pulseaudio/src/modules/module-esound-sink.c

735 lines
19 KiB
C
Raw Normal View History

/***
This file is part of PulseAudio.
Copyright 2004-2006 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#ifdef HAVE_NETINET_IN_H
#include <netinet/in.h>
#endif
#ifdef HAVE_NETINET_TCP_H
#include <netinet/tcp.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#ifdef HAVE_LINUX_SOCKIOS_H
#include <linux/sockios.h>
#endif
#include <pulse/rtclock.h>
#include <pulse/timeval.h>
#include <pulse/xmalloc.h>
#include <pulsecore/socket.h>
#include <pulsecore/core-error.h>
#include <pulsecore/iochannel.h>
#include <pulsecore/sink.h>
#include <pulsecore/module.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/log.h>
#include <pulsecore/socket-client.h>
#include <pulsecore/esound.h>
#include <pulsecore/authkey.h>
#include <pulsecore/thread-mq.h>
#include <pulsecore/thread.h>
#include <pulsecore/time-smoother.h>
#include <pulsecore/socket-util.h>
#include <pulsecore/rtpoll.h>
#include <pulsecore/poll.h>
PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("ESOUND Sink");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
"sink_name=<name for the sink> "
"sink_properties=<properties for the sink> "
"server=<address> cookie=<filename> "
"format=<sample format> "
"rate=<sample rate> "
"channels=<number of channels>");
#define DEFAULT_SINK_NAME "esound_out"
struct userdata {
pa_core *core;
pa_module *module;
pa_sink *sink;
pa_thread_mq thread_mq;
pa_rtpoll *rtpoll;
pa_rtpoll_item *rtpoll_item;
pa_thread *thread;
pa_memchunk memchunk;
void *write_data;
size_t write_length, write_index;
void *read_data;
size_t read_length, read_index;
enum {
STATE_AUTH,
STATE_LATENCY,
STATE_PREPARE,
STATE_RUNNING,
STATE_DEAD
} state;
pa_usec_t latency;
esd_format_t format;
int32_t rate;
pa_smoother *smoother;
int fd;
int64_t offset;
pa_iochannel *io;
pa_socket_client *client;
size_t block_size;
};
static const char* const valid_modargs[] = {
"sink_name",
"sink_properties",
"server",
"cookie",
"format",
"rate",
"channels",
NULL
};
enum {
SINK_MESSAGE_PASS_SOCKET = PA_SINK_MESSAGE_MAX
};
static int sink_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
struct userdata *u = PA_SINK(o)->userdata;
switch (code) {
case PA_SINK_MESSAGE_GET_LATENCY: {
pa_usec_t w, r;
r = pa_smoother_get(u->smoother, pa_rtclock_now());
w = pa_bytes_to_usec((uint64_t) u->offset + u->memchunk.length, &u->sink->sample_spec);
source/sink: Allow pa_{source, sink}_get_latency_within_thread() to return negative values The reported latency of source or sink is based on measured initial conditions. If the conditions contain an error, the estimated latency values may become negative. This does not indicate that the latency is indeed negative but can be considered merely an offset error. The current get_latency_in_thread() calls and the implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY messages truncate negative latencies because they do not make sense from a physical point of view. In fact, the values are truncated twice, once in the message handler and a second time in the pa_{source,sink}_get_latency_within_thread() call itself. This leads to two problems for the latency controller within module-loopback: - Truncating leads to discontinuities in the latency reports which then trigger unwanted end to end latency corrections. - If a large negative port latency offsets is set, the reported latency is always 0, making it impossible to control the end to end latency at all. This patch is a pre-condition for solving these problems. It adds a new flag to pa_{sink,source}_get_latency_within_thread() to allow negative return values. Truncating is also removed in all implementations of the PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY message handlers. The allow_negative flag is set to false for all calls of pa_{sink,source}_get_latency_within_thread() except when used within PA_{SINK,SOURCE}_MESSAGE_GET_LATENCY. This means that the original behavior is not altered in most cases. Only if a positive latency offset is set and the message returns a negative value, the reported latency is smaller because the values are not truncated twice. Additionally let PA_SOURCE_MESSAGE_GET_LATENCY return -pa_sink_get_latency_within_thread() for monitor sources because the source gets the data before it is played.
