pulseaudio/src/modules/raop/raop-sink.c

676 lines
20 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
Copyright 2008 Colin Guthrie
Copyright 2013 Hajime Fujita
Copyright 2013 Martin Blanchard
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/ioctl.h>
#ifdef HAVE_LINUX_SOCKIOS_H
#include <linux/sockios.h>
#endif
#include <pulse/rtclock.h>
#include <pulse/timeval.h>
#include <pulse/volume.h>
#include <pulse/xmalloc.h>
#include <pulsecore/core.h>
#include <pulsecore/i18n.h>
#include <pulsecore/module.h>
#include <pulsecore/memchunk.h>
#include <pulsecore/sink.h>
#include <pulsecore/modargs.h>
#include <pulsecore/core-error.h>
#include <pulsecore/core-util.h>
#include <pulsecore/log.h>
#include <pulsecore/macro.h>
#include <pulsecore/thread.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/poll.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/time-smoother.h>
#include "raop-sink.h"
#include "raop-client.h"
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread *thread;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_rtpoll_item *rtpoll_item;
bool oob;
pa_raop_client *raop;
pa_raop_protocol_t protocol;
pa_raop_encryption_t encryption;
pa_raop_codec_t codec;
size_t block_size;
pa_memchunk memchunk;
pa_usec_t delay;
pa_usec_t start;
pa_smoother *smoother;
uint64_t write_count;
};
enum {
PA_SINK_MESSAGE_SET_RAOP_STATE = PA_SINK_MESSAGE_MAX
};
static void userdata_free(struct userdata *u);
static void sink_set_volume_cb(pa_sink *s);
static void raop_state_cb(pa_raop_state_t state, void *userdata) {
struct userdata *u = userdata;
pa_assert(u);
pa_log_debug("State change recieved, informing IO thread...");
pa_asyncmsgq_post(u->thread_mq.inq, PA_MSGOBJECT(u->sink), PA_SINK_MESSAGE_SET_RAOP_STATE, PA_INT_TO_PTR(state), 0, NULL, NULL);
}
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
static int64_t sink_get_latency(const struct userdata *u) {
pa_usec_t now;
int64_t latency;
pa_assert(u);
pa_assert(u->smoother);
now = pa_rtclock_now();
now = pa_smoother_get(u->smoother, now);
latency = pa_bytes_to_usec(u->write_count, &u->sink->sample_spec) - (int64_t) now;
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
return latency;
}
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
pa_assert(u);
pa_assert(u->raop);
switch (code) {
case PA_SINK_MESSAGE_SET_STATE: {
switch ((pa_sink_state_t) PA_PTR_TO_UINT(data)) {
case PA_SINK_SUSPENDED: {
pa_log_debug("RAOP: SUSPENDED");
pa_assert(PA_SINK_IS_OPENED(u->sink->thread_info.state));
pa_smoother_pause(u->smoother, pa_rtclock_now());
/* Issue a TEARDOWN if we are still connected */
if (pa_raop_client_is_alive(u->raop)) {
pa_raop_client_teardown(u->raop);
}
break;
}
case PA_SINK_IDLE: {
pa_log_debug("RAOP: IDLE");
/* Issue a FLUSH if we're comming from running state */
if (u->sink->thread_info.state == PA_SINK_RUNNING) {
pa_rtpoll_set_timer_disabled(u->rtpoll);
pa_raop_client_flush(u->raop);
}
break;
}
case PA_SINK_RUNNING: {
pa_usec_t now;
pa_log_debug("RAOP: RUNNING");
now = pa_rtclock_now();
pa_smoother_resume(u->smoother, now, true);
if (!pa_raop_client_is_alive(u->raop)) {
/* Connecting will trigger a RECORD and start steaming */
pa_raop_client_announce(u->raop);
} else if (!pa_raop_client_can_stream(u->raop)) {
/* RECORD alredy sent, simply start streaming */
pa_raop_client_stream(u->raop);
pa_rtpoll_set_timer_absolute(u->rtpoll, now);
u->write_count = 0;
u->start = now;
}
break;
}
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
break;
}
break;
}
case PA_SINK_MESSAGE_GET_LATENCY: {
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
int64_t r = 0;
