pulseaudio/src/pulsecore/time-smoother.c

379 lines
9.2 KiB
C
Raw Normal View History

/* $Id$ */
/***
This file is part of PulseAudio.
Copyright 2007 Lennart Poettering
PulseAudio is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
PulseAudio is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with PulseAudio; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA.
***/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <pulse/sample.h>
#include <pulse/xmalloc.h>
#include <pulsecore/macro.h>
#include "time-smoother.h"
#define HISTORY_MAX 50
/*
* Implementation of a time smoothing algorithm to synchronize remote
* clocks to a local one. Evens out noise, adjusts to clock skew and
* allows cheap estimations of the remote time while clock updates may
* be seldom and recieved in non-equidistant intervals.
*
* Basically, we estimate the gradient of received clock samples in a
* certain history window (of size 'history_time') with linear
* regression. With that info we estimate the remote time in
* 'adjust_time' ahead and smoothen our current estimation function
* towards that point with a 3rd order polynomial interpolation with
* fitting derivatives. (more or less a b-spline)
*
* The larger 'history_time' is chosen the better we will surpress
* noise -- but we'll adjust to clock skew slower..
*
* The larger 'adjust_time' is chosen the smoother our estimation
* function will be -- but we'll adjust to clock skew slower, too.
*
* If 'monotonic' is TRUE the resulting estimation function is
* guaranteed to be monotonic.
*/
struct pa_smoother {
pa_usec_t adjust_time, history_time;
pa_bool_t monotonic;
pa_usec_t time_offset;
pa_usec_t px, py; /* Point p, where we want to reach stability */
double dp; /* Gradient we want at point p */
pa_usec_t ex, ey; /* Point e, which we estimated before and need to smooth to */
double de; /* Gradient we estimated for point e */
/* History of last measurements */
pa_usec_t history_x[HISTORY_MAX], history_y[HISTORY_MAX];
unsigned history_idx, n_history;
/* To even out for monotonicity */
pa_usec_t last_y;
/* Cached parameters for our interpolation polynomial y=ax^3+b^2+cx */
double a, b, c;
pa_bool_t abc_valid;
pa_bool_t paused;
pa_usec_t pause_time;
};
pa_smoother* pa_smoother_new(pa_usec_t adjust_time, pa_usec_t history_time, pa_bool_t monotonic) {
pa_smoother *s;
pa_assert(adjust_time > 0);
pa_assert(history_time > 0);
s = pa_xnew(pa_smoother, 1);
s->adjust_time = adjust_time;
s->history_time = history_time;
s->time_offset = 0;
s->monotonic = monotonic;
s->px = s->py = 0;
s->dp = 1;
s->ex = s->ey = 0;
s->de = 1;
s->history_idx = 0;
s->n_history = 0;
s->last_y = 0;
s->abc_valid = FALSE;
s->paused = FALSE;
return s;
}
void pa_smoother_free(pa_smoother* s) {
pa_assert(s);
pa_xfree(s);
}
static void drop_old(pa_smoother *s, pa_usec_t x) {
unsigned j;
/* First drop items from history which are too old, but make sure
* to always keep two entries in the history */
for (j = s->n_history; j > 2; j--) {
if (s->history_x[s->history_idx] + s->history_time >= x) {
/* This item is still valid, and thus all following ones
* are too, so let's quit this loop */
break;
}
/* Item is too old, let's drop it */
s->history_idx ++;
while (s->history_idx >= HISTORY_MAX)
s->history_idx -= HISTORY_MAX;
s->n_history --;
}
}
static void add_to_history(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
unsigned j;
pa_assert(s);
drop_old(s, x);
/* Calculate position for new entry */
j = s->history_idx + s->n_history;
while (j >= HISTORY_MAX)
j -= HISTORY_MAX;
/* Fill in entry */
s->history_x[j] = x;
s->history_y[j] = y;
/* Adjust counter */
s->n_history ++;
/* And make sure we don't store more entries than fit in */
if (s->n_history >= HISTORY_MAX) {
s->history_idx += s->n_history - HISTORY_MAX;