2017-04-17 19:50:10 +02:00
*((int64_t*) data) = (int64_t)w - r;
return 0;
}
case SINK_MESSAGE_PASS_SOCKET: {
struct pollfd *pollfd;
pa_assert(!u->rtpoll_item);
u->rtpoll_item = pa_rtpoll_item_new(u->rtpoll, PA_RTPOLL_NEVER, 1);
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
pollfd->fd = u->fd;
pollfd->events = pollfd->revents = 0;
return 0;
}
}
return pa_sink_process_msg(o, code, data, offset, chunk);
}
/* Called from the IO thread. */
static int sink_set_state_in_io_thread_cb(pa_sink *s, pa_sink_state_t new_state, pa_suspend_cause_t new_suspend_cause) {
struct userdata *u;
pa_assert(s);
pa_assert_se(u = s->userdata);
/* It may be that only the suspend cause is changing, in which case there's
* nothing to do. */
if (new_state == s->thread_info.state)
return 0;
switch (new_state) {
case PA_SINK_SUSPENDED:
pa_assert(PA_SINK_IS_OPENED(u->sink->thread_info.state));
pa_smoother_pause(u->smoother, pa_rtclock_now());
break;
case PA_SINK_IDLE:
case PA_SINK_RUNNING:
if (u->sink->thread_info.state == PA_SINK_SUSPENDED)
pa_smoother_resume(u->smoother, pa_rtclock_now(), true);
break;
case PA_SINK_UNLINKED:
case PA_SINK_INIT:
case PA_SINK_INVALID_STATE:
;
}
return 0;
}
static void thread_func(void *userdata) {
struct userdata *u = userdata;
int write_type = 0;
pa_assert(u);
pa_log_debug("Thread starting up");
pa_thread_mq_install(&u->thread_mq);
pa_smoother_set_time_offset(u->smoother, pa_rtclock_now());
for (;;) {
int ret;
if (PA_UNLIKELY(u->sink->thread_info.rewind_requested))
pa_sink_process_rewind(u->sink, 0);
if (u->rtpoll_item) {
struct pollfd *pollfd;
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
/* Render some data and write it to the fifo */
if (PA_SINK_IS_OPENED(u->sink->thread_info.state) && pollfd->revents) {
pa_usec_t usec;
int64_t n;
for (;;) {
ssize_t l;
void *p;
if (u->memchunk.length <= 0)
pa_sink_render(u->sink, u->block_size, &u->memchunk);
pa_assert(u->memchunk.length > 0);
p = pa_memblock_acquire(u->memchunk.memblock);
l = pa_write(u->fd, (uint8_t*) p + u->memchunk.index, u->memchunk.length, &write_type);
pa_memblock_release(u->memchunk.memblock);
pa_assert(l != 0);
if (l < 0) {
if (errno == EINTR)
continue;
else if (errno == EAGAIN) {
/* OK, we filled all socket buffers up
* now. */
goto filled_up;
} else {
pa_log("Failed to write data to FIFO: %s", pa_cstrerror(errno));
goto fail;
}
} else {
u->offset += l;
u->memchunk.index += (size_t) l;
u->memchunk.length -= (size_t) l;
if (u->memchunk.length <= 0) {
pa_memblock_unref(u->memchunk.memblock);
pa_memchunk_reset(&u->memchunk);
}
pollfd->revents = 0;
if (u->memchunk.length > 0)
/* OK, we wrote less that we asked for,
* hence we can assume that the socket
* buffers are full now */
goto filled_up;
}
}
filled_up:
/* At this spot we know that the socket buffers are
* fully filled up. This is the best time to estimate
* the playback position of the server */
n = u->offset;
#ifdef SIOCOUTQ
{
int l;
if (ioctl(u->fd, SIOCOUTQ, &l) >= 0 && l > 0)
n -= l;
}
#endif
usec = pa_bytes_to_usec((uint64_t) n, &u->sink->sample_spec);
if (usec > u->latency)
usec -= u->latency;
else
usec = 0;
pa_smoother_put(u->smoother, pa_rtclock_now(), usec);
