragments;i++) {
pa_xfree(u->ihdrs[i].lpData);
pa_xfree(u->ohdrs[i].lpData);
}
pa_xfree(u->ihdrs);
pa_xfree(u->ohdrs);
DeleteCriticalSection(&u->crit);
pa_xfree(u);
}