if (pa_raop_client_can_stream(u->raop))
r = sink_get_latency(u);
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
*((int64_t*) data) = r;
return 0;
}
case PA_SINK_MESSAGE_SET_RAOP_STATE: {
switch ((pa_raop_state_t) PA_PTR_TO_UINT(data)) {
case PA_RAOP_AUTHENTICATED: {
if (!pa_raop_client_is_authenticated(u->raop)) {
pa_module_unload_request(u->module, true);
}
return 0;
}
case PA_RAOP_CONNECTED: {
pa_assert(!u->rtpoll_item);
u->oob = pa_raop_client_register_pollfd(u->raop, u->rtpoll, &u->rtpoll_item);
return 0;
}
case PA_RAOP_RECORDING: {
pa_usec_t now;
now = pa_rtclock_now();
pa_rtpoll_set_timer_absolute(u->rtpoll, now);
u->write_count = 0;
u->start = now;
if (u->sink->thread_info.state == PA_SINK_SUSPENDED) {
/* Our stream has been suspended so we just flush it... */
pa_rtpoll_set_timer_disabled(u->rtpoll);
pa_raop_client_flush(u->raop);
} else {
/* Set the initial volume */
sink_set_volume_cb(u->sink);
}
return 0;
}
case PA_RAOP_INVALID_STATE:
case PA_RAOP_DISCONNECTED: {
unsigned int nbfds = 0;
struct pollfd *pollfd;
unsigned int i;
if (u->rtpoll_item) {
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, &nbfds);
if (pollfd) {
for (i = 0; i < nbfds; i++) {
if (pollfd->fd >= 0)
pa_close(pollfd->fd);
pollfd++;
}
}
pa_rtpoll_item_free(u->rtpoll_item);
u->rtpoll_item = NULL;
}
if (u->sink->thread_info.state == PA_SINK_SUSPENDED)
pa_rtpoll_set_timer_disabled(u->rtpoll);
else if (u->sink->thread_info.state != PA_SINK_IDLE)
pa_module_unload_request(u->module, true);
return 0;
}
}
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
static void sink_set_volume_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_cvolume hw;
pa_volume_t v, v_orig;
char t[PA_CVOLUME_SNPRINT_VERBOSE_MAX];
pa_assert(u);
/* If we're muted we don't need to do anything. */
if (s->muted)
return;
/* Calculate the max volume of all channels.
* We'll use this as our (single) volume on the APEX device and emulate
* any variation in channel volumes in software. */
v = pa_cvolume_max(&s->real_volume);
v_orig = v;
v = pa_raop_client_adjust_volume(u->raop, v_orig);
pa_log_debug("Volume adjusted: orig=%u adjusted=%u", v_orig, v);
/* Create a pa_cvolume version of our single value. */
pa_cvolume_set(&hw, s->sample_spec.channels, v);
/* Perform any software manipulation of the volume needed. */
pa_sw_cvolume_divide(&s->soft_volume, &s->real_volume, &hw);
pa_log_debug("Requested volume: %s", pa_cvolume_snprint_verbose(t, sizeof(t), &s->real_volume, &s->channel_map, false));
pa_log_debug("Got hardware volume: %s", pa_cvolume_snprint_verbose(t, sizeof(t), &hw, &s->channel_map, false));
pa_log_debug("Calculated software volume: %s",
pa_cvolume_snprint_verbose(t, sizeof(t), &s->soft_volume, &s->channel_map, true));
/* Any necessary software volume manipulation is done so set
* our hw volume (or v as a single value) on the device. */
pa_raop_client_set_volume(u->raop, v);
}
static void sink_set_mute_cb(pa_sink *s) {
struct userdata *u = s->userdata;
pa_assert(u);
pa_assert(u->raop);
if (s->muted) {
pa_raop_client_set_volume(u->raop, PA_VOLUME_MUTED);
} else {
sink_set_volume_cb(s);
}
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
size_t offset = 0;
pa_assert(u);
pa_log_debug("Thread starting up");
pa_thread_mq_install(&u->thread_mq);
pa_smoother_set_time_offset(u->smoother, pa_rtclock_now());
for (;;) {
struct pollfd *pollfd = NULL;
unsigned int i, nbfds = 0;
pa_usec_t now, estimated, intvl;
uint64_t position;
size_t index;
int ret;
if (PA_SINK_IS_OPENED(u->sink->thread_info.state)) {
if (u->sink->thread_info.rewind_requested)
pa_sink_process_rewind(u->sink, 0);
}