}
/* Hmm, nothing to do. Let's sleep */
pollfd->events = (short) (PA_SINK_IS_OPENED(u->sink->thread_info.state) ? POLLOUT : 0);
}
if ((ret = pa_rtpoll_run(u->rtpoll)) < 0)
goto fail;
if (ret == 0)
goto finish;
if (u->rtpoll_item) {
struct pollfd* pollfd;
pollfd = pa_rtpoll_item_get_pollfd(u->rtpoll_item, NULL);
if (pollfd->revents & ~POLLOUT) {
pa_log("FIFO shutdown.");
goto fail;
}
}
}
fail:
/* If this was no regular exit from the loop we have to continue
* processing messages until we received PA_MESSAGE_SHUTDOWN */
pa_asyncmsgq_post(u->thread_mq.outq, PA_MSGOBJECT(u->core), PA_CORE_MESSAGE_UNLOAD_MODULE, u->module, 0, NULL, NULL);
pa_asyncmsgq_wait_for(u->thread_mq.inq, PA_MESSAGE_SHUTDOWN);
finish:
pa_log_debug("Thread shutting down");
}
static int do_write(struct userdata *u) {
ssize_t r;
pa_assert(u);
if (!pa_iochannel_is_writable(u->io))
return 0;
if (u->write_data) {
pa_assert(u->write_index < u->write_length);
if ((r = pa_iochannel_write(u->io, (uint8_t*) u->write_data + u->write_index, u->write_length - u->write_index)) < 0) {
pa_log("write() failed: %s", pa_cstrerror(errno));
return -1;
}
u->write_index += (size_t) r;
pa_assert(u->write_index <= u->write_length);
if (u->write_index == u->write_length) {
pa_xfree(u->write_data);
u->write_data = NULL;
u->write_index = u->write_length = 0;
}
}
if (!u->write_data && u->state == STATE_PREPARE) {
2009-03-25 01:17:56 +01:00
int so_sndbuf = 0;
socklen_t sl = sizeof(int);
/* OK, we're done with sending all control data we need to, so
* let's hand the socket over to the IO thread now */
pa_assert(u->fd < 0);
u->fd = pa_iochannel_get_send_fd(u->io);
pa_iochannel_set_noclose(u->io, true);
pa_iochannel_free(u->io);
u->io = NULL;
pa_make_tcp_socket_low_delay(u->fd);
if (getsockopt(u->fd, SOL_SOCKET, SO_SNDBUF, (void *) &so_sndbuf, &sl) < 0)
2009-03-25 01:17:56 +01:00
pa_log_warn("getsockopt(SO_SNDBUF) failed: %s", pa_cstrerror(errno));
else {
pa_log_debug("SO_SNDBUF is %zu.", (size_t) so_sndbuf);
pa_sink_set_max_request(u->sink, PA_MAX((size_t) so_sndbuf, u->block_size));
}
pa_log_debug("Connection authenticated, handing fd to IO thread...");
pa_asyncmsgq_post(u->thread_mq.inq, PA_MSGOBJECT(u->sink), SINK_MESSAGE_PASS_SOCKET, NULL, 0, NULL, NULL);
u->state = STATE_RUNNING;
}
return 0;
}
static int handle_response(struct userdata *u) {
pa_assert(u);
switch (u->state) {
case STATE_AUTH:
pa_assert(u->read_length == sizeof(int32_t));
/* Process auth data */
if (!*(int32_t*) u->read_data) {
pa_log("Authentication failed: %s", pa_cstrerror(errno));
return -1;
}
/* Request latency data */
pa_assert(!u->write_data);
*(int32_t*) (u->write_data = pa_xmalloc(u->write_length = sizeof(int32_t))) = ESD_PROTO_LATENCY;
u->write_index = 0;
u->state = STATE_LATENCY;
/* Space for next response */
pa_assert(u->read_length >= sizeof(int32_t));
u->read_index = 0;
u->read_length = sizeof(int32_t);
break;
case STATE_LATENCY: {
int32_t *p;
pa_assert(u->read_length == sizeof(int32_t));
/* Process latency info */
u->latency = (pa_usec_t) ((double) (*(int32_t*) u->read_data) * 1000000 / 44100);
if (u->latency > 10000000) {
pa_log_warn("Invalid latency information received from server");