s->n_history = HISTORY_MAX;
}
}
static double avg_gradient(pa_smoother *s, pa_usec_t x) {
unsigned i, j, c = 0;
int64_t ax = 0, ay = 0, k, t;
double r;
drop_old(s, x);
/* First, calculate average of all measurements */
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
ax += s->history_x[i];
ay += s->history_y[i];
c++;
i++;
while (i >= HISTORY_MAX)
i -= HISTORY_MAX;
}
/* Too few measurements, assume gradient of 1 */
if (c < 2)
return 1;
ax /= c;
ay /= c;
/* Now, do linear regression */
k = t = 0;
i = s->history_idx;
for (j = s->n_history; j > 0; j--) {
int64_t dx, dy;
dx = (int64_t) s->history_x[i] - ax;
dy = (int64_t) s->history_y[i] - ay;
k += dx*dy;
t += dx*dx;
i++;
while (i >= HISTORY_MAX)
i -= HISTORY_MAX;
}
r = (double) k / t;
return s->monotonic && r < 0 ? 0 : r;
}
static void estimate(pa_smoother *s, pa_usec_t x, pa_usec_t *y, double *deriv) {
pa_assert(s);
pa_assert(y);
if (x >= s->px) {
int64_t t;
/* The requested point is right of the point where we wanted
* to be on track again, thus just linearly estimate */
t = (int64_t) s->py + (int64_t) (s->dp * (x - s->px));
if (t < 0)
t = 0;
*y = (pa_usec_t) t;
if (deriv)
*deriv = s->dp;
} else {
if (!s->abc_valid) {
pa_usec_t ex, ey, px, py;
int64_t kx, ky;
double de, dp;
/* Ok, we're not yet on track, thus let's interpolate, and
* make sure that the first derivative is smooth */
/* We have two points: (ex|ey) and (px|py) with two gradients
* at these points de and dp. We do a polynomial interpolation
* of degree 3 with these 6 values */
ex = s->ex; ey = s->ey;
px = s->px; py = s->py;
de = s->de; dp = s->dp;
pa_assert(ex < px);
/* To increase the dynamic range and symplify calculation, we
* move these values to the origin */
kx = (int64_t) px - (int64_t) ex;
ky = (int64_t) py - (int64_t) ey;
/* Calculate a, b, c for y=ax^3+b^2+cx */
s->c = de;
s->b = (((double) (3*ky)/kx - dp - 2*de)) / kx;
s->a = (dp/kx - 2*s->b - de/kx) / (3*kx);
s->abc_valid = TRUE;
}
/* Move to origin */
x -= s->ex;
/* Horner scheme */
*y = (pa_usec_t) ((double) x * (s->c + (double) x * (s->b + (double) x * s->a)));
/* Move back from origin */
*y += s->ey;
/* Horner scheme */
if (deriv)
*deriv = s->c + ((double) x * (s->b*2 + (double) x * s->a*3));
}
/* Guarantee monotonicity */
if (s->monotonic) {
if (*y < s->last_y)
*y = s->last_y;
else
s->last_y = *y;
if (deriv && *deriv < 0)
*deriv = 0;
}
}
void pa_smoother_put(pa_smoother *s, pa_usec_t x, pa_usec_t y) {
pa_usec_t ney;
double nde;
pa_assert(s);
pa_assert(x >= s->time_offset);
/* Fix up x value */
if (s->paused)
x = s->pause_time;
else
x -= s->time_offset;
pa_assert(x >= s->ex);
/* First, we calculate the position we'd estimate for x, so that
* we can adjust our position smoothly from this one */
estimate(s, x, &ney, &nde);
s->ex = x; s->ey = ney; s->de = nde;
/* Then, we add the new measurement to our history */
add_to_history(s, x, y);
/* And determine the average gradient of the history */
s->dp = avg_gradient(s, x);
/* And calculate when we want to be on track again */
s->px = x + s->adjust_time;
s->py = y + s->dp *s->adjust_time;
s->abc_valid = FALSE;
}
pa_usec_t pa_smoother_get(pa_smoother *s, pa_usec_t x) {
pa_usec_t y;
pa_assert(s);
pa_assert(x >= s->time_offset);
/* Fix up x value */
if (s->paused)
x = s->pause_time;
else
x -= s->time_offset;
pa_assert(x >= s->ex);
estimate(s, x, &y, NULL);
return y;
}
void pa_smoother_set_time_offset(pa_smoother *s, pa_usec_t offset) {
pa_assert(s);
s->time_offset = offset;
}
void pa_smoother_pause(pa_smoother *s, pa_usec_t x) {
pa_assert(s);
if (s->paused)
return;
s->paused = TRUE;
s->pause_time = x;
}
void pa_smoother_resume(pa_smoother *s, pa_usec_t x) {
pa_assert(s);
if (!s->paused)
return;
s->paused = FALSE;
s->time_offset += x - s->pause_time;
}