/* Polling (audio data + control socket + timing socket). */
if ((ret = pa_rtpoll_run(u->rtpoll)) < 0)
goto fail;
else if (ret == 0)
goto finish;
if (u->rtpoll_item) {
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, &nbfds);
/* If !oob: streaming driven by pollds (POLLOUT) */
if (pollfd && !u->oob && !pollfd->revents) {
for (i = 0; i < nbfds; i++) {
pollfd->events = POLLOUT;
pollfd->revents = 0;
pollfd++;
}
continue;
}
/* if oob: streaming managed by timing, pollfd for oob sockets */
if (pollfd && u->oob && !pa_rtpoll_timer_elapsed(u->rtpoll)) {
uint8_t packet[32];
ssize_t read;
for (i = 0; i < nbfds; i++) {
if (pollfd->revents & pollfd->events) {
pollfd->revents = 0;
read = pa_read(pollfd->fd, packet, sizeof(packet), NULL);
pa_raop_client_handle_oob_packet(u->raop, pollfd->fd, packet, read);
}
pollfd++;
}
continue;
}
}
if (u->sink->thread_info.state != PA_SINK_RUNNING)
continue;
if (!pa_raop_client_can_stream(u->raop))
continue;
if (u->memchunk.length <= 0) {
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
pa_memchunk_reset(&u->memchunk);
/* Grab unencoded audio data from PulseAudio */
pa_sink_render_full(u->sink, u->block_size, &u->memchunk);
offset = u->memchunk.index;
}
pa_assert(u->memchunk.length > 0);
index = u->memchunk.index;
if (pa_raop_client_send_audio_packet(u->raop, &u->memchunk, offset) < 0) {
if (errno == EINTR) {
/* Just try again. */
pa_log_debug("Failed to write data to FIFO (EINTR), retrying");
goto fail;
} else if (errno != EAGAIN) {
/* Buffer is full, wait for POLLOUT. */
pollfd->events = POLLOUT;
pollfd->revents = 0;
} else {
pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
goto fail;
}
} else {
u->write_count += (uint64_t) u->memchunk.index - (uint64_t) index;
position = u->write_count - pa_usec_to_bytes(u->delay, &u->sink->sample_spec);
now = pa_rtclock_now();
estimated = pa_bytes_to_usec(position, &u->sink->sample_spec);
pa_smoother_put(u->smoother, now, estimated);
if (u->oob && !pollfd->revents) {
/* Sleep until next packet transmission */
intvl = u->start + pa_bytes_to_usec(u->write_count, &u->sink->sample_spec);
pa_rtpoll_set_timer_absolute(u->rtpoll, intvl);
} else if (!u->oob) {
if (u->memchunk.length > 0) {
pollfd->events = POLLOUT;
pollfd->revents = 0;
} else {
intvl = u->start + pa_bytes_to_usec(u->write_count, &u->sink->sample_spec);
pa_rtpoll_set_timer_absolute(u->rtpoll, intvl);
pollfd->revents = 0;
pollfd->events = 0;
}
}
}
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
pa_sink* pa_raop_sink_new(pa_module *m, pa_modargs *ma, const char *driver) {
struct userdata *u = NULL;
pa_sample_spec ss;
char *thread_name = NULL;
const char *server, *protocol, *encryption, *codec;
const char /* *username, */ *password;
pa_sink_new_data data;
const char *name = NULL;
pa_assert(m);
pa_assert(ma);
ss = m->core->default_sample_spec;
if (pa_modargs_get_sample_spec(ma, &ss) < 0) {
pa_log("Failed to parse sample specification");
goto fail;
}
if (!(server = pa_modargs_get_value(ma, "server", NULL))) {
pa_log("Failed to parse server argument");
goto fail;
}
if (!(protocol = pa_modargs_get_value(ma, "protocol", NULL))) {
pa_log("Failed to parse protocol argument");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
u->thread = NULL;
u->rtpoll = pa_rtpoll_new();
u->rtpoll_item = NULL;
if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) {
pa_log("pa_thread_mq_init() failed.");
goto fail;
}
u->oob = true;
u->block_size = 0;
pa_memchunk_reset(&u->memchunk);
u->delay = 0;
u->smoother = pa_smoother_new(
PA_USEC_PER_SEC,
PA_USEC_PER_SEC*2,
true,
true,
10,
0,
false);
u->write_count = 0;