u->latency = 0;
}
/* Create stream */
pa_assert(!u->write_data);
p = u->write_data = pa_xmalloc0(u->write_length = sizeof(int32_t)*3+ESD_NAME_MAX);
*(p++) = ESD_PROTO_STREAM_PLAY;
*(p++) = u->format;
*(p++) = u->rate;
pa_strlcpy((char*) p, "PulseAudio Tunnel", ESD_NAME_MAX);
u->write_index = 0;
u->state = STATE_PREPARE;
/* Don't read any further */
pa_xfree(u->read_data);
u->read_data = NULL;
u->read_index = u->read_length = 0;
break;
}
default:
pa_assert_not_reached();
}
return 0;
}
static int do_read(struct userdata *u) {
pa_assert(u);
if (!pa_iochannel_is_readable(u->io))
return 0;
if (u->state == STATE_AUTH || u->state == STATE_LATENCY) {
ssize_t r;
if (!u->read_data)
return 0;
pa_assert(u->read_index < u->read_length);
if ((r = pa_iochannel_read(u->io, (uint8_t*) u->read_data + u->read_index, u->read_length - u->read_index)) <= 0) {
pa_log("read() failed: %s", r < 0 ? pa_cstrerror(errno) : "EOF");
return -1;
}
u->read_index += (size_t) r;
pa_assert(u->read_index <= u->read_length);
if (u->read_index == u->read_length)
return handle_response(u);
}
return 0;
}
2008-08-09 16:20:29 +02:00
static void io_callback(pa_iochannel *io, void*userdata) {
struct userdata *u = userdata;
pa_assert(u);
if (do_read(u) < 0 || do_write(u) < 0) {
if (u->io) {
pa_iochannel_free(u->io);
u->io = NULL;
}
pa_module_unload_request(u->module, true);
}
}
2008-08-09 16:20:29 +02:00
static void on_connection(pa_socket_client *c, pa_iochannel*io, void *userdata) {
struct userdata *u = userdata;
pa_socket_client_unref(u->client);
u->client = NULL;
if (!io) {
pa_log("Connection failed: %s", pa_cstrerror(errno));
pa_module_unload_request(u->module, true);
return;
}
pa_assert(!u->io);
u->io = io;
pa_iochannel_set_callback(u->io, io_callback, u);
pa_log_debug("Connection established, authenticating ...");
}
int pa__init(pa_module*m) {
struct userdata *u = NULL;
pa_sample_spec ss;
pa_modargs *ma = NULL;
const char *espeaker;
uint32_t key;
pa_sink_new_data data;
char *cookie_path;
int r;
pa_assert(m);
if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
pa_log("failed to parse module arguments");
goto fail;
}
ss = m->core->default_sample_spec;
if (pa_modargs_get_sample_spec(ma, &ss) < 0) {
pa_log("invalid sample format specification");
goto fail;
}
if ((ss.format != PA_SAMPLE_U8 && ss.format != PA_SAMPLE_S16NE) ||
(ss.channels > 2)) {
pa_log("esound sample type support is limited to mono/stereo and U8 or S16NE sample data");
goto fail;
}
u = pa_xnew0(struct userdata, 1);
u->core = m->core;
u->module = m;
m->userdata = u;
u->fd = -1;
u->smoother = pa_smoother_new(
PA_USEC_PER_SEC,
PA_USEC_PER_SEC*2,
true,
true,
10,
0,
false);
pa_memchunk_reset(&u->memchunk);
u->offset = 0;
u->rtpoll = pa_rtpoll_new();
if (pa_thread_mq_init(&u->thread_mq, m->core->mainloop, u->rtpoll) < 0) {
pa_log("pa_thread_mq_init() failed.");
goto fail;
}
u->rtpoll_item = NULL;
u->format =
(ss.format == PA_SAMPLE_U8 ? ESD_BITS8 : ESD_BITS16) |
(ss.channels == 2 ? ESD_STEREO : ESD_MONO);
u->rate = (int32_t) ss.rate;
u->block_size = pa_usec_to_bytes(PA_USEC_PER_SEC/20, &ss);
u->read_data = u->write_data = NULL;
u->read_index = u->write_index = u->read_length = u->write_length = 0;
u->state = STATE_AUTH;
u->latency = 0;
if (!(espeaker = getenv("ESPEAKER")))
espeaker = ESD_UNIX_SOCKET_NAME;
espeaker = pa_modargs_get_value(ma, "server", espeaker);
pa_sink_new_data_init(&data);
data.driver = __FILE__;
data.module = m;
pa_sink_new_data_set_name(&data, pa_modargs_get_value(ma, "sink_name", DEFAULT_SINK_NAME));
pa_sink_new_data_set_sample_spec(&data, &ss);
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_STRING, espeaker);
2009-03-25 01:18:29 +01:00
pa_proplist_sets(data.proplist, PA_PROP_DEVICE_API, "esd");
pa_proplist_setf(data.proplist, PA_PROP_DEVICE_DESCRIPTION, "EsounD Output on %s", espeaker);
if (pa_modargs_get_proplist(ma, "sink_properties", data.proplist, PA_UPDATE_REPLACE) < 0) {
pa_log("Invalid properties");
pa_sink_new_data_done(&data);
goto fail;
}
u->sink = pa_sink_new(m->core, &data, PA_SINK_LATENCY|PA_SINK_NETWORK);
pa_sink_new_data_done(&data);
if (!u->sink) {
pa_log("Failed to create sink.");
goto fail;
}
u->sink->parent.process_msg = sink_process_msg;
u->sink->set_state_in_io_thread = sink_set_state_in_io_thread_cb;
u->sink->userdata = u;
pa_sink_set_asyncmsgq(u->sink, u->thread_mq.inq);
pa_sink_set_rtpoll(u->sink, u->rtpoll);
if (!(u->client = pa_socket_client_new_string(u->core->mainloop, true, espeaker, ESD_DEFAULT_PORT))) {
pa_log("Failed to connect to server.");
goto fail;
}
pa_socket_client_set_callback(u->client, on_connection, u);
cookie_path = pa_xstrdup(pa_modargs_get_value(ma, "cookie", NULL));
if (!cookie_path) {
if (pa_append_to_home_dir(".esd_auth", &cookie_path) < 0)
goto fail;
}
/* Prepare the initial request */
u->write_data = pa_xmalloc(u->write_length = ESD_KEY_LEN + sizeof(int32_t));
r = pa_authkey_load(cookie_path, true, u->write_data, ESD_KEY_LEN);
pa_xfree(cookie_path);
if (r < 0) {
pa_log("Failed to load cookie");
goto fail;
}
key = ESD_ENDIAN_KEY;
memcpy((uint8_t*) u->write_data + ESD_KEY_LEN, &key, sizeof(key));
/* Reserve space for the response */
u->read_data = pa_xmalloc(u->read_length = sizeof(int32_t));
if (!(u->thread = pa_thread_new("esound-sink", thread_func, u))) {
pa_log("Failed to create thread.");
goto fail;
}
pa_sink_put(u->sink);
pa_modargs_free(ma);
return 0;
fail:
if (ma)
pa_modargs_free(ma);
pa__done(m);
return -1;
}
int pa__get_n_used(pa_module *m) {
struct userdata *u;
pa_assert(m);
pa_assert_se(u = m->userdata);
return pa_sink_linked_by(u->sink);
}
void pa__done(pa_module*m) {
struct userdata *u;
pa_assert(m);
if (!(u = m->userdata))
return;
if (u->sink)
pa_sink_unlink(u->sink);
if (u->thread) {
pa_asyncmsgq_send(u->thread_mq.inq, NULL, PA_MESSAGE_SHUTDOWN, NULL, 0, NULL);
pa_thread_free(u->thread);
}
pa_thread_mq_done(&u->thread_mq);
if (u->sink)
pa_sink_unref(u->sink);
if (u->io)
pa_iochannel_free(u->io);
if (u->rtpoll_item)
pa_rtpoll_item_free(u->rtpoll_item);
if (u->rtpoll)
pa_rtpoll_free(u->rtpoll);
if (u->memchunk.memblock)
pa_memblock_unref(u->memchunk.memblock);
if (u->client)
pa_socket_client_unref(u->client);
pa_xfree(u->read_data);
pa_xfree(u->write_data);
if (u->smoother)
pa_smoother_free(u->smoother);
if (u->fd >= 0)
pa_close(u->fd);
pa_xfree(u);
}