if (pa_streq(protocol, "TCP")) {
u->protocol = PA_RAOP_PROTOCOL_TCP;
} else if (pa_streq(protocol, "UDP")) {
u->protocol = PA_RAOP_PROTOCOL_UDP;
} else {
pa_log("Unsupported transport protocol argument: %s", protocol);
goto fail;
}
encryption = pa_modargs_get_value(ma, "encryption", NULL);
codec = pa_modargs_get_value(ma, "codec", NULL);
if (!encryption) {
u->encryption = PA_RAOP_ENCRYPTION_NONE;
} else if (pa_streq(encryption, "none")) {
u->encryption = PA_RAOP_ENCRYPTION_NONE;
} else if (pa_streq(encryption, "RSA")) {
u->encryption = PA_RAOP_ENCRYPTION_RSA;
} else {
pa_log("Unsupported encryption type argument: %s", encryption);
goto fail;
}
if (!codec) {
u->codec = PA_RAOP_CODEC_PCM;
} else if (pa_streq(codec, "PCM")) {
u->codec = PA_RAOP_CODEC_PCM;
} else if (pa_streq(codec, "ALAC")) {
u->codec = PA_RAOP_CODEC_ALAC;
} else {
pa_log("Unsupported audio codec argument: %s", codec);
goto fail;
}
pa_sink_new_data_init(&data);
data.driver = driver;
data.module = m;
if ((name = pa_modargs_get_value(ma, "sink_name", NULL))) {
pa_sink_new_data_set_name(&data, name);
} else {
char *nick;
if ((name = pa_modargs_get_value(ma, "name", NULL)))
nick = pa_sprintf_malloc("raop_client.%s", name);
else
nick = pa_sprintf_malloc("raop_client.%s", server);
pa_sink_new_data_set_name(&data, nick);
pa_xfree(nick);
}
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_STRING, server);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_INTENDED_ROLES, "music");
pa_proplist_setf(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "RAOP sink '%s'", server);
if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&data);
goto fail;
}
u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY | PA_SINK_NETWORK);
pa_sink_new_data_done(&data);
if (!(u->sink)) {
pa_log("Failed to create sink object");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
pa_sink_set_set_volume_callback(u->sink, sink_set_volume_cb);
pa_sink_set_set_mute_callback(u->sink, sink_set_mute_cb);
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
u->raop = pa_raop_client_new(u->core, server, u->protocol, u->encryption, u->codec);
if (!(u->raop)) {
pa_log("Failed to create RAOP client object");
goto fail;
}
/* The number of frames per blocks is not negotiable... */
pa_raop_client_get_frames_per_block(u->raop, &u->block_size);
u->block_size *= pa_frame_size(&ss);
pa_sink_set_max_request(u->sink, u->block_size);
pa_raop_client_set_state_callback(u->raop, raop_state_cb, u);
thread_name = pa_sprintf_malloc("raop-sink-%s", server);
if (!(u->thread = pa_thread_new(thread_name, thread_func, u))) {
pa_log("Failed to create sink thread");
goto fail;
}
pa_xfree(thread_name);
thread_name = NULL;
pa_sink_put(u->sink);
/* username = pa_modargs_get_value(ma, "username", NULL); */
password = pa_modargs_get_value(ma, "password", NULL);
pa_raop_client_authenticate(u->raop, password );
return u->sink;
fail:
pa_xfree(thread_name);
if (u)
userdata_free(u);
return NULL;
}
static void userdata_free(struct userdata *u) {
pa_assert(u);
if (u->sink)
pa_sink_unlink(u->sink);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
u->sink = NULL;
if (u->rtpoll_item)
pa_rtpoll_item_free(u->rtpoll_item);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
u->rtpoll_item = NULL;
u->rtpoll = NULL;
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
if (u->raop)
pa_raop_client_free(u->raop);
u->raop = NULL;
if (u->smoother)
pa_smoother_free(u->smoother);
u->smoother = NULL;
pa_xfree(u);
}
void pa_raop_sink_free(pa_sink *s) {
struct userdata *u;
pa_sink_assert_ref(s);
pa_assert_se(u = s->userdata);
userdata_free(u);
}